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Abstract
The brain active patterns were organized differently under resting states of eyes open (EO)

and eyes closed (EC). The altered voxel-wise and regional-wise resting state active pat-

terns under EO/EC were found by static analysis. More importantly, dynamical spontaneous

functional connectivity has been observed in the resting brain. To the best of our knowl-

edge, the dynamical mechanisms of intrinsic connectivity networks (ICNs) under EO/EC

remain largely unexplored. The goals of this paper were twofold: 1) investigating the dynam-

ical intra-ICN and inter-ICN temporal patterns during resting state; 2) analyzing the altered

dynamical temporal patterns of ICNs under EO/EC. To this end, a cohort of healthy subjects

with scan conditions of EO/EC were recruited from 1000 Functional Connectomes Project.

Through Hilbert transform, time-varying phase synchronization (PS) was applied to evalu-

ate the inter-ICN synchrony. Meanwhile, time-varying amplitude was analyzed as dynam-

ical intra-ICN temporal patterns. The results found six micro-states of inter-ICN synchrony.

The medial visual network (MVN) showed decreased intra-ICN amplitude during EC relative

to EO. The sensory-motor network (SMN) and auditory network (AN) exhibited enhanced

intra-ICN amplitude during EC relative to EO. Altered inter-ICN PS was found between cer-

tain ICNs. Particularly, the SMN and AN exhibited enhanced PS to other ICNs during EC rel-

ative to EO. In addition, the intra-ICN amplitude might influence the inter-ICN synchrony.

Moreover, default mode network (DMN) might play an important role in information process-

ing during EO/EC. Together, the dynamical temporal patterns within and between ICNs

were altered during different scan conditions of EO/EC. Overall, the dynamical intra-ICN

and inter-ICN temporal patterns could benefit resting state fMRI-related research, and could

be potential biomarkers for human functional connectome.
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Introduction
Previous studies found that the scan conditions of eyes-open (EO) or eyes-closed (EC) might
have impacts on resting state functional connectivity [1]. Different active patterns were found
in visual cortex under scan conditions of EO/EC [2]. Through voxel-level measures, the differ-
ent dynamical attributes of spontaneous brain activities during EO/EC were discovered by the
amplitude of low frequency fluctuations (ALFF) [1, 3–5]. Through regional-level measures, the
characteristic resting states regional-wise fractal ALFF during EO/EC could be decoded via
support vector machines (SVMs) [6]. Moreover, distinctive patterns of EO/EC were found
with measures of regional ALFF and functional connectivity, and the two measures were highly
correlated [7]. Thus resting states of EO/EC might influence dynamic functional connectivity.
Neurophysiological and identical alpha-band activities of MEG signals were related to resting
states of EO/EC [8]. In addition, reorganized functional networks were found between EO/EC
across different frequency bands of MEG signals, suggesting the complexity of brain dynamics
[9]. Although the directional properties of interactions among large-scale brain networks
between EO/EC have been investigated by Gaussian Bayesian network [10], the dynamical pat-
terns of brain networks under EO/EC still remain largely unexplored.

The couplings of neural signals might fluctuate over time in dynamical ways [11], suggesting
the non-stationary nature of brain networks [12]. According to previous studies, the
dynamical, or time-varying functional connectivity was usually measured via sliding-window
techniques [11, 13]. Through time-varying method, the temporal variability of functional con-
nectivity was discovered between certain brain regions, resulting in seven dynamical clusters
[13]. Five micro-states (intrinsic functional connectivity patterns) were found for the temporal
dynamics within posteromedial cortex [14]. Notably, the inter-regional dynamical functional
connectivity might be modulated by resting state networks [15]. Therefore, resting state net-
works might play important roles in the dynamical mechanisms of human brain.

Resting state networks, also named as intrinsic connectivity networks (ICNs), are spatially
independent large-scale brain networks, the oscillations within which are highly synchronized
together [16, 17]. The time course of the ICN might reflect the mean spontaneous fluctuation
within the corresponding network [18]. Moreover, the time courses of ICNs were related to
physiological hemodynamic fluctuation [19]. The Hurst exponent for the time courses of
DMN was related to personality trait [20]. The complexities for the time courses of ICNs exhib-
ited identical patterns and were different from noise [21]. Therefore, the temporal patterns of
ICNs might reflect certain biological meanings [18, 22]. Specially, the dynamic fluctuations
within DMNmight play key role in resting state mind-wandering [23]. The spontaneous activi-
ties within DMNmight be modulated by different scan conditions of EO/EC [3]. Of note, rest-
ing states of EO/EC exhibited distinct brain activities in DMN-related brain regions [6]. Thus
the temporal patterns of DMNmight be related to the temporal patterns of other ICNs under
EO/EC differently. Based on the time-courses of ICNs, the temporal patterns of ICNs con-
tained two categories of features: 1) univariate features and 2) bivariate features. The univariate
patterns might indicate the information flow within ICNs [24, 25]. The bivariate patterns
might represent the information interactions between ICNs [26]. However, the relationships of
dynamical temporal patterns within and between ICNs remain poorly understood.

