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The contribution of immune cells in the initiation and mainte-
nance of hypertension is undeniable. Several studies have estab-
lished the association between hypertension, inflammation, and 
immune cells from the innate and adaptive immune systems. Here, 
we provide an update to our 2017 American Journal of Hypertension 
review on the overview of the cellular immune responses involved 
in hypertension. Further, we discuss the activation of immune cells 
and their contribution to the pathogenesis of hypertension in dif-
ferent in vivo models. We also highlight existing gaps in the field of 
hypertension that need attention. The main goal of this review is 
to provide a knowledge base for translational research to develop 
therapeutic strategies that can improve cardiovascular health in 
humans.
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The immune system plays a fundamental role in the intricacies 
of the human body with varying responses dependent on 
daily attributions. New immunological breakthroughs have 
demonstrated an indisputable and increasingly prevalent 
role of immune cells in the pathogenesis of hypertension. 
Extensive studies have demonstrated a strong relationship 
between hypertension, immune cells, and inflammation. 
Imbalance between different pro-inflammatory and anti-in-
flammatory immune cells determines the severity of inflam-
mation. This updated review presents potential mechanisms 
of immune cell-mediated pathology of hypertension using 
various in vivo models.

IMMUNE SYSTEM

The immune system encompasses entire organ systems 
and provides protection from pathogens and foreign bodies.1 
These defense mechanisms are arbitrated by successive and 

organized responses known as the innate and adaptive im-
mune responses. The innate immune response is present at 
birth and acts as the first line of defense by rapidly engaging 
in protective measures against pathogens. The adaptive im-
mune response acts as a delayed secondary antigen-specific 
response. It is regulated by innate immune cell crosstalk 
with the ability to retain memory of antigens, correlating to 
a rapid response during future encounters.2 The intricacies 
of immunological mechanistic links in diseases such as hy-
pertension remain relatively obscure.

INNATE IMMUNITY

The innate immune response becomes activated via in-
fection from microbial invasion or tissue injury.3 Defenses 
of the innate immune system include anatomic and phys-
iologic barriers, endocytosis, phagocytosis, inflammation, 
and the complement system.4 Antigen presenting cells 
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(APCs) and natural killer (NK) cells play crucial roles in 
the innate immune response. Innate immune cells express 
pathogen recognition receptors (PRRs), such as Toll-like 
receptors (TLRs), that allow the cell to activate immunolog-
ical responses in response to pathogen-associated molecular 
patterns (PAMPs) or damage-associated molecular patterns 
(DAMPs).5

APCs, including monocytes, macrophages, and dendritic 
cells (DCs), digest pathogenic antigens via phagocytosis. 
These cells identify digestible apoptotic cells or microbial 
pathogens via opsonic or nonopsonic receptors on the cell’s 
plasma membrane.6 Presentation of processed antigens on 
the surface of APCs, in conjunction with a major histocom-
patibility complex (MHC) molecule, to cells of the adap-
tive immune system elicits an adaptive immune response. 
Monocytes arise from bone marrow and circulate through 
the blood and differentiate into macrophages after entering the 
tissue. Macrophages are able to live for long periods in the tissue, 
and their main function is to ingest and destroy microbes while 
removing damaged tissues.1 Macrophages are categorized as 
classically activated M1 pro-inflammatory or alternatively 
activated M2 anti-inflammatory cells. DCs are tissue resident 
sentinel cells that bridge the innate and adaptive immune re-
sponse by activating T lymphocytes. DCs present antigen 
to T cells via PAMPs or express membrane costimulatory 
molecules that promote T cell responses or differentiation 
into effector cells.1

NK cells develop mainly in the bone marrow; however, 
recent evidence has provided support of maturation in sec-
ondary lymphoid tissues.7 They recognize self from non-self 
as well as mediate antitumor and antiviral responses due to 
healthy cells expressing MHC Class  I  molecules whereas 
infected/damaged cells lose MHC Class I expression.8 They 
directly eliminate targets via NK cell-mediated cytotoxicity 
or indirectly through pro-inflammatory cytokines.8

ADAPTIVE IMMUNITY

Adaptive immunity is facilitated by a T cell-mediated 
cellular response and a B cell-mediated humoral response, 
aided by innate immune cell presentation of antigens.9 
The adaptive immune response primarily functions to dis-
tinguish non-self antigens from self-antigens, produce 
responses based upon memory established via previous an-
tigen interactions, and respond with high specificity.4,9 The 
adaptive response is the basis for immunization against 
diseases by eliciting quick and effective memory responses.

