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A B S T R A C T   

This study aimed to explore more efficient ways of administering caffeine to the body by 
investigating the impact of caffeine on the modulation of the nervous system’s activity through 
the analysis of electrocardiographic signals (ECG). An ECG non-linear multi-band analysis using 
Discrete Wavelet Transform (DWT) was employed to extract various features from healthy in-
dividuals exposed to different caffeine consumption methods: expresso coffee (EC), decaffeinated 
coffee (ED), Caffeine Oral Films (OF_caffeine), and placebo OF (OF_placebo). Non-linear feature 
distributions representing every ECG minute time series have been selected by PCA with different 
variance percentages to serve as inputs for 23 machine learning models in a leave-one-out cross- 
validation process for analyzing the behavior differences between ED/EC and OF_placebo/ 
OF_caffeine groups, respectively, over time. The study generated 50-point accuracy curves per 
model, representing the discrimination power between groups throughout the 50 min. The best 
model accuracies for ED/EC varied between 30 and 70 %, (using the decision tree classifier) and 
OF_placebo/OF_caffeine ranged from 62 to 84 % (using Fine Gaussian). Notably, caffeine delivery 
through OFs demonstrated effective capacity compared to its placebo counterpart, as evidenced 
by significant differences in accuracy curves between OF_placebo/OF_caffeine. Caffeine delivery 
via OFs also exhibited rapid dissolution efficiency and controlled release rate over time, dis-
tinguishing it from EC. The study supports the potential of caffeine delivery through Caffeine OFs 
as a superior technology compared to traditional methods by means of ECG analysis. It highlights 
the efficiency of OFs in controlling the release of caffeine and underscores their promise for future 
caffeine delivery systems.   

1. Introduction 

Discovered in 1819 by German chemist Friedlieb Ferdinand Runge, caffeine, the common name for 1,3,7-trimethyl xanthine, is the 
most consumed psychoactive substance worldwide [1,2]. Today, approximately 80 % of the adult population worldwide consumes one 
caffeinated product daily, and as opposed to other drugs, the consumption happens at every socioeconomic level [2,3]. In addition to 
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the cost-benefit, caffeine acts as a powerful stimulant to the central nervous system, causing physiological effects that are very 
appealing to the consumer, specifically on a cognitive level and in terms of physical performance [4]. The psychostimulant effect of 
caffeine is so powerful that just the expectation of ingesting it can, by itself, potentiate the action of caffeine in the human organism, 
even if no amount is consumed [5]. The physiological impact of caffeine includes the promotion of alertness, concentration, cognition 
and memory, excitement, energy, and elevated mood [6–8], increased adrenergic neurotransmission responsible for stimulation of the 
peripheral nervous system [6,9,10] and reduction of general fatigue [11]. Several studies have demonstrated significant connections 
between caffeine intake and neuropsychological and cognitive outcomes. For instance, a study by Maric et al. [12] has shown that 
caffeine metabolism plays a crucial role in predisposing pregnant women to preeclampsia. This research underscores the broader 
physiological implications of caffeine and motivates our investigation into its effects on the cardiovascular system. Caffeine’s ability to 
modulate neurotransmitter release and vascular tone suggests its impact might extend beyond simple stimulation, affecting vascular 
health and stress responses. Exploring cognitive domains, Kim and colleagues have identified how regular coffee consumption modifies 
brain network connectivity [13]. Their findings suggest that these alterations may enhance cognitive efficiency due to improved 
functional connectivity within the brain network. Additionally, using advanced analytics, research conducted by Huang A.A. and 
Huang S.Y [14]. employed machine learning techniques to analyze nutritional data, revealing that caffeine and other nutritional 
factors contributed significantly to the predictive accuracy of the XBoosted model, accounting for 37 % of its overall prediction. In 
cardiovascular research, Stevens and colleagues [15] have utilized machine learning techniques to identify potential risk factors for 
major diseases such as coronary heart disease, stroke, and heart failure, with higher coffee consumption emerging as a protective factor 
against heart failure. This insight is supported by further machine learning studies that have identified coffee intake as a prominent 
predictor in the risk assessments for Parkinson’s disease [16]. Another study [17] investigated the impact of circulating caffeine levels 
by analyzing genetically predicted variations in caffeine metabolism. The findings indicated that higher genetically predicted circu-
lating caffeine levels among caffeine consumers were associated with a reduced risk of obesity, osteoarthrosis, and osteoarthritis. 
These findings highlight the extensive impact of caffeine on health and illustrate the advantages of employing machine learning 
approaches to enhance our understanding of how nutrition, particularly caffeine consumption, influences disease and brain activity. 

The results in the scientific community could be clearer, particularly regarding the form of caffeine administration that seems to 
influence the body’s response [18,19]. Most consumers choose the oral route of substance administration (namely caffeine) because of 
its simplicity and convenience. Nevertheless, the bioavailability of substances via the oral route varies greatly, not only because of their 
physicochemical properties but also because of first-pass metabolism caused by the physiological environment of the gastrointestinal 
system, leading to drastically reduced bioavailability [20]. Consequently, alternative routes of substance administration have gained 
increasing attention in recent years due to their potential to enhance drug delivery efficiency and bypass the constraints of the oral 
way. 