Phase synchronization (PS), usually based on Hilbert transform, is a bivariate feature for
coupled neural signals [27]. There were emerging studies on the synchronization of neural sig-
nals [28–30]. Mean phase coherence was applied as a measure of synchrony for EEG-related
research [31]. Correlation between probabilities of recurrence was proposed to construct
graphs for resting state fMRI datasets [32]. Moreover, concurrent EEG and resting state fMRI-
related studies found the activity in fronto-parietal network was related to alpha-band phase
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synchrony [33]. Recently, instantaneous PS was used to investigate time-varying functional
connectivity based on resting state fMRI [34]. However, little is known about the dynamical syn-
chronization between ICNs. Mathematically, the PS was based on instantaneous phase difference
of coupled time-series. In addition, the instantaneous amplitudes of time-series could be recog-
nized as univariate features. Thus, instantaneous features based on Hilbert transform could pro-
vide a unified framework to investigate the univariate and bivariate temporal features of ICNs.

Based on the above studies, we reasoned that the ICNs might exhibit characteristic dynamical
functional connectivity under resting states of EO/EC, and hypothesized that the altered dynam-
ical temporal patterns could be discovered with resting state synchrony. To this end, a cohort of
health subjects with resting state fMRI datasets of EO/EC states were recruited from the 1000
Functional Connectomes Project. First, the time-courses of ICNs were extracted from the spa-
tially normalized 4D functional volumes. Then, the micro-states of synchrony between ICNs
were analyzed through unsupervised learning. Finally, the altered dynamical temporal patterns
within and between ICNs were determined to explore the network mechanisms of EO/EC.

Methods

Participants and MRI protocols
A cohort of healthy controls (students) were recruited from Beijing Normal University in
China [1]. All research involving human participants have been approved by the 1000 Func-
tional Connectomes Project (http://fcon_1000.projects.nitrc.org/) and the ethics committee of
Institutional Review Board of Beijing Normal University Imaging Centre for Brain Research.
Each participant has provided written informed consent, which was approved by the ethics
committee of Institutional Review Board of Beijing Normal University Imaging Center for
Brain Research [1]. All data were scanned from a Siemens Trio 3.0 Tesla scanner, and could be
publicly obtained from the 1000 Functional Connectomes Project [35]. For this study, each
participant has one structural MRI scan and two resting state fMRI scans. One resting session
was scanned with eyes closed, another resting session was scanned with eyes open. The resting
state fMRI datasets were consisted of 240 standard EPI volumes for each session (TR = 2000
ms, TE = 30 ms, 3.1 mm × 3.1 mm × 3.5 mm, 8 mins). The structural MRI datasets were based
on MPRAGE sequence (TR = 2530 ms, TE = 3.39 ms, 1.3 mm × 1mm × 1.3 mm) [1]. Two sub-
jects were discarded for missing scan resting sessions, leaving 46 subjects (22 males and 24
females; mean age ± SD, 22.54 ± 2.18 years) for subsequent analysis.

Data Preprocessing
All raw datasets were preprocessed and normalized into standard brain space through com-
mands from FSL (www.fmrib.ox.ac.uk/fsl) and AFNI (afni.nimh.nih.gov). The structural data-
sets were skull-stripped, segmented and nonlinearly registered to standard brain. The resting
state datasets were preprocessed by following steps: 1) discarded the first five volumes; 2)
motion correction; 3) spatial smoothed using FWHM = 6 mm; 4) regressed out Friston-24
motion parameters [36–38], global signal, whiter matter signal, cerebral spinal fluid (CSF) sig-
nal, as well as linear and quantic trends; 5) temporal filtered (0.01–0.08 Hz) [39]; 6) resampled
to 3 mm × 3mm × 3mm.

Time-courses for ICNs
In this paper, we analyzed the temporal patterns of ten well-established ICNs, the spatial maps of
which could be obtained from the website of BrainMap [18]. Based on the ICA decompositions
of both resting state fMRI and task fMRI, the spatial components of ten well-established ICNs
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exhibited very close correspondence of architecture during resting and active states [18]. For this
study, the templates of ICNs were extracted using over 7,000 activation-peak images from Brain-
Map, resulting in correlations with behavioral domain [18]. Moreover, the ten ICNs have been
applied in previous studies [14, 21], suggesting the value of their usability in resting state research.
The names of ICNs were listed in Table 1.

The time-course of an ICN could reflect the temporal dynamics within the network. To
obtain the time-courses of ICNs, spatial general linear models (GLMs) were applied between
the template ICNs and resting state fMRI volumes for each subject. The spatial GLMs proce-
dures were carried out based on the first step of dual regression [24, 40], resulting an individual
time-course of beta values for each ICN of each subject. The detailed information of spatial
GLMs could be found in [24, 25, 40]. The flowchart of data processing could be found in Fig 1.