T cells are derived from hematopoietic stem cells and mi-
grate to the thymus to mature, and subsequently circulate 
among lymphoid organs.4 T cells express T cell receptors 
(TCRs) on their cell membranes to bind antigens and are 
activated via APCs. The presentation of antigens by MHC 
molecules allows for differentiation of T cells into cytotoxic 
T cells, helper T cells (Th), memory T cells, or regulatory 
T cells (Tregs). CD8+ cytotoxic T cells are activated via 
interactions of their TCRs with MHC Class I molecules and 
destroy tumor cells and virus-infected cells via phagocytosis; 
a few retained cells are kept to achieve a memory response.4 
CD4+ Th cells coordinate the immune response through 

activation of other immune cells such as macrophages, B 
cells, and CD8+ T cells. Th cells are activated via TCR MHC 
Class II recognition and differentiate into several subtypes. 
Th1-derived cytokines, like interferon (IFN)-γ, activate 
macrophages and increase their bactericidal components, 
increase immunity, and contribute to B cell differentiation 
to aid in phagocytosis via the production of opsonizing 
antibodies.4 Th17 cells produce IL-17 and are associated 
with pro-inflammatory responses in chronic infections and 
diseases.4 Th22 cells play a role in inflammation and auto-
immune diseases, secrete the cytokines IL-22, IL-13, TNF-
α, and express chemokine receptors CCR4, CCR6, and 
CCR10.10 Treg cells limit and suppress immune responses 
and are of 2 types: natural (nTregs) and induced (iTregs) 
regulatory cells.4 nTregs develop in the thymus, whereas 
iTregs originate from peripheral naive conventional T cells.11 
Newly discovered choline acetyltransferase-expressing T 
(TChAT) and γδ T cells have been implicated in blood pres-
sure regulation.12,13

B cells play an active role in the antibody-mediated im-
mune response and are generated from hematopoietic stem 
cells in the bone marrow. They can serve as APCs and ex-
press TLRs to monitor for DAMPs and PAMPs. After matu-
ration in the bone marrow, B cells leave with unique antigen 
binding receptors on their cell membranes. B cells recognize 
antigens directly via antibody expression on the cell’s surface 
and get activated via CD40 interactions after they encounter 
antigens.4 Then they proliferate and differentiate into 
antibody-secreting plasma cells or memory B cells.4 Plasma 
cells are short lived and undergo apoptosis when the threat 
that stimulated them is gone, ensuring a controlled early hu-
moral response.4 They secrete 5 major antibodies into cir-
culation (IgA, IgD, IgE, IgG, and IgM) to aid in protection.4 
Memory B cells are able to survive past infection, aiding in 
re-exposure via rapid production of antibodies.4

IMMUNE SYSTMEM ACTIVATION IN HYPERTENSION

The immune system is activated by exogenous or endoge-
nous stimuli and the degree to which the system is activated 
is highly dependent on the individual. Upon activation, im-
mune cells release cytokines and other pro-inflammatory 
factors, inducing inflammation in the interstitium and 
blood vessels. Given the chronic inflammatory nature of hy-
pertension, this inflammation fails to rescue blood pressure 
and instead leads to endothelial dysfunction, impaired renal 
sodium handling, arterial remodeling and stiffening, and 
end-organ damage. Inflammation and immune responses 
are critical to the initiation, progression, and maintenance 
of many types of hypertension, and most immune cell types 
play some role in the disease process (Figures 1 and 2).14–18

APCs use PRRs to detect foreign antigens and apop-
totic signals. Upon exposure to DAMPs and PAMPs, PRRs 
are activated and begin to recruit leukocytes to their lo-
cation. TLRs are the most well known of the PRRs and 
are expressed on most types of APCs. TLRs play a major 
role in inducing and sustaining inflammation in hyperten-
sive conditions by initiating pro-inflammatory signaling 
pathways.19–21 In hypertension, TLRs are activated via 
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nuclear proteins, cytosolic proteins, and neoantigens.5 
Different subtypes of TLRs participate in different signaling 
pathways and produce unique downstream effects. Further 
investigation into the roles of TLRs in hypertension is un-
derway. Recently, Ishikawa et  al. demonstrated that in-
hibition of TLR9 decreased blood pressure and lessened 
side effects of hypertension in the vasculature and lungs 
of rats.19 Additionally, Pushpakumar et  al. reported that 
TLR4-deficient mice experienced a blunted blood pressure 
response to angiotensin II (AngII) infusion and protec-
tion from kidney damage.22 These studies, among others, 
have identified TLRs as a potential target for hypertensive 
therapies.

