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ABSTRACT: Bottlebrush polymers with flexible backbones and
rigid side chains have shown ultrahigh CO2 permeability and
plasticization resistance for membrane-based gas separations. To
date, this class of polymers has only been studied with polydisperse
side chains. Herein, we report gas transport properties of a
methoxy (OMe) functionalized polymer synthesized via ring-
opening metathesis polymerization (ROMP) with uniform side-
chain lengths ranging from n = 2 to 5 repeat units to elucidate the
role of both side-chain length and dispersity on gas transport
properties and plasticization resistance. As side-chain length
increased, both Brunauer−Emmett−Teller (BET) surface area and gas permeability increased with minimal losses in gas selectivity.
Increased plasticization resistance was also observed with increasing side-chain length, which can be attributed to increased
interchain rigidity from longer side chains. Controlling the side-chain length provides an effective strategy to rationally control and
optimize the performance of ROMP polymers for CO2-based gas separations.
KEYWORDS: ROMP, gas separations, bottlebrush polymers, porous polymers, side-chain length, plasticization resistance

The use of membranes for gas separations is a promising
alternative to traditional industrial separations due to

their energy efficiency, low capital investment, and operational
simplicity (i.e., no moving parts or phase changes).1,2 In order
to be suitable for scale-up and operation, such membranes
must be solution-processable as well as highly permeable and
selective.3 Recently, polymers of intrinsic microporosity
(PIMs) have emerged to define the state of the art in pure-
gas performance due to their rigid and contorted backbones
that lead to inefficient packing and concomitant pore
generation, which results in very high gas permeabilities.4−8

Since the discovery of PIMs, a range of design strategies (e.g.,
the incorporation of rigid groups such as iptycenes, Tröger’s
base and analogous motifs, fused norbornyl benzocyclobutene
repeat units (CANALs), and polybenzoxazoles through
thermally rearranged (TR) polymers) have been used to
generate pores for improved separation performance.9−18

We recently introduced an alternative method to generate
free volume using a “bottlebrush”-type polymer with a flexible
poly(norbornene) backbone decorated with rigid, free-volume-
generating side chains.19,20 A variety of functionalities can be
incorporated into the rigid macromonomers prior to their
polymerization, allowing for the effects of these functionalities
on polymer packing and gas transport properties to be studied.
To that end, we investigated gas transport properties of two
porous polymers generated via ring-opening metathesis
polymerization (ROMP) with two different chemical sub-

stituents (CF3-ROMP and OMe-ROMP) and found that CF3-
ROMP possessed ultrahigh CO2 permeability (>21 000 barrer)
and exceptional plasticization resistance (CO2 plasticization
pressure > 51 bar).20 Although OMe-ROMP also displayed
similar exceptional plasticization resistance, the CO2 perme-
ability was lower (∼2900 barrer).20 These outstanding
permeabilities, coupled with moderate selectivities of the
major gas pairs considered, positioned CF3-ROMP and OMe-
ROMP across the separation performance upper bounds
developed by Robeson for polymer materials.20−22 The overall
moderate selectivity of ROMP polymers compared to other
PIMs with similar permeability was found to be related to
limited diffusivity selectivity.20 This finding is potentially
related to the nonuniformity in side-chain length and the
stereochemistry of the rigid side chains. Thus, we hypothesized
that creating side chains of uniform length could potentially
improve diffusivity selectivity, and consequently the permse-
lectivity, in ROMP polymers.
In this study, we report gas transport properties of OMe-

