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Dipeptidyl peptidase-4 (DPP4) is a ubiquitously expressed protease that regulates 
diverse number of physiological functions. As a dipeptidase, it exerts its catalytic effects 
on proteins/peptides with proline, alanine, or serine in the penultimate (P1) amino acid 
residue from the amino terminus. The evidence to date supports an important effect of 
DPP4 in catalytic cleavage of incretin peptides and this perhaps represents the main 
mechanism by which DPP4 inhibition improves glycemic control. DPP4 also plays an 
important role in the degradation of multiple chemokines of which stromal cell-derived 
factor-1 (SDF-1, also known as CXCL12) is perhaps an increasingly recognized target, 
given its importance in processes, such as hematopoiesis, angiogenesis, and stem cell 
homing. In the current review, we will summarize the importance of DPP4-mediated 
enzymatic processing of cytokines/chemokines with an emphasis on SDF-1 and resul-
tant implications for cardiovascular physiology and disease.
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introduction

Dipeptidyl peptidase-4 (DPP4) is a type-II integral transmembrane glycoprotein that has recently 
gained attention owing to its role in the catalytic degradation of incretins and as a receptor for entry 
for the Middle Eastern respiratory syndrome (MERS) virus. DPP4 is best known for its catalytic 
function, whereby it proteolytically cleaves a number of peptide and protein substrates. It exhibits a 
strong preference for peptides with proline, serine, or alanine as the penultimate amino acid from 
the amino terminus. The N-terminus of glucagon insulotropic peptide (GIP) and glucagon-like 
peptide-1 (GLP-1) consist of Tyr–Ala and His–Ala, respectively, rendering them excellent substrates 
for DPP4. In addition to its role in modulation of incretin peptides, such as GLP-1 and GIP, DPP4 
regulates immune responses via cleavage of many cytokines and chemokines, including stromal cell-
derived factor-1 (SDF-1, also known as CXCL12), involved in immune function and physiological 
functions, such as angiogenesis. In this review, we will focus on the regulatory aspects of DPP4 on 
chemokines, such as SDF-1, and its potential implications in the pathogenesis and management of 
cardiovascular disease.

An Overview of DPP4 Biology

Dipeptidyl peptidase-4 also called cluster of differentiation-26 (CD26) or adenosine deaminase-
binding protein (ADA-binding protein), is a member of S9b peptidases. The S9b family consists of 
structurally homologous proteolytic enzymes, including DPP2 (also called quiescent cell proline 
dipeptidase, QPP), DPP4, DPP8, DPP9, and fibroblast activation protein (FAP). DPP4 was first 
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identified as a new dipeptide naphthylamidase in 1966 (1) and 
subsequently found to be identical to T cell activation antigen 
CD26, ADA-binding protein, mouse thymocyte-activating 
molecule, and rat liver membrane glycoprotein gp110 (2). 
DPP4 consists of a short N-terminal intracellular domain (6 
residues), a 22-residue-long transmembrane α-helix domain (23 
amino acids), and a large C-terminal extracellular domain. The 
C-terminal extracellular domain is responsible for its catalytic 
activity and binding to a number of ligands, such as ADA and 
matrix proteins (3). The catalytic activity of DPP4 depends on 
its dimerization and glycosylation of specific residues (2). DPP4 
can also assemble into tetramers on the cell surface, which may 
involve the linkage of dimers located on the surface of two dif-
ferent cells, enabling it to function as a cell–cell communication 
molecule. In addition to its membrane-bound form, DPP4 
also circulates as a soluble form in the plasma, which lacks the 
cytoplasmic and transmembrane domain with preserved catalytic 
activity. Soluble DPP4 (sDPP4) is a homodimer with a molecular 
weight range of 210–290 kDa (4), but can form higher molecular 
weight assemblies migrating as 900-kDa complexes (5). Whether 
sDPP4 is cleaved from the membrane or is secreted is unclear. 
For instance, studies investigating viral liver infection suggested 
that sDPP4 is shed from membrane-bound DPP4 (6). sDPP4 has, 
however, also been detected in the lumen of secretory granules 
in pancreatic α cells and in the exocytic secretory lysosomes of 
natural killer cells (7, 8). sDPP4 is commonly elevated in many 
disorders, such as solid tumors, reactive airways disease, hepatitis 
C, type 2 diabetes, and obesity (6, 9, 10).