Presentation of antigens and neoantigens by APCs is 
required for activation of T and B cells and contributes 
to the pathogenesis of hypertension (Figures 1 and 
2).17,23–25 Recently, it has been reported that MHC 
Class II-expressing monocytes present antigens to effector 
CD4+ T cells and induce inflammation in glomeruli.26 
Hypertensive stimuli induce differentiation of naive T 
cells into cytotoxic, helper, regulatory, and memory T cell 
subsets. Due to their many phenotypes, T cells can play 
different roles in the pathogenesis of hypertension, in-
cluding roles that are pro-inflammatory and anti-inflam-
matory. B cells tend to play a pro-inflammatory role, as 
their activation and IgG production is necessary for the 
development of hypertension.25

The primary mechanism that drives immune cell ac-
tivation under hypertensive conditions remains unclear, 
but several have been implicated in this process. Increases 
in sympathetic outflow, renal perfusion pressure, re-
active oxygen species, salt levels, and splenic activity 
have been observed to induce immune cell activation in 

hypertension.27–32 Immunomodulation is a promising op-
tion to rescue blood pressure, resolve inflammation, and 
improve patient outcomes; however, due to the wide va-
riety of factors that influence blood pressure in hyperten-
sion, potential therapeutic targets are challenging due to 
their immunosuppressive effects. We pursued an alterna-
tive strategy in which we aided in immune cell exfiltra-
tion of the kidneys through augmenting lymphatics. This 
was able to decrease renal pro-inflammatory immune 
cells and blood pressure in mice with various forms of 
hypertension.33,34

Pharmacological or genetic manipulation of im-
mune cells such as monocytes, pro-inflammatory T cells 
(CD8+, CD4+ Th17, Th22, and γδ, among others), and 
plasma cells have been shown to prevent and/or im-
prove hypertension, while depleting immune cells such 
as invariant natural killer T (NKT) cells, Tregs, TChATs, 
and myeloid-derived suppressor cells exacerbates the 
condition.24,35–43 A  recent study reported that depleting 
plasma cells in hypertensive mice decreased circulating 
autoantibodies, prevented IgG deposition, prevented 
renal damage and pro-inflammatory immune cell infil-
tration, and decreased blood pressure.39 Another study 
highlighted the protective role of CD1d-dependent NKT 
cells in hypertension and cardiac remodeling.40 The 
number of different immune cells playing instrumental, 
yet varied, roles in hypertension makes finding an ideal 
target for immunotherapy challenging. Additionally, cer-
tain types of immune cells cannot be modified without 
risking system-wide consequences. Continued investiga-
tion of immune cell roles is needed to determine appro-
priate therapeutic options for hypertensive patients while 
maintaining a strong immune system.

Figure 1. Summary of immune cell involvement in hypertension.
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SPONTANEOUSLY HYPERTENSIVE RATS

The spontaneously hypertensive rat (SHR) is a well-es-
tablished genetic model of hypertension that develops hy-
pertension at a young age and exhibits pathological changes 
including impairment of renal function and a dysregulated 
immune system. SHR showed a drastic increase in splenic 
pro-inflammatory CD161+ (a C-type lectin-like receptor 
that serves as a marker for NK cells and type 17 pheno-
type across T cell populations) immune cells at birth that 
increased with age, along with infiltration of these cells in 
the kidneys and aortas.44 In neonatal spleen, CD4+CD161+ 
and CD8+CD161+ cells were reported to be elevated and 
attributed to elevated expression of master transcription 
factor RORγt transcription that induces the production of 
the pro-inflammatory cytokine IL-17F contributing to salt-
induced hypertension.44 Interestingly, chloroquine reduced 
blood pressure in young SHR by impairing TLR9 signaling, 
reducing circulating T cells, and recruiting CD45+ immune 
cells to the vasculature.45 Recently, it has been reported that 

increased expression of renal TLR4 in male SHR, in com-
parison to female SHR, is not implicated in the relative in-
crease in the blood pressure and pro-inflammatory renal T 
cell profile in male rats.46,47 In addition, splenectomy in SHR 
demonstrated that the higher abundance of renal Tregs in 
females was due to infiltration into the kidneys, rather than 
increased production of Tregs.48