ROMP with uniform side chains ranging from n = 2 to 5 repeat
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units (Figure 1), which we designate as poly(OMe n-mer)s.
We found that increasing side-chain length (i.e., the value of n)

led to increased pure-gas permeability and diffusion
coefficients for all gases considered, with minimal loss in
selectivity. Although we hypothesized that forming side chains
of uniform length could improve selectivity, the dispersity of
side-chain length in samples did not influence gas transport
properties. For example, permeabilities, diffusivities, and
selectivities of OMe-ROMP with polydisperse side chains
(average n = 4.5) fell between those of poly(OMe 4-mer) and
poly(OMe 5-mer). When measuring high-pressure pure-gas
CO2 permeation, increasing side-chain length correlated with
increased plasticization pressures, suggesting that side-chain
length presents a tunable parameter for enhancing plasti-
cization resistance.
Figure 1a compares the architecture of the samples

considered in our previous study20 to those considered here.
Poly(OMe n-mer)s were synthesized from their respective
telechelic oligomers of uniform lengths (Figure 1b; see the
Supporting Information for detailed procedure). These pure,
but stereoirregular, OMe n-mers were obtained using silica gel
column chromatography to separate the OMe-oligomer
mixture obtained from Diels−Alder oligomerization. We
successfully separated OMe n-mers of n = 1−5, whereas
higher n-mers began to coelute (n = 1 corresponds to the
unreacted monomer and was not further studied). We were
unable to separate the fluorophilic CF3 oligomers on silica gel,
so they were not considered in this study. After isolation of the
OMe n-mers, their identity and purity were confirmed by

nuclear magnetic resonance (NMR) spectroscopy and matrix-
assisted laser desorption/ionization−time-of-flight mass spec-
trometry (MALDI−TOF MS). The MALDI−TOF spectra,
shown in Figure 1c, demonstrate expected m/z values with
minimal impurities (see Table S1 for a comparison of expected
and observed m/z values). In addition to MALDI, quantitative
1H NMR integration ratios were also consistent for each OMe
n-mer, confirming the assigned oligomer lengths (see Figure S1
and Table S2 for integration method and observed ratios).
ROMP of the purified OMe n-mers using Grubbs second-
generation catalyst provided the corresponding poly(OMe n-
mer)s (Figure 1b). Monomer-to-initiator ratios ([M]/[I],
based on molar concentrations) between 100 and 150
produced polymers of high molecular weights (Mn ≥ 75
kDa; see Table S3) that were suitable for producing free-
standing films via solution casting.
Brunauer−Emmett−Teller (BET) surface areas of poly-

(OMe 2-mer)−poly(OMe 5-mer) were obtained from N2
adsorption isotherms (Figure S2) at 77 K and are shown in
Figure 2 and Table S4. The BET surface areas show an

increasing trend with increasing n, demonstrating the
porogenic nature of the side chains. The BET surface area of
OMe-ROMP falls between those of poly(OMe 4-mer) and
poly(OMe 5-mer), which is consistent with an average n of 4.5
in OMe-ROMP as determined by NMR integration. The same
N2 adsorption data were used to determine the pore size
distribution (PSD) of poly(OMe n-mer)s by means of
nonlocal density functional theory (NLDFT) using the
standard slit carbon model (Figure S2).23 Interestingly, the
model indicates that, with increasing n, average pore size
decreases (e.g., with max at 20 Å for poly(OMe 2-mer) to 7.6
Å for poly(OMe 5-mer)). Additionally, the pore size
distribution becomes narrower, and micropores are more
abundant (i.e., incremental pore volume increases with
increasing n).
In addition, the fractional free volume (FFV) of thermally

treated films was determined using group contribution
methods first developed by Bondi,24 van Krevelen and Te
Nijenhuis,25 and Park and Paul26 and updated by Wu et al.27

Results are shown in Table S5 and Figure S3. Although there is
a clear increase of FFV from n = 2 to 4, which suggests that the
increasing rigidity from longer side chains leads to more
frustrated chain packing, the FFV values for poly(OMe 4-mer)
and poly(OMe 5-mer) are equivalent, regardless of the

Figure 1. (a) Comparison of polymer structures between a previous
study20 and this study; (b) reaction conditions to polymerize OMe n-
mers; (c) MALDI-TOF MS spectrum of each n-mer in this work.