Oral Films (OF) emerged as innovative breath freshening formulations and quickly evolved to respond to different market needs, 
having increasingly received attention from researchers from the pharmaceutical and nutraceutical industries, namely as a promising 
new drug release system easy-to-carry and easy-to-swallow [21]. Furthermore, the high vascularization of the oral mucosa allows a 
rapid disintegration and absorption of the active substance, improving bioavailability and anticipating the onset of action and the 
manifestation of physiological effects, not needing water, or chewing [22,23]. These release systems can transport the active in-
gredients according to the desired load and release rate and may also incorporate inactive components to design the final product 
according to the target profile. These substances include plasticizers, sweeteners, flavorings, colorants, and saliva-stimulating agents 
[24]. The versatility of such systems makes them very attractive compared to traditional routes of administration. For all these benefits 
mentioned, this new technology proves to be an efficient solution for caffeine administration. Even based on preliminary results, 
studies indicate that the presence of caffeine in the oral mucosa can stimulate sensory nerves, inducing brain responses even before any 
caffeine uptake [25]. However, the delivery of caffeine via these release systems is challenging for researchers. On the one hand, the 
current legislation on OF development and production is still unclear. On the other hand, although caffeine has been widely studied (its 
pharmacokinetics and dynamics profile are already well known), its other physiological effects, especially when consumed through 
OF, deserve further study [26,27]. 

The physiological measures are essential parameters to characterize neuromodulator molecule delivery systems and can com-
plement the guidelines to ensure the safety and quality of this new delivery system, being relatively simple to perform, non-invasive, 
and having accurate real-time results [28]. Furthermore, it is possible to take advantage of caffeine’s influence on modulating nervous 
system activity by tracking the variability of cardiac activity [9]. Cardiac activity generates an electric current detectable by an 
electrocardiograph, resulting in an electrocardiographic signal (ECG). Each deflection in this signal correlates with a specific cardiac 
electrical event, translating the heart’s activity level into signal complexity [29]. ECG signals often display rapid oscillations over brief 
periods or gradual changes over extended times [30]. Traditional analysis tools, such as the Discrete Fourier Transform and linear 
metrics, may not adequately address this signal’s non-linear and chaotic nature [31,32], as they rely on assumptions that could lead to 
incorrect interpretations when applied to ECG signals. In contrast, emerging techniques like the Discrete Wavelet Transform (DWT) are 
gaining traction in ECG analysis due to their ability to offer adaptable resolution across the time-frequency spectrum. This adaptability 
allows for high temporal resolution in capturing rapid changes at high frequencies while offering high spectral resolution to discern 
subtle variations at lower frequencies. By leveraging the DWT, researchers aim to overcome the limitations of traditional methods and 
achieve more accurate insights into the complex dynamics of ECG signals [33,34]. Thus, to maximize the discriminative capability for 
evaluating the physiological impact of caffeine consumed as expresso coffee (EC) or OF over time through ECG analysis in healthy 
subjects, this work proposes to. 
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1. Introduce the novel utilization of five non-linear features (Shannon entropy, Energy, Higuchi fractal dimension, Hurst exponent, 
and Lyapunov exponent) extracted every 30 s under a DWT multi-band ECG signal analysis. This approach aims to characterize 
cardiac responsiveness pattern during 50-min observation periods, uncovering nuanced temporal variations in cardiac activity in 
response to caffeine ingestion and clarifying its physiological effects on the cardiovascular system.  

2. Evaluate the discriminatory performance of these features between two group pairs (EC vs decaffeinated coffee (ED) and Caffeine 
OF vs placebo OF), employing an extensive set of Machine-Learning models.  

3. Highlight the adaptability of extracted features in contributing to robust ML models which can aid in accurately evaluating the 
human body’s response to caffeine consumed in two different forms.  

4. Assess the efficiency of as a vehicle for caffeine delivery by comparing the cardiac behavior of subjects who consumed caffeine in 
the forms of EC and OF. 

2. Materials 

2.1. Database 

The ECG signals were collected in the Human Neurobehavioral Laboratory (HNL) facilities at the Universidade Católica Portuguesa 
in Porto, Portugal. A stratified random sample with 13 participants was used in this study, with an age range from 18 to 46 years old 
(mean age of 24.15 years old with a standard deviation of 7.71 years, consisting of 61.5 % females and 38.5 % males). All participants 
who met the inclusion criteria were healthy individuals above 18 years of age who consumed coffee or other caffeinated products 
daily. Additionally, they had no history of cardiovascular disease or implant, substance abuse disorders, medication usage affecting 
cardiac activity or endocrine function, physical or mental conditions that could compromise physiological measurements, pregnancy 
or breastfeeding, or smoking habits. All participants gave their prior consent before participating in this study, whose protocol number 
May 2018 was approved and authorized on May 14, 2018 by the “Ethics Lab” of the “Institute of Bioethics - Universidade Católica 
Portuguesa. Concerning the self-report data, the applied instrument included a socio-demographic section and a caffeine consumption 
profile section. These data are presented in Tables 1 and 2, respectively. All electrocardiographic signals were acquired at a sampling 
rate of 100Hz, using the Biopac MP-160 data acquisition system with the ECG100C amplifier and Acknowledge software 5.December 0, 
2017 (Biopac System Inc., Santa Barbara, CA, USA) connected to a computer. The ECG was monitored with a standard configuration of 
disposable Ag–AgCl electrodes placed on the right clavicle and at the V6 precordial site after cleaning the skin with alcohol to minimize 
impedance and promote good contact between the electrode and the skin [35,36]. 