Dynamical phase synchronization
Phase synchronization (PS) between coupled time-series could be obtained from the Hilbert
transform of the analytic signals [27]. Hilbert transform was adopted in this paper for two rea-
sons: 1) For a given neural signal, Hilbert transform could simultaneously produce instanta-
neous phases and amplitudes, which could be beneficial to investigating the univariate and
bivariate features of time courses; 2) Hilbert transform could deal with non-stationary signals

[41]. Given a time-course s(t), let sð̂tÞ equals the convolution of s(t) and 1 / (πt). The analytic

signal can be denoted as sðhÞðtÞ ¼ sðtÞ þ i sð̂tÞ ¼ AðhÞðtÞei�ðhÞðtÞ. The instantaneous phase of s(t)
can be defined as:

�ðhÞðtÞ ¼ arctan
sð̂tÞ
sðtÞ :

Given a sliding-widow on the instantaneous phases, the dynamical PS (mean phase coher-
ence) [27, 31] can be defined as:

dPS ¼ sqrtð 1

m

Xiþm

t¼i

cos φ̂ðtÞ
" #2

þ 1

m

Xiþm

t¼i

sin φ̂ðtÞ
" #2

Þ;

where, φ̂ðtÞ ¼ φ1ðtÞ � φ2ðtÞ, i =1,2,3,. . .,n, i is the index of sliding-window,m is the length of
the sliding-widow, n is the number of sliding-windows. Here, the φ1(t) and φ2(t) represent the
instantaneous phases of the coupled time courses of two ICNs, respectively.

In addition, the amplitude of the analytic signals was analyzed as univariate temporal pat-

terns for ICNs. Given instantaneous amplitudes as AðhÞðtÞ ¼ absðsðtÞ þ i sð̂tÞÞ, the dynamical

Table 1. Names of 10 ICNs.

index Names of ICNs

ICN1 Medial visual network (MVN)

ICN2 Occipital visual network (OVN)

ICN3 Lateral visual network (LVN)

ICN4 Default mode network (DMN)

ICN5 Cerebellum (CBN)

ICN6 Sensorimotor network (SMN)

ICN7 Auditory network (AN)

ICN8 Executive control network (ECN)

ICN9 Right frontoparietal network (RFPN)

ICN10 Left frontoparietal network (LFPN)

doi:10.1371/journal.pone.0140300.t001
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amplitude could be derived from the instantaneous amplitudes of the analytic signals in the fol-
lowing equation:

dAMP ¼ 1

m

Xiþm

t¼i

AðhÞðtÞ;

where i =1,2,3,. . .,n, i is the index of sliding-window,m is the length of the sliding-widow, n is
the number of sliding-windows.

In order to comply with previous studies [13, 14], the length of the sliding-widow equals to
22 TRs (44s) for this study. The overlay of sliding-windows equals to 1 TR, thus each session
could produce 213 sliding-windows before artifacts removal. The effects of sliding-widow
length on the robustness of the results were analyzed additionally.

Moreover, two metrics were applied to investigate node properties of the graph consisted
with ICNs. One metric is node amplitude or ICN amplitude, equals to dAMP within each slid-
ing-window. Another metric is node strength or ICN strength, and could be defined as the

Fig 1. Data processing flowchart. The time-courses of ICNs are generated with GLMs. The time-varying amplitude and phase synchronization are
obtained from Hilbert transform. After removing motion artifacts, the micro-states of dynamical synchrony are detected by hierarchical clustering analysis.

doi:10.1371/journal.pone.0140300.g001
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average value of PS for the corresponding ICN to other ICNs within each sliding-window. Spe-
cially, the node properties for DMN were investigated by DMN amplitude and DMN strength.

Motion outliers detection and removal
Given current concerns on motion artifacts in resting state fMRI datasets, frame-wise displace-
ment (FD) and root-mean-square variance of the temporal derivative (DVARS) [36, 42] were
applied to detect motion outliers in the functional volumes after motion correction. Here, the
volume-wise DVARS was computed by the FSL plugin. The normalized DVARS should be
approximately 1 if there were no artifacts. The outliers of DVARS were detected by boxplots
(outside 1.5 times the interquartile range above the upper quartile and bellow the lower quar-
tile). A marked artifactual time-point was defined based on FD> 0.5 mm or DVARS out of
boxplot of the entire time-course. The backward and forward time points of the artifactual
time point were also marked as outliers. If a motion outlier presented in a sliding-window,
then sampling points within the sliding-window were marked as the motion-corrupted frag-
ments. After removing motion-corrupted fragments for each subject, the bivariate features of
dynamical PS were temporally concatenated together for unsupervised learning.

Hierarchical clustering analysis
In this paper, hierarchical clustering analysis (HCA) was applied to evaluate the dynamical syn-
chrony between ICNs [14]. HCA is a connectivity based clustering method, and seeks to build a
hierarchy of clusters. The selection of HCA was based on three reasons [43]: 1) HCA does not
require a predefined number of clusters; 2) HCA can produce a dendogram for visualization of
the relationships between clusters; 3) The cluster label of each instance was a fixed value for a
given number of clusters. The procedure of HCA contained three steps: First, the distance
between pairs of instances was defined by Euclidean distance; Second, a new cluster was obtained
from two nearest sets of distance usingWard's criterion as the linkage criterion [44]; Finally, all
instances were agglomerated into one single cluster by repeating the above steps.

