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ABSTRACT: Inorganic arsenic (iAs) is an environmental toxi-
cant currently poisoning millions of people worldwide, and
chronically exposed individuals are susceptible to arsenicosis
or arsenic poisoning. Using a state-of-the-art technique to map
the methylomes of our study subjects, we identified a large
interactome of hypermethylated genes that are enriched for their
involvement in arsenic-associated diseases, such as cancer, heart
disease, and diabetes. Notably, we have uncovered an arsenic-
induced tumor suppressorome, a complex of 17 tumor suppres-
sors known to be silenced in human cancers. This finding represents a pivotal clue in unraveling a possible epigenetic mode of
arsenic-induced disease.

Inorganic arsenic (iAs) is an environmental toxicant currently
poisoning tens of millions of people worldwide. Individuals

chronically exposed to iAs are susceptible to arsenicosis or
chronic arsenic poisoning. Heavily suffering areas such as West
Bengal and Bangladesh saw a rise in incidents of arsenicosis when
government officials and international aid agencies, in the hopes
of mitigating waterborne diseases, introduced tube wells fed from
arsenic-contaminated aquifers.1 Other regions, such as Mexico,
are affected by both naturally occurring arsenic as well as anthro-
pogenic sources such as smelters and ore mining operations.
Chronic exposure to iAs is associated with the development of
various diseases including heart disease, diabetes, and cancer, and
exposed individuals often present with hallmark skin lesions.2

Premalignant skin lesions may indicate increased risk for arsenic-
related cancer.3 While the precise mode of action in arsenic-
induced disease is unknown, one of the proposed mechanisms is
altered gene regulation via epigenetic modes of action such as
DNA methylation.4 Supporting this is the finding that early life
exposure can result in long-term health consequences,5,6 suggest-
ing that there are heritable changes to the genome.

Previous studies highlight the association of arsenicosis with
altered gene expression patterns in humans displaying the hall-
mark skin lesions.7 Moreover, gene-specific analyses suggest
the role of altered DNA methylation at target sites such as
tumor protein p53 (p53), cyclin-dependent kinase inhibitor 2A
(CDKN2A/p16), and Ras association (RalGDS/AF-6) domain
family member 1 (RASSF1A).8,9 However, it remains to be

shown whether multiple genes and pathways are affected by
epigenetic processes in individuals with signs of arsenicosis.
Therefore, we set out to identify differentially methylated geno-
mic regions associated with arsenicosis in humans fromZimapan,
Hidalgo State, Mexico who were exposed to varying levels of iAs
via their drinking water as assessed by urinary arsenic (Support-
ing Information, Table 1).

To our knowledge, this is the first study to examine genome-
wide site-specific DNA methylation alterations due to arsenic-
induced toxicity in a population with ongoing exposure. Periph-
eral blood lymphocyte DNA of 16 of the individuals, half with
established elevated levels of iAs exposure and showing signs of
arsenicosis (skin lesions), was analyzed using a methylated CpG
island recovery (MIRA)-chip assay. In addition to the difference
in skin lesion status, the two groups showed different levels of iAs
exposure as assessed in urine (p < 0.001). CpG-methylated DNA
was isolated using a methyl binding domain protein complex and
hybridized to Affymetrix Human Promoter arrays, assessing over
4.6 million sites tiled through human promoter regions. Our
analysis enabled a comprehensive examination of DNA methyla-
tion levels within CpG islands for over 14,000 genes.

We employed a comparative analytical approach to identify
differentially methylated CpG islands and found 183 genes with
differential patterns, of which 182 were hypermethylated in
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individuals with signs of arsenicosis (Figure 1). Specifically, the
identified genes showed a statistically significant (false discovery
rate (FDR) q-value <0.05) difference in average DNA methyla-
tion for each CpG island. This assay allowed for interrogation of
one the three genes previously identified as being hypermethy-
lated in individuals with signs of arsenicosis, e.g., p16. While the
fold change of p16 did not meet the statistical threshold for this
study, here we also observed increased promoter methylation in
individuals with signs of arsenicosis (fold change of 1.24).

