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Nontrivial quantum oscillation geometric phase shift
in a trivial band
Biswajit Datta1*, Pratap Chandra Adak1, Li-kun Shi2, Kenji Watanabe3, Takashi Taniguchi3,
Justin C. W. Song2,4*, Mandar M. Deshmukh1*

Quantum oscillations provide a notable visualization of the Fermi surface of metals, including associated geo-
metrical phases such as Berry’s phase, that play a central role in topological quantum materials. Here we report
the existence of a new quantum oscillation phase shift in a multiband system. In particular, we study the ABA-
trilayer graphene, the band structure of which is composed of a weakly gapped linear Dirac band, nested within
a quadratic band. We observe that Shubnikov-de Haas (SdH) oscillations of the quadratic band are shifted by a
phase that sharply departs from the expected 2p Berry’s phase and is inherited from the nontrivial Berry’s phase
of the linear band. We find this arises due to an unusual filling enforced constraint between the quadratic band
and linear band Fermi surfaces. Our work indicates how additional bands can be exploited to tease out the
effect of often subtle quantum mechanical geometric phases.
INTRODUCTION
The accumulation of a nontrivial geometric phase in quantum oscilla-
tions of a band is often a telltale sign of a rich underlying internal
structure (1–4). These can arise fromdiverse settings, including strong
spin-orbit coupled systems that have real-space (5, 6) or momentum-
space spin texture (7), periodic driving by strong electromagnetic fields
(8), and multiorbital/site structure within a unit cell (9). Although these
phases are often encoded in the subtle twisting of electronic wave
functions, their impact onmaterial response can be profound, being re-
sponsible for a wealth of unusual quantum behaviors that include un-
conventionalmagnetoelectric coupling (10), an emergent electromagnetic
field for electrons (6), and protected edge modes (11) among others.

A prominent example is the Berry’s phase (12–14). In anomalous
Hall metals, the Berry’s phase on the Fermi surface determines the
(unquantized part of the) anomalous Hall conductivity (15, 16); non-
trivial p Berry’s phase enforces the absence of backscattering in topo-
logical materials (17). The value of the Berry’s phase of electrons as they
encircle a single, closed Fermi surface can be used as a litmus test for
topological bands: p indicates a nontrivial band (18–22), whereas 2p in-
dicates a massive quadratic band (23–25). In the presence of a magnetic
field (B), the (quantized) size of closed cyclotron orbits depends on both
themagnetic flux threading the orbits and the Berry’s phase of electrons.
As a result, quantum oscillations of a closed Fermi surface can acquire
phase shifts—a direct result of the Berry’s phase of electrons (3). This is
visible in oscillations of both resistance and thermodynamic quantities
like magnetization. Tracking these quantum oscillation phase shifts has
emerged as a powerful probe for topological materials (26–30).
RESULTS
Here, we unveil a new phase shift for quantum oscillations that ap-
pears in multi–Fermi surface metals. In particular, we reveal how
the quantum oscillations of a massive quadratic band (with a constant
and trivial Berry’s phase) can acquire nontrivial (±p) phase shifts that
are gate tunable. The unusual phase shifts are found in measured
Shubnikov–de Haas (SdH) oscillations of a quadratic band in a mul-
tiband system—the ABA-trilayer graphene. The phase shift of the
quadratic band SdH oscillations depends on the position of the Fermi
level in the coexisting Dirac band. The phase switches sharply from p
to −p as the Fermi level is tuned from below the Dirac bandgap to
Berry’s phase
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Fig. 1. Band diagram of the ABA-trilayer graphene. (A) Band diagram of the
ABA-stacked trilayer graphene showing one pair of the conical band (colored red)
and another pair of the quadratic band (colored green). The Fermi surface at
three different energies is overlaid for which the Fermi energy lies in the valence
band, in the bandgap, and in the conduction band of the MLG-like band. There is
no contour from the MLG-like band when Fermi energy is in the bandgap. (B) Cal-
culated Berry’s phase plot with same color codes for both bands. Since the bands
are gapped, the Berry’s phase of the individual bands goes to zero at the respective
band edges. The shaded blue rectangle shows the Fermi energy range of our in-
terest around the Dirac band’s gap.
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above it. Moreover, we show the continuous variation of Berry’s
phase–induced quantum oscillation phase shift, as a function of gate
voltage (VBG), in an inversion symmetry broken system close to the
Dirac band edge. Here, we stress the fact that the Berry’s phase of
the two bands is not additive (1). It is a routine exercise to map indi-
vidual Fermi surfaces in a multiband system by isolating different fre-
quencies in SdH oscillations (31), and one can, indeed, measure the
Berry’s phase of individual bands (26). Together with the fact that
in the ABA-trilayer graphene, a well-studied system, one can unam-
biguously map the band origin of the Landau levels (LLs) using tight
binding calculation, our finding that the dependence of one band’s
quantum oscillation phase on the other is unexpected.