2.2. Experimental procedures 

The experimental procedure used an intra-subject comparison model and consisted of the following four phases: (1) welcoming, 
informed consent, instructions, application of the questionnaire and equipment setup; (2) baseline task; (3) consumption of the mo-
dality under study; and (4) monitoring phase. Thus, after an eligibility screening, participants were appointed to four laboratory 
sessions held on consecutive days during the morning, to avoid the diurnal variability in ECG parameters. It was ensured that the study 
took place in a well-controlled laboratory environment. Days before the laboratory appointment, participants were requested to keep 
the same caffeine intake pattern until the data collection, avoiding psychostimulants such as chocolate, cola, or even coffee 2 h before 
the session [35]. At each laboratory visit, each participant was randomly assigned to one of the four conditions under analysis: coffee, 
decaffeinated, OF with caffeine, OF without caffeine (these OFs were produced in the Centro de Biotecnologia e Química Fina of the 
Universidade Católica Portuguesa - Porto by an experienced research team in the field [37,38]). It should be noted that the produced 
OF employed an innovative methodology that distinguishes it from commercial OFs. Their approach involves incorporating 

Table 1 
Socio-demographic characteristics of the participants (n = 13).  

Categorical Measure % 

Gender 
Females 61.5 
Males 38.5 
Marital status 
Single 92.3 
Married/in a relationship 0 
Divorced/separated 7.7 
Widower 0 
Education levels 
Elementary School 7.7 
Secondary 61.5 
Higher education (degree) 23.1 
Higher education (master’s, doctorate, and post-doc) 7.7 
Profession 
Students 84.6 
Other professions 15.4  
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microparticles into the composition, enabling the retention of caffeine. As a result, in addition to dispersing caffeine in the film, like 
commercial OFs, encapsulated caffeine is present within these OFs. Consequently, the procedure was fully blinded for the participants 
and the researcher assistants in charge of the data collection [35]. 

After 5 min of resting in the sitting position, while the participants filled out a questionnaire and became familiar with the lab-
oratory environment, electrodes were placed on the participants in suitable positions for signal collection. Subsequently, and before 
the consumption of any modality, the baseline task was performed. For this step, participants were asked to perform a low cognitive 
demanding task and evaluate whether pairs of images were the same or different. A behavioral task was also performed to assess the 
level of cognitive performance before caffeine ingestion. Then, after consuming the randomly assigned modality, the cardiac activity of 
the participants was monitored for 50 min. For this monitoring phase, participants were predisposed to a set of specific tasks: rate their 
alertness using the Visual Analog Scales (VAS), choosing among “alert/able to concentrate”, “anxious”, “energetic”, “feel confident”, 
“irritable”, “jittery/nervous”, “sleepy” and “talkative”; perform the Attentional Network Test (ANT), a computer-based test to measure 
participants” performance in three separate components of attention: alerting, orienting, and executive control; and a continuous 
performance test that assesses attention and impulsivity (Test of variables of attention, T.O.V.A.) [35]. 

3. Methods 

This topic explains the methodology adopted to attain the objective of this work. It was fully developed and codded within the 
MATLAB® R2019a software environment. 

3.1. Methodology structure 

The data analysis strategy is subdivided into three main steps: (1) Loading and pre-processing (filtering), (2) Signal processing: 
wavelet multi-band decomposition, non-linear analysis, and features extraction, and (3) Classification per 1min time-series length. 

Table 2 
Caffeine consumption profile (n = 13).  

Categorical Measure % 

Enjoy coffee 
Yes 84.6 
No 15.4 
Frequency of coffee drinking per day 
Up to once a day 38.5 
2 times a day 7.7 
2 to 3 times a day 23.1 
More than 3 times a day 7.7 
Rarely 15.4 
A few times a week 7.6 
Reasons for drinking coffee 
Wake up 15.4 
Socially 7.7 
Health 7.7 
Several (no specific) 69.2  

Fig. 1. Methodology workflow.  
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Fig. 1 illustrates the methodology implementation steps. 

3.1.1. Loading and signal pre-processing 
The raw data contains contaminations that are usually large enough to camouflage the small amplitude features of the signal that 

are of physiological or clinical interest [39]. After loading the database in a MATLAB® environment, a set of preprocessing techniques 
were applied to the 52 signals (13 subjects x 4 modalities of study) to remove discrepancies and scale the resources to an equivalent 
range. All raw signals were digitally filtered by a Butterworth filter with order 5 and 2–49Hz cutoff frequencies. Then, the amplitude of 
each signal was normalized according with, 

x(n)=
x(n)

∑N− 1

n=0
x2(n)

(1)  

where N represents the signal size, and the mean value was then removed. 

3.1.2. Signal analysis and feature extraction 
This subsection describes the set of features extracted from each ECG signal. 

3.1.2.1. Wavelet multi-band decomposition. The DWT of a finite-energy signal in discrete time refers to breaking it down into a set of 
fundamental functions derived from a limited number of prototype sequences and their time-shifted versions [40]. As suggested by 
Vetterli and Kovacevic in 1995 [40], this approach is highly effective for analyzing signals in the time-frequency domain. The process 
of structured expansion is executed by employing a critically decimated filter bank with octave-band spacing, proposed by Malvar in 
1992 and further developed by Vetterli and Kovacevic in 1995 [40,41]. Considering only the positive frequencies, the m-th sub-band is 
confined to [41]. 