The number of clusters for micro-states was detected via the mclust package [45]. The pro-
cedure of detecting the optimized number of clusters contained the following steps: 1) tempo-
rally concatenated dynamical features of all subjects into a feature matrix; 2) random selected
200 instances from the feature matrix; 3) detected the number of clusters using model-based
clustering embedded in mclust package [45]; 4) selected the optimized number of clusters
based on the histogram of 1000 simulations of step 3.

After clustering analysis, the labeled instances were divided into two groups: EO-group and
EC-group. For each cluster/state, formal testing was applied to investigate the altered temporal
patterns of ICNs under EO/EC: 1) using t-test to find the altered univariate as well as bivariate
features of ICNs; 2) using Fisher-Z transform to find the altered relationships between univari-
ate and bivariate features of ICNs. More specifically, the test of difference between two correla-
tions of independent groups contained the following steps: 1) obtaining the correlation
coefficients for each group; 2) applying Fisher r-to-z transform on the correlation coefficients
of the two groups, Z1 = (ln(1+r1)−ln(1−r1)) / 2, and Z2 = (ln(1+r2)−ln(1−r2)) / 2, where r1 and
r2 represented the correlation coefficients of the two groups respectively; 3) deriving the Z
value for difference between two groups,

Z ¼ Z1 � Z2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1 � 3þ
1

n2 � 3

r ;

where Z1 and Z2 represented the Z-transformed correlations coefficients for the two groups
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respectively, n1 and n2 represented the numbers of instances in the two groups respectively
[46].

Results

Clusters of dynamical phase synchronization between ICNs
Fig 2 shows the dendogram of clustering. Fig 3 shows the percentage of each cluster in all of the
instances. Six clusters are obtained from the features of inter-ICN PS. The micro-state is repre-
sented by the mean inter-ICN PS within the corresponding cluster. From Fig 2 and Fig 3, most
of the dynamical PS between ICNs exhibits as state 2. Fig 2 and Fig 3 also show that states 3
and 4 are close to each other, while states 5 and 6 are close to each other. Fig 4 shows that, dur-
ing state 2, most of ICNs behave in a dys-synchronized way. Fig 5 show that MVN, DMN and
RFPN are more active than other ICNs, while CBN is the most quiet network.

Altered temporal patterns of ICNs under EO/EC
Fig 6 shows the altered univariate and bivariate temporal patterns of ICNs under EO/EC
(p< 0.001, FDR corrected). Here, red circles and lines denote the dynamical temporal patterns
of ICNs are more active during EC relative to EO, while blue circles and lines indicate less
active temporal patterns of ICNs during EC relative to EO.

From Fig 6, the MVN amplitude is decreased during EC for most of the micro-states, except
for state 4. The amplitudes for SMN and AN are more active than other ICNs during EC than
EO for most of the micro-states. The DMN exhibits altered amplitude during different resting
states of EO/EC.

In particular, the results demonstrate altered dynamical inter-ICN PS during EO/EC. For
most of the micro-states during EC, the cerebellum exhibits decreased PS to other ICNs. In
addition, the RFPN, LFPN, and ECNmainly exhibited increased PS to other ICNs during EC.
For micro-states 1 and 3 during EC, the SMN and AN exhibits enhanced PS to other ICNs. For
micro-states 5 and 6 during EC, the DMN exhibits enhanced PS to other ICNs. For micro-
states 1, 4 and 5 during EC, enhanced PS is found between OVN and ECN.

Relationships of DMN amplitude and DMN strength under EO/EC
Fig 7 presents the scatter plots of node amplitude and node strength for DMN. Table 2 shows
the correlation coefficients and z-values under EO/EC. Certain linear relationships are existed
between DMN amplitude and DMN strength. Different scan conditions of EO/EC might alter
the positive correlation between DMN amplitude and DMN strength. For micro-state 2, there
are no difference relationships of network amplitude and node strength during EO and EC.
For micro-states 3, the correlations of DMN amplitude and DMN strength are decreased
under resting state of EC. For micro-states 6, the correlations of DMN amplitude and DMN
strength are increased under resting state of EC.

Altered relationships of DMN amplitude and inter-ICN PS under EO/EC
Fig 8 shows the altered relationships of DMN amplitude and inter-ICN PS during different
scan conditions of EO/EC (p< 0.001, FDR corrected). The red squares denote increased linear
correlations of DMN amplitude and inter-ICN PS during EO relative to EC, while blue squares
denote decreased linear correlations of DMN amplitude and inter-ICN PS during EO relative
to EC. For micro-state 1 during EO, the correlations of DMN amplitude and dynamic PS are
increased between DMN and SMN, as well as between MVN and AN. For micro-states 2, 4
and 5 during EO, the correlations of DMN amplitude and dynamic PS are decreased between
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SMN and other ICNs. For micro-state 3 during EO, the relationships of DMN amplitude and
dynamic PS are increased between RFPN and other ICNs. For micro-states 4 and 5 during EO,
the correlations of DMN amplitude and dynamic PS are increased between ECN and other
ICNs. For micro-state 6 during EO, the correlations of DMN amplitude and inter-ICN PS are
increased between LFPN and other ICNs.