We study a high-mobility (~500,000 cm2 V−1s−1) hexagonal boron
nitride (hBN)–encapsulated ABA-stacked trilayer graphene device
(see section S1). A metal top gate and a highly doped silicon back gate
ensure independent tunability of charge carrier density and electric
field. All the measurements are done with a low-frequency lock-in
technique at 1.5 K. The ABA-trilayer graphene is very interesting be-
cause it is the simplest system supporting the simultaneous existence
of a monolayer graphene (MLG)–like linear and a bilayer graphene
(BLG)–like quadratic band in experimentally accessible Fermi energy
(see Fig. 1A) (32–37). The structure of the ABA-trilayer graphene
Datta et al., Sci. Adv. 2019;5 : eaax6550 18 October 2019
lattice intrinsically breaks the inversion symmetry even at the zero
electric field; this generates small mass terms in the Hamiltonian
(32, 37). As a result, both pairs of bands are individually gapped as
seen in Fig. 1A. Figure 1A shows that when both these bands are
filled, the Fermi surface of the ABA-trilayer graphene consists of
two Fermi contours—the inner contour comes from the MLG-like
band, and the outer contour comes from the BLG-like band. Figure
1B shows that the MLG-like Dirac cone has a robust p Berry’s phase,
which only reduces to zero in the vicinity of theMLG-like band edge.
However, since theDirac bandgap is very small, ~1meV (38, 39), it was
not possible to resolve the Dirac bandgap and controllably tune the
Fermi level through the gap in most of the previous studies (33, 38).
Since the LL broadening in our device is small, we can resolve the Dirac
bandgap and study the phase of the BLG-like SdH oscillations as the
Fermi level is tuned through the MLG-like bandgap. We note that the
BLG-like conduction band has more or less a constant trivial Berry’s
phase 2p in the region of interest (around the Dirac cone gap). In our
experiment, we probe a narrow energy window near the MLG-like
bandgap. In the following, we use “bandgap” to refer to the MLG-like
Dirac bandgap.

In the presence of a magnetic field, the continuous band structure
shown in Fig. 1A splits into LLs. The closed orbits
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Fig. 2. Quantum oscillation of the ABA-trilayer graphene. (A) Color scale plot of experimentally measured Gxx as a function of back gate voltage and magnetic field.
The vertical feature parallel to the magnetic field axis at VBG∼ 10 V corresponds to the LL crossings of NM = 0 LL with other BLG-like LLs. This VBG also corresponds to the
bandgap of the MLG-like bands. (B) Calculated energy band diagram shown in the same energy range as the experimental fan diagram shown in (A). (C) Theoretically
calculated LL energies of the spin degenerate LLs as a function of magnetic field. Red and green lines denote LLs originating from the Dirac and the quadratic bands,
respectively. Solid and dashed lines denote LLs from K+ and K− valleys, respectively. (D) Experimentally measured SdH oscillations (Gxx) as a function of filling factor
below the bandgap (green), in the bandgap (red), and above the bandgap (blue), which show that the phase of the SdH oscillation in the bandgap is p shifted
compared to the other two. The curves are shifted in the vertical direction for clarity. Gate voltage and approximate energy locations of the three SdH oscillation
slices are marked with dashed lines of the corresponding color in the fan diagram (A) and in the band structure (B), respectively.
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on quantized values that depend on Berry’s phase (and magnetic
flux). As the magnetic field is swept and the charge density is varied
independently, LLs cross the Fermi surface, giving rise to the density
of state oscillations that result in longitudinal conductance (Gxx) os-
cillations (40). At a fixed density, the conductance oscillations (SdH)
can be written as DGxx ¼ G cos 2p BF

B þ g
� �� �

, where G is the oscilla-
tion magnitude, BF ¼ nSh

ge is the SdH oscillation frequency in 1/B pa-
rameter space, and the phase shift g ¼ FB