The association of the gut microbiome and hypertension 
has been studied extensively in the past decade. In SHRs, 
increased wall permeability, altered expression of tight 
junction proteins, and microbial dysbiosis was reported 
in the gut, along with increased expression of Cd68, Cd3, 
Il-1β, and Tlr4 in the small intestine and proximal colon, 
further supporting the role of gut health in the pathogen-
esis of hypertension.49 Altered composition of gut micro-
biota of SHR in the early neonatal period was restored by 
cross-fostering SHR rats by normal WKY mothers. Cross-
fostering improved gut microbiota dysbiosis in SHR and 
decreased pro-inflammatory CD161+ cells in the spleen 
and aorta, thereby lowering blood pressure at adulthood.50 

Figure 2. Role of immune cells in the pathogenesis of hypertension. Hypertension-related DAMPs and PAMPs activate TLRs and NLRP3 inflammasomes 
in M1 macrophages and DCs contributing to inflammation. Neoantigens are processed and presented by DCs to B and T cells that lead to differentiation 
of plasma cells and effector T cell subsets (CD8+ T cells, Th1, Th17, Th22 cells, and γδ T cells). MDSCs, M2 macrophages, Tregs, TChAT, and iNKT cells prevent 
the formation of pro-inflammatory cytokines, attenuate inflammation, and attenuate hypertension. Abbreviations: DAMPs, danger-associated molec-
ular patterns; DC, dendritic cells; iNKT, invariant natural killer T cells; M1, pro-inflammatory macrophages; M2, anti-inflammatory macrophages; MDSCs, 
myeloid-derived suppressor cells; NLRP3, NOD-, LRR-, and pyrin domain-containing 3 inflammasomes; PAMPs, pathogen-associated molecular patterns; 
TChAT, choline acetyltransferase-expressing CD4+ T cells; Th, T helper cells; Treg, regulatory T cells.
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Another study showed that fecal microbiota transplantation 
from SHR to WKY rats induces gut microbiota dysbiosis 
(characterized by an increased Turicibacter and decreased 
S24-7_g), upregulation of DC maturation and activation 
markers (CD80 and CD86), imbalance in Th17/Tregs ratio 
in mesenteric lymph nodes, aortic T cell infiltration, and hy-
pertension.51 Supplementation of probiotics and short chain 
fatty acids restored Th17/Treg imbalance in mesenteric 
lymph nodes and decreased endotoxemia and blood pres-
sure in SHR. These changes resulted from increased Treg in-
filtration and decreased activation of the lipopolysaccharide 
(LPS)/TLR4 pathway in the vasculature.52 Taken together, 
it is evident that gut microbiota dysbiosis is associated with 
immune cell changes and hypertension.

SALT-INDUCED HYPERTENSION

The role of the innate and adaptive immune systems in 
salt-sensitive hypertension (SSHTN) has been well estab-
lished by utilizing low renin, high salt animal models, in-
cluding uni-nephrectomized deoxycorticosterone acetate 
(DOCA)/salt-induced hypertension, Dahl salt-sensitive 
rats (DSS), and l-arginine methyl ester hydrochloride 
(l-NAME)/high salt-induced hypertension.

High salt triggers activation of the innate immune complex 
NLRP3 inflammasome, which releases pro-inflammatory 
cytokines IL-1β and IL-18.53,54 DOCA/salt mice with a 
knockout of a critical inflammasome adaptor protein showed 
decreased expression of renal IL-1β-induced cytokines Il6 
and Il17a.55 NLRP3 inhibition significantly reduced renal 
expression of pro-Il1β, pro-Il18, Il17a, and Tnfa, as well as 
a decrease in T cells that produce IFN-γ.56 IL-18, produced 
by renal tubular epithelial cells of DOCA/salt-treated mice, 
contributes to increased blood pressure and renal inflamma-
tion by stimulating the production of IFN-γ by T cells.57

APCs demonstrate a pro-inflammatory phenotype in 
SSHTN. DSS rats fed a high salt diet demonstrated a signif-
icant increase in renal M1 macrophages, with upregulation 
of TLR4, CD14, Ly96, and IL-6 receptor, when compared 
with consomic SSBN13 controls.58 Excess salt primes DCs 
for IL-1β to promote pro-inflammatory T cell cytokines after 
co-culture with splenic T cells from l-NAME-treated mice. 
High salt enters DCs through epithelial sodium channel 
(ENaC) and activates NADPH oxidase, which in turn in-
crease isolevuglandin (IsoLG) production. 55,59 DCs then 
produce IL-1β and promote T cell production of IL-17A and 
IFN-γ.59 Serum/glucocorticoid regulated kinase 1 (SGK1) 
mediates assembly of ENaC and formation of IsoLG.60 SGK1 
knockout in CD11+ cells of l-NAME-treated mice was as-
sociated with reduction of renal CD4+ and CD8+ T cells.60