Fig 2. Dendogram of clustering of dynamical inter-ICN PS. The red rectangles denote the boundaries of clusters. The blue numbers denote the indices of
clusters.

doi:10.1371/journal.pone.0140300.g002
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Fig 3. Percentages of clusters of dynamical inter-ICN PS. Subfigure A denotes the pie chart of clusters for eyes-closed resting state. Subfigure B denotes
the pie chart of clusters for eyes-open resting state. The red, blue, green, baby blue, pink, and yellow colors denote clusters 1, 2, 3, 4, 5, and 6, respectively.

doi:10.1371/journal.pone.0140300.g003

Fig 4. Mean dynamical inter-ICN PS of each cluster. In each subfigure, the names of ICNs are listed in the diagonal line. Subfigures A, B, C, D, E and F
denote states 1, 2, 3, 4, 5, and 6, respectively.

doi:10.1371/journal.pone.0140300.g004
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Discussion
This paper aimed to investigate the different dynamical temporal patterns of ICNs under rest-
ing states of eyes-open/closed. To the best of our knowledge, this was the first attempt to simul-
taneously evaluate the dynamical univariate and bivariate features of neural signals in a unified
framework of phase synchronization (PS). The results found altered intra-ICN amplitude and
inter-ICN phase synchrony under EO/EC. In addition, the altered dynamical network ampli-
tude might modulate network strength of synchronization. Furthermore, the dynamical net-
work amplitude might correlate with inter-ICN phase synchrony. Together, dynamical
univariate and bivariate features of neural signals could be investigated in the unified frame-
work of Hilbert transform, and could be supplementary features to investigate the neurophysi-
ological processes in human brain.

The dynamical states of functional coupling in human brain have been reported by resting
state fMRI-based research. Different from conventional time-varying functional connectivity
based on regional time-series, this study attempted to discover the dynamical states of ICN-
related connectivity. Here, six micro-states of synchronization between ICNs were found via
hierarchical clustering analysis. In resting state of EO/EC, over 40 percent of the ICN-related
connectivities exhibited dys-synchronized patterns as state 2. This result confirmed previous
findings that most of the ICNs were anti-correlated to each other based on stationary signal
analysis [47]. Certain ICNs behaved in highly synchronized ways (i.e., state 1, state 3, state 5
and state 6) measured by time-varying synchrony. Conventional sliding-window technique

Fig 5. Mean dynamical intra-ICN amplitude of each cluster. Subfigures A, B, C, D, E and F denote states 1, 2, 3, 4, 5, and 6, respectively.

doi:10.1371/journal.pone.0140300.g005

Dynamical Temporal Patterns of ICNs for EO/EC

PLOSONE | DOI:10.1371/journal.pone.0140300 October 15, 2015 10 / 20



also found there were unanticipated patterns of dynamical functional connectivity, compared
to stationary functional connectivity [13]. In addition, state 3 and state 4 exhibited certain
proximity, since they shared similar patterns of MVN and OVN-related inter-ICN PS accord-
ing to supplementary analysis. The proximity of state 5 and state 6 might be related to the close
patterns of inter-ICN PS among LVN, DMN and AN. The reason for the lower CBN amplitude
might be its segregated function with less/slow connections to cortical regions [48]. In sum-
mary, the six states could be defined as follows: (1) state 1 might reflect highly synchronized
state between ICNs; (2) state 2 could represent the highly dys-synchronized state between
ICNs; (3) state 3 exhibited as visual and attention-related state; (4) state 4 might be vision-
related state; (5) state 5 might be visual and auditory active state; and (6) state 6 might be audi-
tory and attention-related state. Furthermore, we analyzed whether the results were robust
against different sliding-windows. The additional findings exhibited certain tendencies of
robustness against different length of sliding-window. States 1, 2, 4 and 6 appeared robustly
with longer sliding-window. However, states 3 and 5 exhibited less robustness at certain length
of sliding-window as outliers (i.e., state 3 at 34 TRs, state 5 at 28 TRs). One reason could be the
criterions of similarity for pairs of states between different sizes of sliding-windows. Another
reason might be the different numbers of instances between different sizes of sliding-windows.
Nevertheless, the results of time-varying synchrony suggested the potential advantages of
dynamical functional connectivity for research of brain mechanisms.