Figure 2. BET surface areas of poly(OMe 2-mer) through poly(OMe
5-mer), plus nonuniform OMe-ROMP (average n = 4.5).
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calculation method. Taken together, FFV and BET character-
ization support the interpretation that free volume and free
volume distribution generally increase and narrow, respec-
tively, with increasing side-chain length, but indirect probes
such as gas permeation, which will be presented next, are
required to clarify this physical picture.28

Pure-gas separation performance of all poly(OMe n-mer)s at
∼1 bar upstream pressure and 35 °C are shown in Figure 3 and
Table S6 for several gas pairs. Self-standing films were made by
dissolving polymers in chloroform (3 wt %) and then cast into
50 mm flat-bottom glass dishes lined with Norton fluorinated
ethylene propylene liners. After 4−5 days of evaporation at
room temperature in a fume hood, free-standing films were
generated. Before testing, films were soaked in methanol for 48
h, dried under ambient conditions for 24 h, and then degassed
under full vacuum at 35 °C for 8 h. Since poly(OMe 2-mer)
films were unable to withstand methanol treatment, ethanol
treatment was used instead. Similar to methanol treatment,
ethanol treatment has been shown to reset the thermal history
of glassy polymers.29−33

Data for OMe-ROMP from our previous study is included in
Figure 3 for comparison.20 Similar to poly(OMe 2-mer), OMe-
ROMP was treated with ethanol. For all samples tested, gas
permeability increased as follows: P(N2) < P(CH4) < P(O2) <
P(He) < P(H2) < P(CO2). As CO2 is more permeable than
H2, this makes OMe-ROMP and poly(OMe n-mer)s reverse-
selective membranes for this gas pair, indicating a strong
sorption component to permeability.34 As n increases,
permeabilities for all gases increase, which correlates with
increasing BET surface areas. Conversely, there is a weak
negative correlation between selectivity and increasing side-
chain length. Taken together, these findings indicate that side-
chain length is a critical parameter for controlling permeability
in the OMe-ROMP series, but there is only a limited effect on
selectivity. In contrast with other PIMs, the bottlebrush design
enables control of transport though side-chain synthesis. In
addition, the upper bound performance of OMe-ROMP is in

between that of poly(OMe 4-mer) and poly(OMe 5-mer),
which is consistent with the average n of 4.5 for OMe-ROMP.
Gas separation performance for thermally treated poly(OMe n-
mer) samples, as well as data at different aging times, are
shown in Figure S4 and Table S6.
In order to evaluate our original hypothesis that forming side

chains of uniform length leads to increased diffusivity
selectivity, we decoupled permeability, P, into diffusion, D,
and sorption, S, coefficients using the sorption−diffusion
model (P = DS).35 Diffusion coefficients were determined
using the time-lag method (D = l2/6θ), where l is the film
thickness and θ is the time lag.36 Since the time lags of He and
H2 were outside of the resolution of our permeation system
(1−2 s), D and S are not reported for these gases. Tabulated
diffusion and sorption coefficients for all samples in this study
can be found in Table S6.
The effect of n on diffusion coefficients for O2 is shown in

Figure 4a for both thermally treated and methanol-treated
samples. Analogous plots for N2, CH4, and CO2 are shown in
Figure S5a−c. For the four gases considered, as n increases,
diffusivity increases in an exponential manner. As FFV
generally increased with increasing n (Figure S3 and Table
S5), this finding is in agreement with free volume theory,
which states that the logarithm of diffusion (logD) is a linear
function of 1/FFV.37−40 For each gas, diffusion is lower in
thermally treated samples compared to samples treated with
methanol. This finding relates to methanol dilation of the
membrane that leads to increased free volume.30,41−45 The
slopes of the semilog plots for thermally treated samples for
each gas remain largely invariant, indicating that the change in
diffusivity with respect to n is similar across all gases
considered (Figures 4a and S5). However, for methanol-
treated samples, the slopes of the semilog diffusivity plots
increase ((0.38 ± 0.03) O2 < (0.42 ± 0.03) CO2 < (0.47 ±
0.07) N2 < (0.53 ± 0.06) CH4) in accordance with the
effective diameter of the gas ((3.44 Å) O2 < (3.63 Å) CO2 ∼
(3.66 Å) N2 < (3.81 Å) CH4). This result indicates that