Wm =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[

0,
π
2S

]

,m = 0,
[

π
2S− m+1,

π
2S− m

]

,m = 1, 2,…, S,
(2)  

where S is the number of sub-bands or levels of decomposition, S+1 is the number of sub-bands and π is the normalized angular 
frequency which is equivalent to half the sampling rate. 

The DWT uses an analysis scale function φ̃1(n) and an analysis wavelet function ψ̃1(n) defined as 

φ̃1(n)= hLP(n) (3) 

and 

ψ̃1(n)= hHP(n), (4)  

where hLP(n) and hHP(n) are the impulse responses of the half-band low-pass and high-pass filters, respectively. Defining the following 
recursion formulas 

φ̃i+1(n)= φ̃i

(n
2

)
∗ φ̃1(n), (5)  

ψ̃i+1(n)= φ̃i(n) ∗ ψ̃1

(
n
2i

)

, (6) 

The equivalent analysis filter of the m-th sub-band is given by 

hm(n)=
{

φ̃S(n),m = 0
ψ̃S+1− m(n),m = 1, 2,…, S. (7) 

The m-th sub-band signal of x(n) is given by 

xm(n)=

⎧
⎪⎪⎨

⎪⎪⎩

∑∞

k=− ∞

x(k)hm
(
2Sn − k

)
,m = 0,

∑∞

k=− ∞

x(k)hm
(
2S− m+1n − k

)
,m = 1,2,…, S.

(8) 

Each sub-band signal is resampled to the original sampling rate frequency using the wavelet interpolation method described in 
Rioul & Vetterli (1991) [30]. 

3.1.2.2. Non-linear analysis. According to the non-linear dynamic theory, a complex system (such as the heart) is characterized by 
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non-linear dynamic properties. Due to physiological events, the heart’s environment is constantly changing over time. Consequently, 
ECG signal exhibit non-linear and chaotic behavior. Additionally, the degree of complexity of the heart represents the time series 
randomness. Depending on the intensity of the heart activity, the ECG signal can be more or less complex depending on the information 
complexity per signal segment [42,43] Evidence shows that ECG signal analysis using non-linear techniques improves the feature 
extraction and classification process, with each measure reflecting complexity with different approaches [43]. Although many 
non-linear models have been proposed in recent years, this dissertation is limited to the most common ones for a first approach. 

3.1.2.2.1. Chaos theory. The correct analysis of the evolution of dynamic systems implies the spatial representation of their states 
over time, in which a system defined by n-variables can be represented by a point in n-dimensional space, which represents the value of 
all its variables at a given time [44]. The consecutive states represented in this phase space define trajectories, which, when observed 
over long periods, tend to converge to a specific geometric structure independent of the starting point, called an attractor [45]. Thus, 
the system evolves towards extremely irregular, complex, and non-periodic behaviors – called chaotic behaviors – in which, although 
there is no predictability, they converge toward a structurally stable behavior [46]. 

The evolution of system dynamics is typically investigated by extracting non-linear features from the attractor, which analyzes 
concepts related to stability, variability, complexity, and similarity [47]. The accuracy of the attractor reconstruction is critically 
important for the application of these methods, as such two parameters should be considered: the delay (τ) and the embedding 
dimension (d). Thus, the attractor reconstruction is achieved using a single state variable (x(i)) [48]: 

x(i)= (x(i), x(i+ τ ), x(i+ 2τ ),…, x(i+(d − 1)τ )) (9)    

• Lyapunov Exponent: The trajectories in a chaotic attractor evolve in two ways in particular: expansion, in which the trajectories of 
the points considered diverge exponentially from the initial conditions (close points in phase space), and convergence, in which the 
trajectories converge with each other over time [49]. From the dynamical point of view, the Lyapunov exponent (λ) measures the 
average rate of expansion and convergence of trajectories in phase space, thus characterizing the predictability of the dynamical 
system [50,51]. For a space with dimension N, there are N Lyapunov exponents. However, it is common to determine only the 
largest Lyapunov exponent because it is simpler to calculate and provides a more comprehensive view of the dynamics of the system 
[52]. If the largest Lyapunov exponent is positive then the attractor is chaotic, with the magnitude of the exponent reflecting the 
time scale at which this behavior is visible [51]. This measure can be estimated using the following mathematical equation: 

λ(i)=
1

(Kmax − Kmin + 1)dt
∑Kmax

K=Kmin

1
K
• ln

‖ Yi+K − Yi∗+K‖

‖ Yi − Yi∗ ‖
(10)  

where, Kmin and Kmax represent the expansion interval, dt is the sampling time, and Yi represents the reconstruction value of the signal 
for the considered dimension and delay [53].  

• Hurst Exponent: The Hurst exponent (H) is a dimensionless measure used to assess the self-similarity and long-range correlation 
properties of time series [54]. The calculation of this exponent is defined in terms of the asymptotic behavior of the rescaled interval 
(a statistical measure of the variability of a time series) as a function of the time series period, as follows: 

H=

log
(

R
S

)

log ( T )
(11)  

where T is the sample length, R/S is the value corresponding to the rescaled interval, R is the difference between the maximum and 
minimum deviation from the mean, and S represents the standard deviation [55,56]. 