Tissue Distribution and Cell Specific expression 
and Phenotype of Dpp4−/− Mice
Dipeptidyl peptidase-4 is widely distributed throughout the body 
(Table 1), with particularly high expression on the apical surface 
of endothelial and differentiated epithelial cells. Bone marrow 
cells, brush border of the small intestine, proximal tubular cells, 
and glomerular cells in the kidney express high levels of DPP4 
as well (11). DPP4 is present on endothelial cells and fibro-
blasts throughout the body. Among hematopoietic cells, DPP4 
is expressed at the highest level on T cells with lower levels in 
monocytes and dendritic cells (12). DPP4 expression increases 

TABLe 1 | Major distribution and potential function of DPP4.

Distribution Potential function

Adipocyte Serves as an adipokine mediating obesity-induced 
metabolic syndrome (9)

Adipose tissue 
macrophage and 
dendritic cells

Enhances T cell inflammation and obesity-induced 
insulin resistance (12)

T cells Promotes T cell activation by providing co-stimulatory 
signaling (17, 18)

Endothelial cells Regulates endothelial function and vascular tone (19, 20)

Epithelial cells Expressed in the epithelial cells in the kidney, lung, and 
GI tract. Mediates MERS-CoV infection in the lung (21), 
kidney fibrosis (22), diabetic nephropathy (23), intestinal 
growth (24)

Hepatocytes Involved in lipogenesis (25) and liver damage (26)

as monocytes differentiate into antigen-presenting cells as well as 
during T cell activation (12, 13). DPP4 is expressed at high levels 
in kidney, spleen, lung, pancreas, and prostate (14). Mice lack-
ing the gene encoding DPP4 are refractory to the development 
of obesity and hyperinsulinemia and demonstrate improved 
post-prandial glucose control (15, 16). Mice deleted for Dpp4 are 
fertile and appear healthy. Only slight decrease of body weight in 
Dpp4−/− mice was observed compared to wild types. They have 
normal fasting blood glucose level, but shows reduced glycemic 
excursion after an oral glucose challenge (16). Increased intact 
insulinotropic form of GLP-1 and circulating insulin were seen 
in Dpp4−/− mice after oral glucose stimulation (16). Pair feeding 
and indirect calorimetry studies indicate that reduced food intake 
and increased energy expenditure accounted for the resistance 
to high fat diet-induced obesity in the Dpp4−/− mice. Ablation/
deletion of DPP4 is associated with improved metabolic control 
with improved insulin sensitivity, reduced pancreatic islet hyper-
trophy, and protection against streptozotocin-induced loss of β 
cell mass and hyperglycemia (15). Pharmacological inhibition 
of DPP4 enzymatic activity improves glucose tolerance in wild-
type but not in Dpp4−/− mice. Interestingly, DPP4 inhibitor’s also 
improve glucose tolerance in Glp1r−/− mice, indicating that DPP4 
contributes to blood glucose regulation by controlling the activity 
of GLP-1 as well as additional substrates (16).