Eyes open or closed might be responsible for the exteroceptive or interoceptive resting
state, respectively. In particular, EO was related to attention and ocular motor activity for

Fig 6. Altered inter-ICN dynamical PS and intra-ICN amplitude under EO and EC. Subfigures A, B, C, D, E and F denote states 1, 2, 3, 4, 5, and 6,
respectively. Red lines denote increased PS during EC relative to EO. Blue lines denote decreased PS during EC relative to EO. Red circles denote
increased amplitude during EC relative to EO. Blue circles denote decreased amplitude during EC relative to EO. (p < 0.001,FDR corrected).

doi:10.1371/journal.pone.0140300.g006
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exteroceptive state, while EC was related to imagination and multisensory activity for intero-
ceptive state [2]. Additional analysis found higher global efficiencies of the dynamical states
(i.e., states 1, 3 and 5) during EO compared to EC, implying the reorganized network during
exteroceptive state [9, 49]. The high efficient organization of brain network during EO might
be related to extra communications with external environment compared with EC [9]. How-
ever, lower global efficiency of inter-regional brain network under EO was found by resting

Fig 7. DMN amplitude correlates DMN strength of PS for EO and EC. Subfigures A, B, C, D, E and F denote states 1, 2, 3, 4, 5, and 6, respectively. Solid
dots and lines represent EC-related resting state. Soft dots and dashed lines represent EO-related resting state.

doi:10.1371/journal.pone.0140300.g007

Table 2. Relationships of DMN amplitude and DMN strength.

State EC (r, p) EO (r, p) EC-EO (z, p)

State1 (0.28, 0a) (0.37, 0 a) (-1.56, 0.11)

State2 (0.33, 0 a) (0.36, 0 a) (-1.03, 0.3)

State3 (0.07, 0.15) (0.3, 0 a) (-4.07, 0b)

State4 (0.31, 0 a) (0.33, 0 a) (-0.49, 0.63)

State5 (0.37, 0 a) (0.35, 0 a) (0.48, 0.63)

State6 (0.4, 0 a) (0.28, 0 a) (2.85,0c)

a p<10−10

b p<0.0001
c p<0.01

doi:10.1371/journal.pone.0140300.t002
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state fMRI [49]. The inconsistent results of global efficiency between EO/EC might be related
to different frequency bands (i.e., 0.01–0.08 Hz for fMRI, 4–45 Hz for MEG) or different types
of graphs (i.e., inter-regional network, inter-ICN network). Previous study also argued that
interoceptively or exteroceptivly oriented attention might exist in both EO and EC [49]. Fur-
thermore, the global metrics of brain network topology were relatively invariant under differ-
ent conditions of EO/EC [7]. Accordingly, no significantly different global efficiency was found
in states 2, 4 and 6, suggesting that there might be ambiguous state besides exteroceptive or
interoceptive state.

The dynamical intra-ICN amplitudes exhibited different patterns during resting state of
EO/EC. The differences of brain active patterns under eyes open/closed have been reported by
many resting state fMRI-related studies, most of which were voxel-wise measures (i.e., ALFF,
regional homogeneity) [1]. Similar to decreased intra-ICN amplitude within SMN during EO,
voxel-wise ALFF and regional homogeneity were also decreased within the sensory-motor
regions during EO relative to EC [1, 50, 51]. Moreover, discriminative patterns of decreased
fALFF under EO were found in sensorimotor regions through machine learning, suggesting
sensorimotor regions may be vital for mental imagery [6]. Decreased high-frequency fluctua-
tion were found in primary auditory and sensorimotor regions under EO, suggesting the cross-
sensory modal inhibition process for exteroceptive state [4, 49]. In addition, our results found
altered intra-ICN amplitude within visual-related ICNs under EO. Although there were

Fig 8. Altered relationships of DMN amplitude and inter-ICN PS under EO and EC. Subfigures A, B, C, D, E and F denote states 1, 2, 3, 4, 5, and 6,
respectively. Blue rectangles represent increased linear relationships between DMN amplitude and network PS during EC relative to EO. Red rectangles
represent decreased linear relationships between DMN amplitude and network PS during EC relative to EO. (p < 0.001,FDR corrected).

doi:10.1371/journal.pone.0140300.g008
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increased local activities in visual cortex under EO [1, 50, 52], decreased signal variance,
fALFF, as well as Hurst exponent were found in the primary and secondary sensory cortex
under EO [7]. One reason for the contradictory results might be related to different visual
inputs during EO [6, 10], since there were different written-word forms as visual stimuli [18].
Another reason might be related to different measures (i.e., intra-ICN ALFF, regional fALFF,
voxel-wise CBF, regional homogeneity). Overall, dynamical intra-ICN amplitude could be pro-
spective biomarker, which could determine the different temporal patterns of ICNs under EO/
EC.

The dynamical inter-ICN phase synchrony also exhibited different patterns during resting
state of EO/EC. Altered topological organization under EO/EC was found by graph-related
research [49]. Characteristic directional connections were found under EO/EC using Bayesian
network learning and support vector machine [10]. Here, sensory-motor and auditory-related
inter-ICN synchronization were increased during EC compared to EO. The auditory network
exhibited higher functional connectivity than other networks during EC compared to EO, evi-
denced by previous study [53]. One possible explanation could be the highly integrated sensory
modalities during EC, suggesting that EO might inhibit cross-sensory modalities to allocate
more resources for processing external world [49]. The huge information processing require-
ments during EO could be reflected by increased connection distance in all brain regions [7].
More directional connections related to primary visual network were found under EO com-
pared to EC, implying EO was the exteroceptive state [10]. In this paper, increased visual-
related inter-ICN PS was found under EO. Accordingly, higher efficient sensory-related ICNs
were found in EO compared to EC, suggesting the need of more efficiently recruited sensory-
related ICNs for exteroceptive information processing [9]. In summary, EO exhibited increased
visual-related synchrony and suppressed sensorimotor and auditory-related synchrony for
exteroceptive state. In addition, although increased synchronicity was found between visual
system and attention system under EO [49], certain decreased synchronizations were found
between visual networks and ECN, DMN, and RFPN during EO compared to EC in this study.
One potential interpretation could be different measures of functional connectivity (i.e., PS,
linear correlation coefficients). Another possible reason could be the time scales (44s) of
dynamical features. Overall, these findings might provide additional information to investigate
the different aspects of internal and external information processing in human brain [49].