2p � 1
2. Here, nS is the density

in the S sub-band for a multiband system; g is the LL degeneracy,
which is four for graphene; and FB is the Berry’s phase. Figure 2A
shows ourmeasured SdH oscillation inGxx as a function ofB andVBG.
The corresponding band structure at zero magnetic field is shown in
Fig. 2B. Theoretically, calculated LL diagram (Fig. 2C) shows that the
MLG-like and the BLG-like LLs disperse as e ffiffiffi

B
p

and ~B, respectively
(32, 34, 37). Details of the tight binding calculation are provided in
Materials and Methods and in section S2. The distinct dispersion of
the LLs along with the corresponding Hall conductance enables easy
identification of the MLG-like and the BLG-like LLs (34, 38, 39, 41).

The central result of our study—that of an unusual phase shift
in the quadratic BLG-like band—is vividly illustrated in Fig. 2D. It
Datta et al., Sci. Adv. 2019;5 : eaax6550 18 October 2019
shows three slices of BLG-like SdH oscillations at different densities
away from the crossing points, which correspond to Fermi levels in
the valence band, in the gap, and in the conduction band of the MLG-
like Dirac cone, respectively. We emphasize that for all these three
densities, the Fermi level lies in the conduction band of the BLG-like
band. The SdH oscillations above and below the gap show a p phase
shift from the SdH oscillation at the gap. This is intriguing since the
BLG-like band in this energy range has a constant trivial Berry’s phase
(see Fig. 1B). It is clear from the experiment that the Fermi level po-
sition in the Dirac band has a bearing on the phase of the BLG-like
band. The experimental ability to “tune out” the role of the Dirac band
using Fermi energy is crucial to the analysis. It serves as an inbuilt con-
trol in our experiment.

We quantify the unusual phase shift via a detailed analysis of the
SdH oscillations using the LL index plot (19). Briefly, this involves
fitting a line to the LL index (N) corresponding to a minimum in
the Gxx versus the corresponding inverse magnetic field ( 1

BN
) plot

and examining the intercept at 1
B ¼ 0. The method of determining

LL indices is described in section S2. From the intercept in the LL in-
dex axis (Fig. 3A), we see that the intercept is 0.5 (−0.5) in the valence
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Fig. 3. Unusual SdH phase shift. (A) SdH oscillations (Gxx) and the LL index versus inverse magnetic field fit below the bandgap (orange), in the bandgap (cyan), and
above the bandgap (purple). Circles and squares denote the SdH minima and maxima, respectively. Inset of all the panels shows the band diagram and the Fermi
energy locations for which the SdH fits are shown. (B) LL index versus inverse magnetic field fits at different densities away from the bandgap. The linear fit produces± 1

2

intercept when Fermi level lies in the MLG-like valence band and the MLG-like conduction band, respectively. (C) LL index versus inverse magnetic field fits at different
densities close to the bandgap. This shows that the intercept varies continuously from 1/2 to −1/2 when the Fermi level goes from the valence to the conduction MLG-
like band by tuning the density. The inset shows the zoomed-in band diagram very close to the bandgap.
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(conduction) band and is 0 in the middle of the bandgap. The 0.5
(−0.5) value of the intercept corresponds to a p (−p) phase shift of
the SdH oscillations when the Fermi level lies away from the bandgap
even though the phase is extracted only from the BLG-like SdH oscil-
lations. Figure 3B shows fits at several densities away from the gap
(firmly in either conduction or valence band). While having different
slopes, their intercepts assume only two quantized values: 0.5 or −0.5,
depending on the Fermi energy inside the valence or conduction
MLG-like Dirac cone. This reinforces the robustness of the unusual
phase shift.

Notably, it is onlywhen the Fermi energy is tuned through theMLG-
like band’s gap that the intercept varies continuously from 0.5 to −0.5
(see Fig. 3C). We note the smooth gate tuning through the bandgap is
possible due to the gapless nature of the BLG-like conduction bands
throughout the regionof interest. Both the nontrivial values and the tun-
able nature of the unusual phase shift sharply depart from the traditional
understanding of quantum oscillation being purely sensitive to the spe-
cific Fermi surface it is sampling—BLG-like band in the present case.