DPP4 in Cytokine Processing

Dipeptidyl peptidase-4 has been shown to be able to cleave 
a number of chemokines and cytokines, including SDF-1, 
granulocyte-macrophage colony-stimulating factor (GM-CSF), 
granulocyte colony-stimulating factor (G-CSF), interleukin-3 
(IL-3), erythropoietin (Epo), regulated on activation normal 
T-cell expressed and presumably secreted (RANTES, also known 
as CCL5), macrophage-derived chemokine (MDC, also known as 
CCL22), eotaxin (also known as CCL11), monokine induced by 
IFN-γ (MIG, also known as CXCL9), IFN-γ-induced protein-10 
(IP-10, also known as CXCL10), and interferon-inducible T-cell α 
chemoattractant (ITAC, also known as CXCL11) (Table 2). The 
regulation of cytokine levels through catalytic cleavage may influ-
ence their levels in tissue domains. The differential contribution 
of DPP4 in the regulation of each of these cytokines is obviously 
dependent on the levels of expression of DPP4, which may vary 
depending on the tissues, the cells predominantly expressing the 
cytokine of interest and the disease context. Additionally, circu-
lating or cell free DPP4 may also contribute to catalytic activity. 
DPP4-mediated truncation of RANTES abolishes the chemotactic 
activity to monocytes but not to T cells (27). Eotaxin (CCL11) is an 
eosinophil chemotactic protein and has been shown to be involved 
in allergic responses. DPP4 truncation of eotaxin inactivates its 
chemotactic activity for eosinophils. DPP4-truncated eotaxin 
(3–74) shows impaired binding and signaling through CCR3. 
In addition, truncated eotaxin suppresses calcium signaling and 
chemotaxis of intact eotaxin (28). DPP4 inhibition by either genetic 
deletion or pharmacological inhibition, enhances eotaxin-induced 
mobilization of eosinophils into the blood and recruitment into 
the injury/injection site (29). MDC (CCL22) is a chemoattractant 
for monocytes, dendritic cells, NK cells, and chronically activated 
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TABLe 2 | Cytokine substrates of DPP4.

Substrates N terminal sequence Consequence of cleavage

SDF-1 (34) KPVSL…a Inactivation, truncated product 
antagonize intact protein

RANTES (27) SPYSS…a Altered target cell specificity

Eotaxin (28) GPASV…a Inactivation, truncated product 
antagonize intact protein

Erythropoietin (35) APPRL…a Inactivation, truncated product 
antagonize intact protein

G-CSF (35) TPLGP…a Inactivation, truncated product 
antagonize intact protein

GM-CSF (35) APARS…a Inactivation, truncated product 
antagonize intact protein

IL-3 (35) APMTQ…a Inactivation, truncated product 
antagonize intact protein

MDC (32) GPYGA…a Altered target cell specificity

IP-10 (33) vPLSR…a Inactivation, truncated product 
antagonize intact protein

MIG (33) TPVVR…a Inactivation, truncated product 
antagonize intact protein

ITAC (33) FPMFK…a Inactivation, truncated product 
antagonize intact protein

aBold letters indicate dipeptides to be cleaved by DPP4.
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T lymphocytes (30, 31). DPP4-truncated MDC displays preserved 
chemotactic activity toward monocytes, but less potency toward 
lymphocytes and dendritic cells (32). CXCR3 interacts with MIG 
(CXCL9), IP10 (CXCL10), and ITAC (CXCL11), all of which are 
targets of DPP4. Cleavage of those chemokines by DPP4 attenu-
ates their chemotactic activity, with the cleaved products serving 
as endogenous antagonists for CXCR3 binding (33).

Dipeptidyl peptidase-4 is also involved in the inactivation of 
multiple colony-stimulating factors (CSFs) and thus regulates 
hematopoietic stem cells (HSCs) and hematopoietic progenitor 
cell (HPC) function. The proliferative action of GM-CSF, G-CSF, 
IL-3, and Erythropoietin (Epo) on HPCs is enhanced in DPP4 
knockout mice or by pretreatment with a DPP4 inhibitor (35). 
Catalytic inhibition of DPP4 or DPP4 deficiency promotes the 
engraftment of HSCs and HPCs after bone marrow transplanta-
tion in mice (35). DPP4-truncated CSFs may suppress the activity 
of their respective full-length CSF via antagonism (35).