When H = 0.5, there is no correlation in the time series (random behavior). If 0< H <0.5, the time series exhibits long-term 
alternation, i.e., a high value is likely to be followed by a low one and vice-versa. On the other hand, if 0.5< H <1 then the time 
series is defined as positive long-run autocorrelation. In the theoretical limit, when H = 1, the time series presents a perfect correlation 
[55,57]. 

3.1.2.2.2. Fractal dimension. Fractal is a mathematical model used to describe scale-invariant random processes and it is char-
acterized by its fractional dimensions [58]. This unique characteristic makes it possible to recognize similar geometric patterns that 
repeat infinitely many times at any scale of magnification [59]. There are several methods for estimating fractal dimensions. Among 
them, Higuchi’s algorithm is known to be the most accurate and efficient, aiming to quantify the self-similarity and complexity of the 
signal [60]. 

Higuchi Fractal Dimension (DfH) is based on a length measure L(k) of the curve representing the time series. If scaled as L(k) ∼ k− Df , 
the curve is believed to show the fractal dimension Df . To do this, from a given time series the algorithm constructs k new time series, 

xm,k = x(m),x(m + k),x(m + 2k),…,x
(

m + int
(

N− m
k

)

k
)

, where m represents the initial value of time, k is the interval time and int(r)

represents the integer part of a real number r. The length of Lm(k) of each curve is then calculated by: 
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Lm(k)=

∑
int

(
N− m

k

)

i=1
|x(m + i • k) − x(m + (i + 1)k)|

int
(

N− m
k

)

k
(12)  

where, N is the number of samples and int represents the number rounded to the nearest integer. This process is repeated for each k, 
from 1 to kmax, with kmax being experimentally determined. Finally, the DfH value is calculated using least squares, with the value DfH 
being the slope of the linear regression between ln(Lm(k)) e ln(1 /k) [61,62]. 

3.1.2.2.3. Energy. Energy can be seen as a measure of signal strength and can be obtained from equation (13), where g represents 
the signal [63,64]. 

E=
∑

i
|g(n)|2 (13)  

3.1.2.2.4. Entropy. Entropy quantifies a system’s disorder and uncertainty level [65]. Entropy assesses the predictability of future 
amplitude values based on the probability distribution of previously observed amplitude values, i.e., present information can be 
explained by past information history. Along this line of reasoning, high entropy values are associated with data that is uncertain (too 
much information) and more difficult to predict. In contrast, if all observations are unanimous, there is no uncertainty and the entropy 
value is zero [66–68]. Shannon entropy can be estimated by equation (14), which g represents the signal [68]. 

Es = −
∑

i
|g(n)|2 • log

[
|g(n)|2

]
(14)  

3.1.2.3. Feature extraction, selection, and classification. For each windowing signal analysis of 0.5s, five non-linear features (λ, H, DfH, 
E, and ES) have been extracted from each sub-band computed by DWT decomposition until level 5 using symlet5. This Wavelet also 
prove to be a good choice for ECG signal analysis in Refs. [69,70]. It implies 36000 non-linear analyses per each signal subject 
participant (6 sub-bands x 6000 windows analysis, 120 windows analysis per min x 50 min), as illustrated in Fig. 1. As five features 
have been extracted per each sub-band windowing analysis, at the end of the process, a time-series vector of 180000 features was 
collected per each signal participant. The data has been organized for the binary comparisons decaffeinated/coffee and OF_place-
bo/OF_caffeine, resulting in two independent data matrixes of 26x180000. Per binary comparison, data have been normalized by the 
z-score algorithm [71,72]. Each matrix has been divided into sequential 50 time-series matrices of 26x3600 allowing us to focus our 
analysis per minute. Finally, as we will apply in this study supervised machine learning models, the last step concern labeling each 
entry according to the different group’s modalities. In other words, each entry related to an active substance is labeled with a value of 1 
and the placebo with a value of 0. The normalized matrixes per minute were applied as inputs to a cascade of one Principal Component 
Analysis (PCA) algorithm and one classical machine learning algorithm. Per minute, different features combinations have been 
selected by PCA based on 100 % (no application), 95 %, 80 %, 70 %, 50 %, 20 %, 10 %, 5 %, and 1 % of the variance and different 
machine learning models (check Table 3) have been used for discrimination between group pairs. For every classifier model, accuracy 

Table 3 
Used classifiers and default parameters.  

Classification Models Classifier Default Parameters 

Decision Trees Fine Tree Maximum number of splits = 4 
Medium Tree Maximum number of splits = 20 
Coarse Tree Maximum number of splits = 100 

Discriminant Analysis Linear Discriminant Covariance structure: complete 
Logistic Regression Logistic Regression Covariance structure: complete 
Naïve Bayes Gaussian Naïve Bayes – 
Support Vector Machines (SVM) Linear SVM Box constraint level = 3 

Quadratic SVM Box constraint level = 3 
Cubic SVM Box constraint level = 4 
Fine Gaussian Box constraint level = 3 
Medium Gaussian Box constraint level = 3 
Coarse Gaussian Box constraint level = 1 

K-Nearest-Neighbors (KNN) Fine KNN Number of neighbors = 1 
Medium KNN Number of neighbors = 10 
Coarse KNN Number of neighbors = 100 
Cosine KNN Number of neighbors = 10 
Cubic KNN Number of neighbors = 10 
Weighted KNN Number of neighbors = 10 

Ensembles Boosted Trees Maximum number of splits = 10 
Bagged Trees Maximum number of splits = n-1 (n = number of observations in the training sample) 
Subspace Discriminant Covariance structure: complete 
Subspace KNN Number of neighbors = 3 
RUSBoosted Trees Maximum number of splits = 150  
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ratios have been attained per minute allowing us to trace accuracy curves of 50 points, representing the discrimination power of each 
model along the 50 min for both comparison groups, respectively. 