This study also attempted to analyze the relationships of dynamical intra-ICN patterns and
dynamical inter-ICN patterns. In this paper, the time-varying intra-ICN amplitude might
reflect the dynamical information flows within each ICN. Meanwhile, the time-varying ICN
strength might reflect the mean synchrony of the corresponding ICN to other ICNs. Our
results found that intra-ICN amplitude might modulate network strength as well as inter-ICN
synchrony under EO/EC differently. One previous study found characteristic relationships
between intra-ICN complexity/ALFF and ICN strength based on stationary analysis [25].
Another study found local activity coincided almost exactly with resting state functional con-
nectivity [52]. Specially, DMN could positively modulate the dynamical functional connectivity
within the fronto-parietal network [15]. Furthermore, DMN was found as a hub network
among the graph of ICNs [10]. In the inter-ICN graph, DMN exhibited relatively higher corre-
lations of node amplitude and node strength than other ICNs. Compared to EO, decreased
DMN amplitude was found in states 3 and 4, while increased DMN amplitude was found in
states 5 and 6. Both increased and decreased node efficiencies corresponded to DMN were
found in EO compared to EC across alpha and theta bands [9]. What is more, increased corre-
lation of DMN amplitude and DMN strength was found in state 3 during EO relative to EC,
and decreased correlation of DMN amplitude and DMN strength was found in state 6 during
EO relative to EC. One possible interoperation could be states 3 and 6 were related to attention,
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in which DMNmight play an important role [54]. Additionally, DMN could associate with the
inter-ICN synchrony across different dynamical states in this study. In particular, the correla-
tions between DMN amplitude and the SMN and visual-related inter-ICN synchrony were
mainly decreased in the exteroceptive state than interoceptive state. According to recent evi-
dence, the somato-sensory network, visual network as well as auditory network exhibited high
node efficiencies as hubs during EO compared to EC [9]. Moreover, the enhanced correlations
were found between DMN amplitude and the RFPN-related inter-ICN synchrony in state 3
during EO relative to EC. Increased correlations were found between DMN amplitude and the
LFPN-related inter-ICN synchrony in state 6 during EO relative to EC. According to previous
report, the RFPN and LFPN were related to perception and language respectively [18]. The
above results implied that the perception and cognitive function could be modulated by
changes of EO/EC [7]. Overall, the dynamics of DMN were related to multisensory system,
perception, language, as well as other brain functions under EO/EC differently. Thus the
dynamics of DMNmight be fundamental for switching of exteroceptive state and interoceptive
state.

One advantage of this study was simultaneously analyzing the dynamical intra-ICN and
inter-ICN temporal patterns based on Hilbert transform. Thus, this study provided a unified
mathematical framework to evaluate the dynamical functional connectivity within and
between ICNs. Moreover, the intra-ICN amplitude and inter-ICN synchrony could reflect, to
some extent, the differences of brain active patterns under resting state of EO/EC, implying the
biological meanings of temporal patterns of ICNs. Another advantage of this study was the
nonlinearity of PS, which outperforms the classical Pearson correlation coefficient-related
measures. Moreover, the PS was an non-negative measure, ranging from 0 to 1. Thus, PS could
capture the full information of functional connectivity between ICNs. Therefore, the proposed
dynamical temporal patterns could be beneficial to ICN-related research, and could be poten-
tial biomarkers for brain disorder and brain development.

One limitation of this study was that we only considered resting states of eyes open/closed.
As we known, other visual conditions (i.e., fixation) as well as external visual stimulus were
also involved in resting states [7, 53]. Another limitation of this study was relatively small sam-
ple size of resting scans. Future studies should increase the sample size based on different popu-
lations. The third limitation was the fixed frequency band (i.e., 0.01–0.08Hz), which could be
extended with sub-bands in future study [34, 55]. The results should also be verified by differ-
ent scanners and scan parameters [4]. In particular, the impacts of EO/EC on the test-retest
reliability should be considered by multi-sites dataset [5, 53, 56]. Furthermore, the metric of PS
could not reflect the directional information between ICNs. Therefore, directional measures
should be considered in future research [10]. Overall, the investigation of brain mechanisms
among different visual conditions was an interesting topic, suggesting the need for further
research.