Figure 3. Robeson plots of alcohol-treated poly(OMe n-mer)s and OMe-ROMP for (a) CO2/CH4, (b) H2/CH4, and (c) H2/N2 gas pairs. Black
and gray lines represent the 2008 and 1991 Robeson upper bounds, respectively.21,22
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methanol-treated samples have a higher average FFV and a free
volume distribution that more easily accommodates larger

molecules with increasing side-chain length.42,44 Table S7
reports diffusivity selectivity of OMe-ROMPs for a number of
gas pairs, showing that diffusivity selectivity decreases with n
and that uniformity of side chains has no effect on this trend.
This data can be visualized in Figure 4b for O2/N2 and Figure
S5d for other gas pairs.
Given the plasticization resistance of ROMPs,20 methanol-

treated poly(OMe n-mer)s were subjected to CO2 pressures as
high as 51 bar at 35 °C (Figure 5). The hysteresis induced by
conditioning samples at 51 bar of CO2 is also shown in Figures
5 and S6. Data for OMe-ROMP from our previous publication
is included for comparison. Although poly(OMe 4-mer) and
poly(OMe 5-mer) show excellent plasticization resistance
similar to OMe-ROMP (CO2 plasticization pressure >51 bar),
poly(OMe 3-mer) exhibits a plasticization pressure of ∼10 bar.
For the poly(OMe 2-mer) film, the plasticization test was
conducted on a thermally treated sample due to the
mechanical fragility of the ethanol-treated sample, resulting
in a plasticization pressure of ∼15 bar. With increasing n, a
decrease in hysteresis behavior was observed. For example,
permeability at ∼30 bar was ∼18% higher upon depressuriza-
tion for poly(OMe 5-mer), whereas OMe-ROMP exhibited a
difference of 26% and poly(OMe 2-mer) of 67% under the
same conditions (Figure S6). We previously hypothesized that
large interchain cohesive energy present in ROMPs con-
tributed to plasticization resistance.20 Our results in this study
indicate that higher n leads to stronger interchain cohesive
energy and greater interchain rigidity. Detailed mixed-gas
studies to deepen an understanding on the plasticization
resistance of ROMPs will be the subject of a future publication.
In conclusion, we have polymerized discrete OMe oligomers

to make bottlebrush polymers with uniform side-chain lengths
of n = 2−5 to study the effects of n on gas transport. BET and
permeability measurements indicated that both surface area
and gas permeability increase as n increases. Although
diffusivity increased exponentially as n increased, there was

Figure 4. (a) O2 diffusion coefficient for both thermally- and
methanol-treated poly(OMe n-mer) samples versus side-chain length
(n). Slopes and errors, determined using linear regression and χ2
analysis, were calculated using the Origin 9.1 fitting tool. (b) O2/N2
diffusivity selectivity for n = 4 and n = 5 uniform poly(OMe n-mer)
and nonuniform OMe-ROMP with average n = 4.5.

Figure 5. High-pressure pure-gas CO2 permeability experiments conducted on (a) poly(OMe 2-mer), (b) poly(OMe 3-mer), (c) poly(OMe 4-
mer), and (d) poly(OMe 5-mer). Note that poly(OMe 2-mer) was treated with ethanol while other samples were treated with methanol.
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not an appreciable effect on selectivity. Moreover, we found
that uniform side-chain lengths did not lead to improved
diffusivity selectivity as was originally hypothesized. CO2
plasticization pressures increased with increasing n, suggesting
that the exceptional stability of ROMPs is attributed to the
inclusion of long, rigid side chains. Longer side chains than
what have been studied here could further improve property
sets such as permeability and plasticization resistance.
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