4. Results and discussion 

Given the large volume of data results obtained, the focus of this section is on the 50-point accuracy curve average values. The 
results of the classification for each comparison case are shown in Fig. 2. It is noticeable that the accuracy percentages of each classifier 
were similar by using various levels of PCA variances, and it can be inferred that there is redundant information between the selected 
metrics. Scrutiny Fig. 2, among the selected results, the decision tree classifiers - PCA 100 % for the decaffeinated/coffee comparison 
and Fine Gaussian - PCA 95 % for the OF_placebo/OF_caffeine comparison stand out as the best ones within groups comparison. It is 
important to mention that with this kind of analysis, there are accuracy peaks camouflaged by the average. 

After analyzing all results, it can be concluded that when the system was trained with PCA 100 %, meaning no feature selection 
applied, for both binary classifications, the Decision Tree classifiers were those that showed the best discriminative average power, 
with an average accuracy rounding of 50.2 % for decaffeinated/coffee and 65.5 % for OF_placebo/OF_caffeine. This family of clas-
sifiers was also provided to attain the best performance with PCA 95 %, 80 %, 70 %, and 50 %, for the comparison decaffeinated/ 
coffee, with average accuracy values ranging from 44.9 % to 46.8 %. However, for these same PCA variances, in the case of_placebo/ 
OF_caffeine comparison, the Fine Gaussian classifier showed the best classification accuracy with average values ranging between 
67.3 % and 72 %. Regarding the system training with PCA 20 %, 10 %, and 5 % of the variance, for the OF_placebo/OF_caffeine binary 
classification, the Quadratic SVM, Medium KNN, and Cubic KNN classifiers showed, respectively, the best classification performance 
with average accuracy values ranging from 68.2 % to 69.7 %. And for the decaffeinated/coffee comparison, with PCA 20 % the Bagged 
Trees and Fine KNN classifiers show the best results with an average performance of 47.9 % and 47.5 %, respectively. In this same 
classification, for training with PCA 10 % and 5 % variance, the best average accuracy manifested itself in the Subspace KNN and Fine 
KNN classifiers with values between 47.2 % and 47.6 %. Finally, when the system was trained with PCA 1 %, for the decaffeinated/ 
coffee binary comparison, the Bagged Trees, Fine KNN, and Subspace KNN classifiers showed the best discriminative power with a 
performance of 47.2 %. And for the OF_placebo/OF_caffeine comparison, the Quadratic SVM classifier showed the best performance 
with 68.6 % of average accuracy. 

Fig. 2. Comparison of the best-selected results for each binary classification.  
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The remaining unmentioned results obtained clarify that these classifiers did not prove to be efficient in their classification process. 
Thus, it is of special interest to understand the accuracy curves of the classifiers over time that showed the best performance. Figs. 3–11 
illustrate these results. 

First, a superficial analysis of the accuracy curves shows that the amplitude of the classifiers’ performance is within the expected 
range. The ability to detect physiological changes induced by caffeine demonstrates the discriminative power of ECG signals across 
both active and placebo modalities, highlighting the effectiveness of the DWT approach as documented in the literature [73]. Although 
the data extracted from these signals confirm that caffeine influences cardiac activity, the results do not precisely delineate the exact 
morphological changes in the ECG characteristics. This alignment with previous studies reinforces the validity of our methods and 
situates our findings within a broader research context that links caffeine consumption with specific cardiac responses. At this point, it 
is important to reinforce the idea that the main objective of this study is to verify the effect of caffeine over time by analyzing the 
classifier’s discriminative capacity. Thus, higher accuracy rates obtained by a classifier indicate more significant differences between 
binary comparison groups, allowing to evaluation of proximity or divergence of cardiac behavior among various study groups over 50 
min following consumption. Furthermore, the physiological characteristics intrinsic to everyone reduce the possibility of finding 
outstanding accuracy rates (close to 100 %) over time, and it is also expected that accuracy rates will decay as caffeine is metabolized in 
the body, limiting the classifier’s discrimination power. 

Examining individually the 50-point accuracy curves, the discrimination accuracy values obtained in the group decaffeinated/ 
coffee were much lower than those obtained for the group OF_placebo/OF_caffeine. These accuracy values indicate that the differences 
between expresso coffee and, its placebo, decaffeinated, consumed through the same vehicle, are not as significant as the ones found by 
using OF as an administration vehicle. 