SDF-1 and CXCR4

Stromal cell-derived factor-1 is an 8-kDa peptide that is encoded 
by Cxcl12 (36). It is a chemoattractant for T lymphocytes, bone 
marrow stem cells [such as HSC, endothelial progenitor cell (EPC), 
and mesenchymal stem cells (MSCs)], endogenous cardiac stem 
cells (CSCs), and adipose-derived regenerative cells (37–39). 
There are several isoforms of SDF-1 (SDF-1α–ζ), resulting from 
alternative splicing of its mRNA (40). Among these isoforms, 
SDF-1α is the best described. SDF-1α is expressed in many tis-
sues, including bone marrow, heart, liver, kidney, thymus, spleen, 
skeletal muscle, and brain (36, 40–43). In the cardiovascular 
system, SDF-1α is expressed in stromal cells, endothelial cells, 
and cardiomyocytes (44, 45). SDF-1 is typically inactivated by 

exopeptidases, such as DPP4, matrix metalloproteinase (MMP)-
2, and -9 (34). Unlike cleavage of SDF-1 by DPP4 at position 2–3, 
MMPs cleave SDF-1 at position 4–5, leading to the loss of its bind-
ing activity to CXCR4 (46). The relative contribution of each of 
these peptidases in regulation of SDF-1 levels is unclear. CXCR4 
is an alpha-chemokine receptor specific for SDF-1 and belongs to 
a family of G-protein-coupled receptors. CXCR4 is expressed on 
a range of progenitor cells (including hematopoietic, endothelial, 
and CSCs) and thus is important for cell migration and organ 
development during embryogenesis (39, 40, 47). Mice deficient 
for either CXCR4 or SDF-1 display abnormal B-lymphocyte, 
hepatic, and cardiac (ventricular septal defects) development, 
and die in  utero (48–50). Loss-of-function CXCR4 mutations 
in humans also causes impaired neutrophil mobilization and 
B-cell lymphopenia (51). In addition to CXCR4, CXCR7 has also 
been suggested to be an important receptor for SDF-1 (52, 53). 
However, the relative contribution and interactions of CXCR4 
and CXCR7 is not fully elucidated. The involvement of CXCR7 
in cardiovascular disease, if any, is also not yet known (39). DPP4 
may also play a more general role in regulating CSF activity and 
stem cell homing (35). It was previously believed that disrup-
tion of the interaction between CXCR4 receptor expressed by 
hematopoietic progenitors and SDF-1 expressed by bone marrow 
stromal cells is sufficient to detach anchored progenitors from 
their bone marrow niches, leading to their rapid mobilization to 
the peripheral blood. AMD3100 (also termed plerixafor) inhibits 
SDF-1-mediated migration in vitro by blocking the chemokine 
binding to its major receptor CXCR4 (54). AMD 3100 mobilizes 
immature progenitor cells from the bone marrow into the blood 
and has been approved for clinical mobilization in lymphoma and 
multiple myeloma patients undergoing autologous transplanta-
tion. When combined with G-CSF, AMD3100 synergistically 
augments mobilization of progenitor cells, with increased in vitro 
migration to SDF-1 gradients and facilitates repopulation of 
transplanted non-obese diabetic/severe combined immunodefi-
cient mice (55). AMD 3100 has recently been shown to directly 
induce SDF-1 release from CXCR4+ human bone marrow osteo-
blasts and endothelial cells, with SDF-1 release from these cells 
into the circulation, representing a pivotal mechanism essential 
for steady-state egress and rapid mobilization of HPCs (56).