Conclusion
We demonstrated a unified framework to investigate the dynamical temporal patterns within
and between ICNs under EO/EC. The ICNs exhibited different active patterns which were
related to exteroceptive state and interoceptive state. Our results suggested that the scan condi-
tions of eyes open/closed should be carefully considered when analyzing resting sate fMRI-
related experiments. Furthermore, the proposed intra-ICN amplitude and inter-ICN phase
synchronization could benefit the research of dynamical functional connectivity, and could
also be prospective neural metrics for human functional connectome.
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Supporting Information
S1 Fig. Mean dynamical inter-ICN PS with threshold of 0.5 for each cluster. In each subfi-
gure, the names of ICNs are listed in the diagonal line. Subfigures A, B, C, D, E and F denote
states 1, 2, 3, 4, 5, and 6, respectively. The inter-ICN PS below 0.5 is set to 0.
(TIFF)

S2 Fig. Histogram for number of clusters. X-axis denotes number of clusters. Y-axis denotes
the counts of number. The histogram is based on the median value of 1000 simulations of clus-
tering.
(TIFF)

S3 Fig. The impacts of sliding−window size on clusters. X-axis denotes the length of TRs. Y-
axis denotes the correlation coefficients between the corresponding size of sliding−window and
44s sliding−window. The red, yellow, green, light blue, blue and pink curves denote states 1, 2,
3, 4, 5, and 6, respectively.
(TIFF)

S4 Fig. The impacts of sliding−window size on temporal patterns of ICNs between EO/EC
(state 1). Subfigures denote sliding-window length of 13 TRs,16 TRs, 19 TRs, 22 TRs, 25 TRs,
28 TRs, 31 TRs, 34 TRs, 37 TRs and 40 TRs respectively. Red lines denote increased PS during
EC relative to EO. Blue lines denote decreased PS during EC relative to EO. Red circles denote
increased amplitude during EC relative to EO. Blue circles denote decreased amplitude during
EC relative to EO. (p< 0.001,FDR corrected).
(TIFF)

S5 Fig. The impacts of sliding−window size on temporal patterns of ICNs between EO/EC
(state 2). Subfigures denote sliding-window length of 13 TRs,16 TRs, 19 TRs, 22 TRs, 25 TRs,
28 TRs, 31 TRs, 34 TRs, 37 TRs and 40 TRs respectively. Red lines denote increased PS during
EC relative to EO. Blue lines denote decreased PS during EC relative to EO. Red circles denote
increased amplitude during EC relative to EO. Blue circles denote decreased amplitude during
EC relative to EO. (p< 0.001,FDR corrected).
(TIFF)

S6 Fig. The impacts of sliding−window size on temporal patterns of ICNs between EO/EC
(state 3). Subfigures denote sliding-window length of 13 TRs,16 TRs, 19 TRs, 22 TRs, 25 TRs,
28 TRs, 31 TRs, 34 TRs, 37 TRs and 40 TRs respectively. Red lines denote increased PS during
EC relative to EO. Blue lines denote decreased PS during EC relative to EO. Red circles denote
increased amplitude during EC relative to EO. Blue circles denote decreased amplitude during
EC relative to EO. (p< 0.001,FDR corrected).
(TIFF)

S7 Fig. The impacts of sliding−window size on temporal patterns of ICNs between EO/EC
(state 4). Subfigures denote sliding-window length of 13 TRs,16 TRs, 19 TRs, 22 TRs, 25 TRs,
28 TRs, 31 TRs, 34 TRs, 37 TRs and 40 TRs respectively. Red lines denote increased PS during
EC relative to EO. Blue lines denote decreased PS during EC relative to EO. Red circles denote
increased amplitude during EC relative to EO. Blue circles denote decreased amplitude during
EC relative to EO. (p< 0.001,FDR corrected).
(TIFF)

S8 Fig. The impacts of sliding−window size on temporal patterns of ICNs between EO/EC
(state 5). Subfigures denote sliding-window length of 13 TRs,16 TRs, 19 TRs, 22 TRs, 25 TRs,
28 TRs, 31 TRs, 34 TRs, 37 TRs and 40 TRs respectively. Red lines denote increased PS during
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EC relative to EO. Blue lines denote decreased PS during EC relative to EO. Red circles denote
increased amplitude during EC relative to EO. Blue circles denote decreased amplitude during
EC relative to EO. (p< 0.001,FDR corrected).
(TIFF)

S9 Fig. The impacts of sliding−window size on temporal patterns of ICNs between EO/EC
(state 6). Subfigures denote sliding-window length of 13 TRs,16 TRs, 19 TRs, 22 TRs, 25 TRs,
28 TRs, 31 TRs, 34 TRs, 37 TRs and 40 TRs respectively. Red lines denote increased PS during
EC relative to EO. Blue lines denote decreased PS during EC relative to EO. Red circles denote
increased amplitude during EC relative to EO. Blue circles denote decreased amplitude during
EC relative to EO. (p< 0.001,FDR corrected).
(TIFF)

S1 File. Relationships of ICN amplitude and ICN strength.
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S1 Table. Difference of global efficiency between EO and EC.
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