While previous research [74] utilizing headspace solid-phase microextraction/gas chromatography–mass spectrometry has 
revealed variances in aroma-related compounds—such as aldehydes, ketones, acids, and alcohols—between decaffeinated and regular 
espresso coffee, our study presents a novel insight. We found that when individuals consume these two substances, minimal variations 
in cardiac behavior, as indicated by ML accuracy curves over an ECG span of 50 min, were observed. Notably, the accuracy values 
depicted relatively low amplitudes. The relatively low amplitudes in accuracy values suggest that the observed disparities might be 
attributed to: (1) the low sensitivity to the doses of caffeine administered through coffee, (2) the psychological effect (or conditioned 
from previous consumption), since the aroma, the smell, and the act of drinking may awaken behaviors associated with the real 
ingestion of the substance by activating the nervous system, or (3) the fact that both modalities were served from the same machine 
and caffeine residues may have passed to the decaffeinated beverage. However, in the first few minutes of analysis, it would be ex-
pected that in the most sensitive individuals, the accuracy values would be noticeably lower than in the rest of the signal collection 
period. This was found very subtly in some of the accuracy curves and can be attributed to two main factors: (1) psychological effects, 
since, according to a scientific study [5] the caffeine psychostimulant effect is so potent that merely anticipating its consumption can 

Fig. 3. 50-point accuracy curves of the classifiers with the best results for both binary classifications, when the system was trained without feature 
selection (PCA = 100 %). 
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Fig. 4. 50-point accuracy curves of the classifiers with the best results for both binary classifications, when the system was trained with PCA =
95 %. 

Fig. 5. 50-point accuracy curves of the classifiers with the best results for both binary classifications, when the system was trained with PCA =
80 %. 
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Fig. 6. 50-point accuracy curves of the classifiers with the best results for both binary classifications, when the system was trained with PCA =
70 %. 

Fig. 7. 50-point accuracy curves of the classifiers with the best results for both binary classifications, when the system was trained with PCA =
50 %. 
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trigger brain responses, even without actual intake. The presence of caffeine in the oral mucosa can enhance these effects. Also, (2) 
biochemical effects, since the high vascularization of the oral mucosa promotes rapid absorption of a small amount of caffeine while 
still in the mouth, accelerating the onset of physiological effects [21,25]. Furthermore, the high amplitude of the accuracy curves again 
reveals a contradiction with the literature since this oscillation represents successive instants of difference and similarity between the 
two modalities It is known that this does not correspond to reality, since the amount of caffeine administered through coffee is fully 
available for absorption at the same instant. 

On the other hand, the OF_placebo/OF_caffeine accuracy curves show differences between the two modalities, which are man-
ifested by changes at the cardiac level that cannot be identified with the resources used. That is, the classification methods only reveal 
that there are differences between the physiological signals by comparing the metrics of the active and placebo groups. In other words, 
one cannot conclude about the actual behavior of caffeine at the physiological level, i.e., for example, an increase or decrease in heart 
rate or the manifestation of arrhythmic events. However, it allows us to assess the efficiency of the OF as an administration caffeine 
vehicle. Regarding the dissolution power, the high accuracy values obtained show a high dissolution power of in the first minutes, 
because there is free caffeine in the OF, and it can be inferred that the amount of caffeine remained high over time because there is 
caffeine encapsulated within microparticles, which will allow a controlled release over time. 

After analyzing and discussing the accuracy curves individually, it becomes convenient to understand the interaction between the 
two active modalities. By analyzing the graphic presented in Fig. 12, the behavior of the trajectories affected by the administration of 
caffeine by coffee and OF_caffeine is very similar. 

Even though the results were not as satisfactory in the decaffeinated/coffee analysis, it was possible to prove that the benefits stated 
about OF, especially in controlling the release rate of the active substance, effectively work with caffeine, and proving the innovative 
character of these OF. Caffeine OFs become extremely promising and versatile, in addition to the rapid action of caffeine in the initial 

Fig. 8. 50-point accuracy curves of the classifiers with the best results for both binary classifications, when the system was trained with PCA =
20 %. 
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phase, due to the caffeine dispersed in the OF, the gradual release of the caffeine present in the microparticles will subsequently allow a 
gradual release of caffeine, increasing the permanence of the substance in the body for longer and avoiding its side effects. OFs can 
keep the organism at peak performance so they can help for instance health professionals mainly on night shifts; medical surgeons 
during long hours of surgery; emergency medical professionals; police, military, and firefighters during long hours of service mainly in 
disaster situations; top athletes; and pilots. However, it can even be interesting in other situations, such as esthetics, in the case where 
the person does not enjoy the sensations that drinking coffee provides in detriment to the coloring of the teeth; or even for those who do 
not enjoy this beverage but need its psycho-physiological effects. 

5. Conclusion and future perspectives 

There is a wide availability of caffeinated products in the market, stimulating the interest of the scientific community in the ways of 
using caffeine. OF are a pharmaceutical/nutraceutical form, which works as a delivery vehicle where several substances can be 
incorporated, with easy administration, fast dissolution and absorption, and high bioavailability being, therefore, a very attractive 
technology for caffeine delivery. 

Hence, we took advantage of the influence of caffeine on the modulation of nervous system activity by tracking the variability of 
cardiac activity. Considering the scientific-technological age that we live within, robust signal processing methods and machine 
learning models were used to study binary comparisons to understand the behavior between decaffeinated/coffee and OF_placebo/ 
OF_caffeine. 