Wenow focus on theorigin of theunusual phase shift. In general, SdH
oscillations depend on contributions from the Fermi surfaces of both
the bands: DGxx ¼ GMcos 2p BFM

B þ gM
� �� �þ GB cos 2p BFB

B þ gB
� �� �

,
where the M and B subscripts denote MLG-like and BLG-like bands,
respectively. As we explain below, the complex pattern of band fillings
acrossmultiple bands of distinct type [encoded in (BFB, BFM)] controls
the SdH oscillations.
Datta et al., Sci. Adv. 2019;5 : eaax6550 18 October 2019
To unravel the pattern in the ABA-trilayer graphene, there are two
key effects to understand. First, MLG-like LLs have large LL separa-
tion (first LL gap is∼50 meV at 2 T) even at small magnetic fields. In
contrast, the LL spacing of BLG-like LLs is far smaller (∼5meV at 2 T).
This means that multiple BLG-like LLs can be swept through (over
large-density and magnetic field windows) while keeping the filling
factor of the MLG-like LLs constant in our experiment (see Fig. 2C).
This is most prominent between the NM = 0 and NM = 1 MLG-like
LLs, where we were able to easily resolve and analyze ∼10 BLG-like
LLs. Although the filling factor of the BLG-like LLs steadily varies over
this region, the filling factor of theMLG-like band remains pinned to
2 due to the particularly large first MLG-like LL energy spacing and
the nonmagnetic field dispersive nature of theNM = 0 LL. As a result,
in betweenMLG-like LLs [e.g., that realized in the region E(0M) < EF <
E(1M)], MLG-like oscillations are frozen, and the SdH oscillations are
dominated by the BLG-like band DGxx ≈ GB cos 2 BFB

B þ gB
� �� �

.
Second, in SdH oscillation measurements, the total density is

fixed (set by the gate voltage) while the magnetic field is varied. In
the ABA-trilayer graphene, the total density (nT = nM + nB) is com-
posed of the individual band densities in each of the MLG-like (nM)
and the BLG-like (nB) bands, which may reconfigure with the
magnetic field while keeping nT constant. This constraint strongly
influences the BLG-like SdH oscillations. To see this, we express
its oscillation frequency in terms of the total density viaBFB ¼ nBh

4e ¼
ðnT�nMÞh

4e ¼ BFT � nMB
4 , where BFT ¼ nTh

4e and nM ¼ nMh
eB is the filling
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factor of the MLG-like band. Crucially, for E(0M) < EF < E(1M)
(above theMLG-like bandgap), onlyNM = 0 electron-like LL is filled,
so the filling factor of the MLG-like band remains pinned to 2. This
yields a BLG-like oscillation frequency as BFB

B ¼ BFT
B � 1=2. Similarly,

for E(−1M) < EF < E(0M) (below the MLG-like bandgap), the filling
factor of the MLG-like band remains pinned to −2, producing BFB

B ¼
BFT
B þ 1=2. Incorporating both cases into the BLG-like SdH oscilla-
tions, we obtain

DGxx ≈GB cos 2p
BFT

B
þ gB±1=2

� �	 

ð1Þ

that displays an unusual, nontrivial, and tunable phase shift acquired
due to the strong filling-enforced constraint above and below the
bandgap. This yields an additional p (−p) phase shift in the BLG-like
oscillations due to the fully emptied (fully filled) MLG-like lowest
NM = 0 LL. We note that when the Fermi energy is in the bandgap,
there is no additional phase shift in the BLG-like band; this is consist-
ent with the expectation that a completely filled (MLG-like valence)
band does not influence the transport. We have also extracted this
phase from the theoretically calculated density of states, which
supports our experimental finding (see section S3).
Datta et al., Sci. Adv. 2019;5 : eaax6550 18 October 2019
The filling-enforced constraint is general and should be applicable
to higher MLG-like LLs beyond nM = ±2 discussed above. For exam-
ple, when the Fermi energy is tuned in betweenNM and (N + 1)M LLs,
theMLG-like filling factor similarly remains constant and is pinned to
nM = 4(NM ± 0.5). Here, ± refers to the electron (hole)–like LLs.
Following the arguments presented before, the BLG-like SdH oscilla-
tions in between two MLG-like LLs can be captured by

DGxx ≈GBcos 2p
BFT

B
þ gB �

nM
4

� �	 

ð2Þ

As a result, in this region, we expect the BLG-like SdH oscillations
to acquire an additional unusual phase pnM/2 as shown in Eq. 2.