DPP4 and SDF-1/CXCR4 Axis in 
Cardiovascular Disease

SDF-1/CXCR4 and DPP4 inhibition in Stem Cell 
Homing and engraftment
The SDF-1/CXCR4 axis has been shown to be critical in tissue 
repair in multiple organ systems, including the eye, heart, kidney, 
liver, brain, and skin. Specific to the heart, the SDF-1/CXCR4 axis 
has been shown to be essential for cardiogenesis (57, 58). SDF-1 
is now well known as a key regulator of stem cell migration to 
sites of tissue injury (44, 59). SDF-1 was first identified by Askari 
et al. as a key regulator of stem cell migration to ischemic cardiac 
tissue (44). CD34+ stem cells express the SDF-1 receptor CXCR4 
at high levels (37, 60). During myocardial infarction, SDF-1 levels 
are elevated 1 h after infarction and return to baseline at day 7 
and further reduced to a low level thereafter (44). Overexpression 
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of SDF-1 in ischemic cardiomyopathy by either engineered cell-
based or plasmid-based approach improved cardiac function in 
rats via enhancing stem cell homing and promoting revasculari-
zation of the infarct area (61, 62). Therefore, the ability to express 
SDF-1 locally is believed to enhance the vasculogenic potential 
of adult cardiac progenitor cells (63). However, the enhancement 
of endogenous stem cell-based repair appears to be blunted due 
to the short half-life of SDF-1 at the time of acute myocardial 
infarction owing to its degradation by proteases (44). As a major 
enzyme mediating the degradation of SDF-1, DPP4 may repre-
sent a potential target for improving stem cell homing with stem 
cell-based therapy. Preservation of SDF-1 by DPP4 inhibition has 
been shown to promote stem cell repopulation and homing to 
ischemic tissues. DPP4 inhibitors diprotin A or Val–Pyr, enhance 
chemotaxis of HSCs and HPCs and greatly increase homing and 
engrafting capacity of HSCs (64, 65). Pretreatment of HSC with 
DPP4 inhibitor diprotin A, enhanced their repopulation ability 
in lethally irradiated mice (66). Enhancement of engraftment of 
human CD34+ cord blood cells with DPP4 inhibition has also 
been observed in xenogeneic mouse recipients (NOD/SCID or 
NOD/SCID/beta 2null) (67, 68). Pretreating either donor cells 
in vitro or recipients in vivo is able to enhance the engraftment 
of stem cells (66, 69). In a lung transplantation model, systemic 
DPP4 inhibition by vildagliptin increases SDF-1 levels in plasma, 
spleen, and lung, accompanied by a significant increase of stem 
cells in the lung grafts. DPP4 inhibitor-treated mice also shows 
less alveolar edema compared with untreated recipients (70). 
Liebler showed that DPP4 inhibition enhances SDF-1/CXCR4 
axis and increased the retention of human bone marrow-derived 
cells in the injured lungs of immune deficient mice by 30% (71). 
In addition to SDF-1, DPP4 inhibition also enhances bone mar-
row engraftment by preserving G-CSF and GM-CSF. Both G-CSF 
and GM-CSF are substrates for DPP4, with inhibition of DPP4 
promotes bone marrow engraftment not only through SDF-1 but 
also CSF-dependent mechanisms (35). G-CSF and GM-CSF in 
turn may also increase the expression of DPP4 on CD34+ cells, 
which results in their decreased responsiveness to SDF-1 (72).

SDF-1/CXCR4 and Regulation by DPP4 in 
Angiogenesis
Angiogenesis and vasculogenesis are an immensely complex 
process that requires the coordinated action of a multitude of 
cells, transcription factors, and cytokines working in concert in 
a precisely choreographed manner. It is widely believed that these 
processes can be recapitulated in the adult through the participa-
tion of a progenitor cell population of which EPCs are perhaps 
the best described and widely believed to be important building 
blocks for the assembly of functional vasculature in adults. While 
the origins of EPCs are still controversial, what is clear is that these 
cells have the capacity to differentiate into mature endothelial cells 
(73). Implantation of ex vivo-expanded EPC has been shown to 
improve neovascularization of injured tissues in animal models 
(74–76). SDF-1 plays a pivotal role in the trafficking and homing of 
EPCs to ischemic tissues (77–79). SDF-1 levels increase in plasma 
and ischemic tissue shortly after ischemic injury, in response to 
hypoxia which upregulates HIF-1α (79). HIF-1α upregulates 
SDF-1, by binding to the promoter of SDF-1 and initiating its 

transcription (80). Ex vivo priming with SDF-1, enhances the 
proangiogenic potential of EPC as evidenced by improved blood 
flow recovery when transplanted into a nude mouse model of 
hind-limb ischemia (81). Disease states, such as diabetes associ-
ated with upregulation of DPP4, may represent prototypical 
conditions associated with defective homing and integration 
of EPC’s owing to rapid degradation of SDF-1 (82). Kanki et al. 
reported that SDF-1 could be cleaved by DPP-4 in both plasma and 
ischemic heart tissue (34). Shih demonstrated an improvement 
in EPC number and endothelial nitric oxide synthetase (eNOS) 
expression after DPP4 inhibition by MK-0626 (83).