50-point accuracy curves have been traced per model, representing the model discrimination power between groups along the 50 
min. The best model average accuracies obtained per each comparison group were: 50.2 % for Decaffeinated Coffee/Coffee with the 

Fig. 9. 50-point accuracy curves of the classifiers with the best results for both binary classifications, when the system was trained with PCA =
10 %. 
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decision tree as classifier plus PCA 100 % and 72 % for OF_placebo/OF_caffeine with Fine Gaussian plus PCA 95 % as feature selector. 
Nevertheless, higher amplitude discriminatory peaks are camouflaged by the average accuracy over time. For the Decaffeinated 
Coffee/Coffee binary group the accuracy ranged between 30 and 70 % and for the OF_placebo/OF_caffeine it ranged between 62 and 
84 %. Analyzing the respective accuracy curves, we conclude that, contrary to decaffeinated and coffee, there were significant dif-
ferences between OF_placebo and OF_caffeine, namely in the rapid dissolution efficiency and in the controlled release rate over time. 
This finding evidence shows that caffeine delivery through OFs is indeed a promising technology. 

Although the results were generally satisfactory, and the main objective of the OF study was achieved, some limitations are 
recognized in this methodology. Thus, the suggestions for future perspectives presented should be taken into consideration: (1) Test the 
algorithm on a larger and more robust database, so that the results can have statistical significance. Namely, the number of women and 
men should be balanced to address the lack of gender heterogeneity and consider a sample with pre-existing health conditions in terms 
of physiological and neuropsychological pathologies, as according with state-of-the-art caffeine promotes i.e. the risk for anxiety, 
hypertension, ischemic stroke, substance misuse among others [12,14,17,75]. Also, this study did not account for individual variations 
in caffeine metabolism and bioavailability, influenced by genetic predispositions. These genetic factors can significantly impact the 
cardiovascular responses to caffeine and its effectiveness. The absence of controls for genetic variability in caffeine metabolism may 
limit the generalizability of our findings, as the metabolic rate can affect both the magnitude and duration of caffeine’s physiological 
effects. Future research could enhance understanding by incorporating genetic profiling to assess individual differences in caffeine 
metabolism; (2) Perform an individual analysis of the discriminative power of each metric, to understand which ones best describe the 
signal. It would be interesting to test other metrics; (3) Tune-fine the hyperparameters of each classifier used by grid search processes; 
(4) Only short-term measurements of cardiovascular parameters were studied, establishing a compromise between the peak plasma 
concentration of caffeine in the body/start of its decline and the computational time required to process the volume of data resulting 

Fig. 10. 50-point accuracy curves of the classifiers with the best results for both binary classifications, when the system was trained with PCA =
5 %. 
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from this monitoring. It would be essential to investigate the long-term physiological effects of caffeine by increasing the monitoring 
time to track caffeine activity in the body; (5) We will intend to refine our ML discrimination analysis by evaluating shorter periods of 
time, such as intervals of 10 s or even shorter, to capture more nuanced temporal dynamics and enhance the accuracy of our model’s 
predictions reducing in this way the ML results variation registered in present study; (6) Monitoring cardiac activity using electro-
cardiographic signals reveals caffeine-specific patterns and it is simple to acquire. Even so, the impact of caffeine on the human or-
ganism is vast, and it would be relevant to study it at other physiological and psychological levels by combining stratified ECG data 
with other complementary technologies such as Electrodermal Activity (EDA), respiratory monitoring, Functional Near-Infrared 
Spectroscopy (fNIR), among others, enhances the depth and breadth of caffeine insights behavior over time; (7) To increase the 
robustness of the results, other measures of checking model’s performance should be used in addition to accuracy, such as sensitivity, 
precision, recall, f1-score and the area under the ROC curve (AUC); To summarize, the study’s results explored the effects of caffeine on 

Fig. 11. 50-point accuracy curves of the classifiers with the best results for both binary classifications, when the system was trained with PCA =
1 %. 

Fig. 12. Accuracy curves of the classifiers with the best research results.  
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physiological signals using various machine learning classifiers to analyze the data. The study’s results have important implications for 
developing more accurate and effective methods of monitoring the effects of caffeine on the human body. This approach also con-
tributes to understanding the mechanisms underlying caffeine’s effects on physiological signals. It is helpful for researchers studying 
the effects of caffeine on human physiology, particularly concerning cardiovascular and autonomic responses. Those working in 
biomedical engineering, signal processing, and machine learning interested in developing and evaluating algorithms for analyzing 
physiological signals will also contribute to this study. The food and beverage industry, particularly coffee producers, as it sheds light 
on the differences between decaffeinated and caffeinated coffee and the efficiency of as a vehicle for caffeine delivery, will also benefit 
from the evidence in this paper. Finally, consumers interested in understanding caffeine’s effects on their bodies may find this valuable 
approach as it provides a way to analyze the physiological signals related to caffeine consumption. As a result, consumers may better 
understand how their bodies respond to caffeine and how long the effects of caffeine last. This information could help consumers make 
more informed decisions about their caffeine consumption, such as when to consume caffeine and the most appropriate amount for 
their bodies. Additionally, by understanding the differences between caffeinated and decaffeinated coffee, consumers may be able to 
choose the option that best suits their needs and preferences. Overall, this approach allows researchers, producers, and consumers to 
gain insights into caffeine consumption and make more informed decisions about caffeine-related issues. 
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