Using a systems level approach, the 183 genes were analyzed
for known molecular interactions, and a large interactome of
hypermethylated genes was identified (Figure 2A). These are
enriched for their involvement in cancer-associated pathways
mediated by genes such as p53 (Figure 2B). Interestingly, we
found that many of the proteins encoded by genes with differ-
entially methylated CpG islands are known players in arsenic-
associated disease, such as heart disease, diabetes, and cancer
(Supporting Information, Table 5).

Notably, we have also identified an arsenic-methylated tumor
suppressorome (Figure 2C), a pivotal clue in unravelling a
possible epigenetic mode of arsenic-induced disease. The tumor
suppressorome is a complex of 17 known or putative tumor
suppressors silenced in human cancers. It comprises the follow-
ing hypermethylated genes: C11orf70 (chromosome 11 open
reading frame 70), CENPE (centromere protein E, 312 kDa),
EEF1E1 (eukaryotic translation elongation factor 1 epsilon 1,
also known as p18), ENDOG (endonuclease G), FOXF1 (forkhead
box F1),HOXB5 (homeobox B5),HOXB9 (homeobox B9), hsa-
mir-126 (human microRNA 126), MMP15 (matrix metallopep-
tidase 15 (membrane inserted)), MSX1 (msh homeobox 1, also
known as HOX7), POLD4 (polymerase (DNA-directed), delta-4,
also known as p12), PRDM2 (PR domain containing 2, with
ZNF domain, also known as RIZ), RNF20 (ring finger protein
20), SMARCD2 (SWI/SNF related, matrix associated, actin
dependent regulator of chromatin, subfamily d, member 2),
SUFU (suppressor of fused homologue (Drosophila)), TBR1
(T-box, brain, 1), and TSC22D3 (TSC22 domain family,
member 3).

Among the members of the tumor suppressorome, of partic-
ular interest are those with known associations to arsenic-
induced diseases such as cancer of the bladder, kidney, lung, liver,
and prostate, as well as cardiovascular disease and diabetes
mellitus (Figure 2C, Supporting Information, Table 5). Interest-
ingly, the expression levels of specific members of the tumor
suppressorome have previously been shown to be altered via iAs
exposure. For example, iAs exposure in vitro results in the
downregulation of both MSX110 and CENPE.11 In this study,
we find that the CpG islands within the promoter regions of the
identified genes are hypermethylated in individuals with skin
lesions. As mentioned, DNA hypermethylation of the promoter
regions of three genes has been reported in arsenic-induced
disease.8,9 Notably, the results from our study vastly increase this
list of gene targets. Examination of these gene targets would be
the next step in understanding how epigenetic changes regulate
gene expression and, subsequently, cause dysregulation leading
to disease.

In this study we have analyzed epigenetic changes in the
peripheral blood lymphocyte DNA from iAs exposed and
diseased individuals and do not directlymeasure alterations in target
organs. Recent studies support the utilization of lymphocyte

Figure 1. Arsenicosis-associated patterns of DNA methylation. The
heat map illustrates the average DNA methylation levels in promoter
regions of 183 genes. Data are z-score normalized for each gene. Red
represents a relative increase in CpG island methylation level, and blue
represents a relative decrease in methylation level.

Figure 2. Epigenetically modified iAs-induced networks. (A) Large interacting network of hypermethylated genes. (B) Tumor protein p53 (tp53)-
associated network. (C) The iAs-induced tumor suppressorome. P-values are shown in the top right corners of each network. Networks are displayed
with symbols representing products of hypermethylated genes (red symbols) or the proteins associated with these genes (clear symbols).
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DNA to detect genomic and epigenetic biomarkers of organ-
specific disease.12,13 In future research, it will be possible to
compare the epigenetic alterations of the tumor suppressorome
from tissue samples of arsenic-exposed individuals.

In conclusion, these results demonstrate that a large number
of genes are epigenetically modified in the lymphocyte DNA of
individuals exposed to iAs with related arsenicosis. It is likely that
the pathways we have identified here are influenced at the
transcriptional level resulting in the repression of their activity
in exposed individuals. Our findings demonstrate the significant
effects of iAs on the epigenome. The identified methylation sites
and differential DNA methylation patterns may serve as bio-
markers of adverse health effects associated with iAs exposure.
Through the identification of differential patterns of methylation,
we hope to detail arsenic effects in humans in order to under-
stand arsenic-induced disease and to identify potential methods
for disease prevention.
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