Therapeutic Applications of SDF-1 and DPP4 
inhibition-Mediated Prolongation of SDF-1 
effects in Cardiovascular Disease
Transient engineered cell-based or plasmid-based overexpres-
sion of SDF-1 in ischemic cardiomyopathy has been shown to 
improve cardiac function in animal models (62). In a study that 
compared the effects of SDF-1 overexpressed on MSCs alone or 
mesenchymal stem cells engineered to overexpress SDF-1 (MSC-
SDF) on cardiac function in Lewis rats after acute myocardial 
infarction, tail vein infusion of MSC and MSC-SDF-1, 1 day after 
acute myocardial infarction, led to improved cardiac function by 
echocardiography by 70.7 and 238.8%, respectively, compared 
with saline controls. The beneficial effects of MSC-SDF trans-
plantation were suggested to be mediated through preservation 
rather than regeneration of cardiac myocytes within the infarct 
area (84). Cardiac progenitor cell and CXCR4 expression on 
cardiac myocytes are required for further local trophic effects of 
MSC (85). The mechanism of action of SDF-1 overexpression in 
myocardial infarction and heart failure are likely multifactorial, 
including both systemic and direct trophic effects. An important 
effect of SDF-1 is its effect on the recruitment of CSCs to the 
infarct and infarct border zone (59). Delivery of MSCs engineered 
to overexpress SDF-1 at the time of acute myocardial infarction 
has been shown to lead to improvement in cardiac function (61). 
The myocardial repair initiated by endogenous stem cell appears 
blunted because of the natural short-term expression of SDF-1 at 
the time of acute myocardial infarction. In light of these effects in 
regulation of SDF-1, DPP4 inhibition has been suggested to be of 
potential benefit in cardiovascular diseases, such as myocardial 
infarction and peripheral artrerial disease. In combination with 
G-CSF, DPP4 inhibition augments myocardial regeneration 
and improves cardiac function after myocardial infarction in 
mice (86, 87). In combination with CXCR4 overexpression, 
diprotin A treatment has shown to improve myocardial func-
tion and repair of infarcted myocardium (88). A bioengineered 
protease-resistant form of SDF-1 has shown greater potency in 
promoting blood flow recovery after hind-limb ischemia (89) 
and improving cardiac function as well as capillary density in 
the infarcted heart (34). Dual injection of G-CSF and sitagliptin 
resulted in the mobilization of progenitor cells and relieved the 
symptom of end-stage heart failure in a 19-month-old boy (90). 
Protease-resistant forms of SDF-1 display an enhanced potency in 
improving blood flow in experimental peripheral artery disease 
and myocardial infarction (34, 89). It has been shown that para-
thyroid hormone treatment after myocardial infarction improves 
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survival and myocardial function with potential involvement of 
enhanced homing of bone marrow-derived stem cells. Huber 
et al. demonstrated that parathyroid hormone serves as a DPP4 
inhibitor and increases cardiac SDF-1 level, which in turn 
enhances CXCR4+ bone marrow-derived stem cell homing to 
ischemic heart and attenuates ischemic cardiomyopathy after 
infarction (91). Haverslag showed SDF-1 preservation by DPP4 
inhibitor increases monocyte extravasation and thus accelerating 
perfusion recovery without detrimental side effects on plaque 
stability in atherosclerosis-prone ApoE−/− mice (92). Figure  1 
depicts modulation of SDF-1 levels in the myocardium by DPP4 
inhibition and enhancement of myocardial angiogenesis by DPP4 
levels. In a porcine model of HF, delivery of a plasmid SDF-1 
with an endomyocardial injection catheter demonstrated safety 
at doses up to 100 mg while improving cardiac function and vas-
culogenesis up to 90 days post-injection at doses of 7.5 and 30 mg 
(59). In a Phase I dose escalation study with 12 months follow-up 
in ischemic cardiomyopathy, 17 subjects in New York Heart 
Association class III heart failure, with an ejection fraction ≤40% 
on stable medical therapy, were enrolled to receive 5, 15, or 30 mg 
of plasmid SDF-1 via endomyocardial injection. The primary end 
points for safety and efficacy were at 1 and 4 months, respectively. 
The primary safety end point was a major adverse cardiac event 
while efficacy end points were changes in quality of life, New York 
Heart Association (NYHA) class, 6-min walk distance, single 
photon emission computed tomography, N-terminal pro-brain 
natruretic peptide, and echocardiography at 4 and 12  months. 
The primary safety end point was met. At 4 months, all of the 
cohorts demonstrated improvements in 6-min walk distance, 
quality of life, and NYHA class (93). Stromal cell-derived factor-1 
plasmid treatment for patients with heart failure (STOP-HF) was 
a Phase II, double-blind, randomized, placebo-controlled trial 