To confirm this, we extracted the SdH phase shift at higher
MLG-like LL fillings (see Fig. 4). As shown, when density is tuned
to be in the middle of the higher MLG-like LLs with nM = −6, the
phase shift jumps to 3p (orange) [intercept 3/2]. When density is
further tuned so that filling in the MLG-like band is pinned at nM =
−10, the phase shift reads 5p (green) [intercept 5/2]. This is in clear
agreement with Eq. 2. The fact that these higher (odd) phases can
be accessed and tuned via gate voltage illustrates the unusual nature
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of the anomalous phase shift and its “filling-enforced” origin (see
section S4 for more details).

The filling-enforced constraint is further corroborated by the mea-
sured quantumoscillation frequency. In particular, Eq. 1 indicates that
the BLG-like quantum oscillations have 1/B frequency that scales with
the combined density of the MLG-like and the BLG-like bands rather
than the density of the BLG-like band only. To illustrate this, we focus
on the solid lines in Fig. 5A, where the filling factor takes on precise
quantized values nB = 16,20,24 with nM = 2, obtained directly from
Hall conductance measurements (section S2). Hence, using nM(B) =
nM(B)eB/h, as plotted in Fig. 5B, we can calculate the MLG-like band
density (colored filled circles) and the BLG-like band density (colored
dash plots) on these lines. Total electron densitynT = nM+ nB, which is
independent of the filling factor at a given gate voltage, is shown by
colored unfilled circles and matches exactly with the density obtained
from the oscillation frequency BF (solid black line in Fig. 5B).

This unprecedented concordance, expected directly from Eq. 1,
has a far-reaching consequence—it is assumed that quantum oscilla-
tions allow one to isolate a Fermi surface in a multiband system. So,
using frequency to isolate the motion of electrons on Fermi surfaces
is the de factomethod formapping the Fermi surface. Our analysis shows
that for a certain band structure, this simple picture gets modified—in
our case, the SdH frequency of the BLG-like band not only depends on
the BLG-like band Fermi surface area but also on the MLG-like band
Fermi surface area. This, together with the unusual phase shift, un-
equivocally displays the strong effect of the filling-enforced constraint
present in a multiband system.
DISCUSSION
The unusual (nontrivial) zeroth LL filling–enforced phase shifts that
we find in the BLG-like bands can be attributed to the Berry’s phase of
the MLG-like Dirac band, since the existence of the half-filled zeroth
LL in a Dirac band is a direct consequence of its nontrivial Berry’s
phase. We extracted the phase shift (of the BLG-like quantum oscil-
lations) over a fine grid as gate voltage is tuned through the bandgap
(see Fig. 5C). This displays the smooth evolution of phase shift from
p → 0 → −p that closely tracks the smooth evolution of the Berry’s
phase seen in Fig. 1B expected for the gapped MLG-like band in an
inversion symmetry broken ABA-trilayer graphene. This method of
phase detection of a nontrivial band using quantum oscillations from
a coexisting band with more oscillations is novel; it can provide un-
expected new facility to probe nontrivial quantum geometry. The ex-
istence of this filling-enforced phase is generically applicable to any
multiband system—the unique band structure of the ABA-trilayer
graphene, the gate tunability, and the high sample quality just enable
this vivid visualization. While our study shows that additional care
should be taken to extract the Berry’s phase and the Fermi surface area
in a multiband system, it could shed light also on other topological
materials like Weyl semimetals (42) that host multiple bands.
MATERIALS AND METHODS
Device fabrication
We used the polypropylene carbonate polymer–based dry method
to make the hBN–trilayer graphene–hBN stack (43). Electron beam
(e-beam) lithographywas used to design the electrodes. Argon-oxygen
(1:1 ratio) plasma etching was used to define the one-dimensional
electrical contacts followed by metal deposition (3-nm chromium,
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15-nm palladium, and 30-nm gold) (44). To design a top gate, we
transferred one more layer of hBN as the gate insulator. The final step
of the e-beam lithography was performed to design themetal top gate.

Numerical simulations
Following the previous theoretical study (32), we numerically cal-
culated the LL energy diagram. We considered the full-tight binding
Hamiltonian of the ABA-trilayer graphene (32) with all the hopping
parameters. Below are the band parameters we have used for all cal-
culations: g0 = 3.1 eV, g1 = 390meV, g2 =−20meV, g3 = 315meV, g4 =
120 meV, g5 = 18 meV, d = 20 meV, and D2 = 4.3 meV, which were
calculated by matching the experimental LL crossing points with the-
ory. The details of the band parameters’ determination and the details
of the numerical calculation are described in our earlier study (39).
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