T cell involvement in SSHTN has been further defined. 
SGK1 deficiency in CD4+ T cells reduced vascular CD45+ 
cells and CD3+ T cells in DOCA/salt mice.31 Na+-K+-2Cl− 
cotransporter 1 (NKCC1) is upregulated in Th17 cells and 
may help mediate T cell salt sensing.31 CD8+ T cells infil-
trate distal convoluted tubules in DOCA/salt mice, leading 
to upregulation of sodium chloride cotransporter and 
increased sodium retention.61 An increase in renal Tregs 
in female DOCA/salt rats that was not seen in male rats 

highlight sex differences in T cell-mediated protection from 
DOCA/salt-mediated hypertension.62

Excess sodium alters gut dysbiosis and production 
of metabolites like short chain fatty acids, which play a 
role in inflammation. A  high salt environment reduces 
Lactobacillus spp., which synthesize indole metabolites 
that have been shown to reduce blood pressure and inhibit 
Th17 polarization.63 Supplementation of L.  murinus sig-
nificantly reduced splenic Th17 cells in l-NAME-treated 
mice.63 Supplementation of sodium butyrate reduced blood 
pressure and renal expression of Tnfa and Il6 in DOCA/salt 
mice.64 Other dietary interventions such as time-restricted 
eating has been reported to reduce inflammation and blood 
pressure in people with hypertension.65 Time-restricted 
feeding significantly decreased blood pressure in mice with 
nitro-l-arginine methyl ester hydrochloride-induced hy-
pertension.66 There was a significant decrease in activated 
macrophages and DCs in the kidneys of these mice.66 As the 
incidence of SSHTN continues to grow, the role of excess so-
dium in inflammation should continue to be investigated. 
Further studies focusing on altering gut flora and supple-
mentation of metabolites would be promising for developing 
therapeutics for the treatment of hypertension.

ANGIOTENSIN II-INDUCED HYPERTENSION

Angiotensin II-induced hypertension (A2HTN) models 
continue to be utilized to further investigate the role of in-
nate and adaptive immunity in hypertension. Recently, it was 
demonstrated that TLR3 and its intracellular adaptor TRIF 
are the primary TLR signaling pathway needed for A2HTN 
in the heart and kidneys.67 Neutrophil extracellular traps 
(NETs) are prothrombotic meshes of protein and chromatin 
that are involved in inflammation and adaptive immunity 
and have also been implicated in the early stages of hyper-
tension, increasing in an AngII-dependent fashion.68 While 
the mechanism behind still remains largely unknown, de-
crease in DNase I  resulting in impaired NET clearance or 
the presence of hypomethylated CpG regions in NET DNA 
activating Toll-like receptor 9 seems to be the most likely pos-
sible reasons.69 Similar to NETs, circulating Axl+ Siglec-6+ 
DCs are increased in hypertensive humans, and mice with 
A2HTN had an increase in Axl-activating ligands, while an 
Axl inhibitor blunted the rise in the blood pressure. Further, 
Axl inhibition or deletion reduced infiltrating DCs and T 
cells in the kidney and aorta.70 γδ T cells also increased in the 
spleen in A2HTN and mice deficient in TCRδ demonstrated 
minimal blood pressure response to AngII as well as reduced 
splenic T cell activation, with anti-TCRγδ treatment 
attenuating the increase in blood pressure.71 Microglial cells 
similarly increase in A2HTN alongside changes in gut micro-
biota, with both reverting to normal with decreases in mean 
arterial pressure when treated with a tetracycline derivative.72 
Macrophage-produced 12/15-lipoxygenase has been shown 
to potentiate the vasoconstrictive effect of AngII, contributing 
to the development of A2HTN.73 AngII infusion can lead to 
increased levels of plasma sphingosine-1-phosphate (S1P), 
an immune cell trafficking signal, and coupling a S1P re-
ceptor agonist with AngII infusion results in a lessened blood 
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pressure increase.74 T cell subsets have been evaluated inten-
sively, demonstrating the effects of interleukins and extra-
cellular vesicles produced by T cells on A2HTN. Mice with 
deletions of IL-6 or Rag-1 showed resistance to thrombosis 
caused by A2HTN while extracellular vesicles derived from 
T cells increased in the kidney and in circulation as a result 
of A2HTN.75,76 The activation of C3a/C3aR and C5a/C5aR 
signaling reduces the expression of Foxp3 in the Tregs and 
limits the immunosuppressive function.77 Genetic deletion or 
pharmacological blockade of C3aR and C5aR have shown to 
promote the differentiation of FOXP3+ Tregs.78 In A2HTN, 
the expression of C3aR and C5aR was increased in FOXP3+ 
Tregs, while mice deficient in both receptors experienced a 
blunted blood pressure in response to AngII with less renal 
damage and remodeling.41 Th22 cells producing IL-22 were 
elevated in hypertensive patients and AngII-infused mice, and 
both anti-IL-22 treatment and STAT3 inhibition mitigated 
the increased blood pressure.37 Macrophage and T cell in-
filtration into kidney has been implicated in the amplifica-
tion of A2HTN and end-organ damage in Dahl salt-sensitive 
rats.79 In addition, menopause, Treg depletion, or transfer of 
mixed splenocytes from hypertensive mice are each sufficient 
to cause premenopausal normotensive females to become hy-
pertensive.80,81 Notably, the mixed splenocyte transfer raises 
questions regarding which cell types (or combinations of 
cell types) are required for the premenopausal protection to 
be overcome, as T cell transfer alone is insufficient without 
the addition of B cells, macrophages, and DCs. Overall, the 
A2HTN animal model continues to be a valuable tool in de-
termining the role of immunity in hypertension.