to evaluate safety and efficacy of a single treatment of plasmid 
SDF-1 delivered via endomyocardial injection to patients with 
ischemic heart failure. The primary endpoint was a composite 
of change in 6  min walking distance and Minnesota Living 
from Heart Failure Questionnaire from baseline to 4  months 
follow-up. The primary endpoint was not met (P  =  0.89). For 
the patients treated with pSDF-1, there was a trend toward an 
improvement in left ventricular ejection fraction at 12  months 
(placebo vs. 15 vs. 30 mg ΔLVEF: −2 vs. −0.5 vs. 1.5%, P = 0.20). 
Patients in the first tertile of EF (<26%) that received 30 mg of 
pSDF-1 demonstrated a 7% increase in EF compared with a 4% 
decrease in placebo (ΔLVEF = 11%, P = 0.01) at 12 months (94). 
Although the reasons for the overall failure are currently unclear, 
the differential benefit in those with advanced left ventricle 
dysfunction raises the possibility of differential mechanisms that 
would be operational in more advanced patients. These include 
the possible overexpression of CXCR4 in cardiac myocytes in 
the infarct border leading to a negative inotropic state (95). The 
transient overexpression of SDF-1 in ischemic cardiomyopathy 
has been shown to lead to long-term down-regulation of cardiac 
myocyte CXCR4 expression, re-recruiting the contractile func-
tion of the border zone (61). Patients with greater left ventricle 
dysfunction are likely to have a greater volume of myocardial 
tissue under stress; therefore, a greater demonstrable response to 
SDF-1 overexpression. Another important reason could be that 
the upregulation of DPP4 in the border zone of the infarct or 
around ischemic areas may have resulted in rapid degradation 
of SDF-1 limiting the efficacy of such an approach. Since both 
the Phase I and Phase II studies were performed in the absence 
of DPP4 inhibition, it could be speculated that the results may 
have been different if the trials had been performed either in the 
presence of a DPP4 inhibitor.

FiGURe 1 | Dipeptidyl peptidase-4 inhibition in modulation of SDF-1 and myocardial angiogenesis: expression of DPP4 increases in myocardial 
infarction. Suppression of DPP4 enzymatic activities by pharmacological inhibitors preserves SDF-1, which results in an enhanced homing of CXCR4+ progenitor 
cells from bone marrow to infarcted tissues. CXCR4, chemokine (C–X–C motif) receptor 4; DPP4i, DPP4 inhibitor; MI, myocardial infarction; SDF-1, stromal-derived 
factor-1.
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Conclusion and Future Directions

Due to the importance of SDF-1/CXCR4 axis in the stem cell and 
progenitor cell survival and function, understanding this axis 
and molecules that modulate their production and action will be 
of utility for the treatment of cardiovascular disease. There are a 
number of clinically approved drugs, including DPP4 inhibitors 
and parathyroid hormone, which have the ability to enhance 
SDF-1/CXCR4 responsiveness and may improve the outcome of 
cardiovascular diseases. Several recent large scale clinical trials 
have indicated that unlike most other oral anti-diabetic drugs 

that promote cardiovascular disease, DPP4 inhibitors are safe 
from cardiovascular standpoint despite lack of evidence show-
ing beneficial effect (96–98). To what extent SDF-1/CXCR4 axis 
contributes to this effect requires further investigation.
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