HYPERTENSIVE DISORDERS OF PREGNANCY

Hypertensive disorders of pregnancy account for more 
than 10% of pregnancy complications, leading to maternal 
and fetal morbidity and mortality.82 These disorders are 
broadly categorized into chronic hypertension, preeclampsia 
(PE)–eclampsia, chronic hypertension with superimposed 
PE, and gestational hypertension.83 Among these, PE is the 
most prevalent multiorgan disease characterized by new-
onset hypertension and proteinuria after 20 weeks gestation 
in combination with hemolysis, elevated liver enzymes, low 
platelet count (HELLP) syndrome, pulmonary edema, and 
kidney and liver dysfunction.84 Improper trophoblast inva-
sion and placentation along with defective remodeling of 
uterine spiral arteries incites placental ischemia, and ab-
normal maternal immune responses all lead to imbalanced 
immune cells contributing to the excessive inflammatory 
state contributing to the pathogenesis of PE and other hy-
pertensive disorders of pregnancy.85,86

During early pregnancy, NK cells are the most abundant 
innate immune cells in the decidua and crucial for spiral 
artery remodeling.87–89 Decidual NK (dNK) cells were ele-
vated at maternal–fetal interface in PE when compared with 
normal pregnancies.90,91 Elevated NK cells and cytolytic acti-
vation were observed in peripheral blood from women with 
PE as well as Reduced Uterine Perfusion Pressure (RUPP) 
rat model.92–94 Anti-inflammatory compounds like IL-4 and 
17-hydroxyprogesterone caproate have been reported to re-
duce total and cytolytic placental NK cells while improving 

blood pressure in RUPP rats, suggesting NK cell modulation 
for the treatment of PE.95,96

Macrophages, the second largest immune cell popula-
tion in the decidua, exhibit an anti-inflammatory M2 phe-
notype.97 An imbalance in M1/M2 macrophages has been 
documented at the maternal–fetal interface in PE, leading 
to a local pro-inflammatory state.98–102 Vascular endothelial 
growth factor (VEGF) treatment enhanced macrophage mi-
gration and shifted polarization toward the M2 phenotype in 
vitro.99 In LPS-induced PE-like rat model, the expression of T 
cell immunoglobulin mucin 3 (Tim-3), a checkpoint receptor 
regulating immune tolerance, and its ligand Galectin-9, were 
reduced at the maternal–fetal interface. Administration of 
Galectin-9 and TIM-3 ligand increased M2 macrophages and 
reversed the impairments at the maternal–fetal interface.101 
Notably, combined activation of PD-1/Tim-3 pathway with 
PD-L1/Galectin-9 proteins inhibited M1 macrophage po-
larization and ameliorated PE-like symptoms in LPS-treated 
rats.102 The complement system has also been implicated 
in the pathogenesis of PE, where elevated levels of C5a in 
the placenta were associated with increased infiltration of 
CD11b+ macrophages and trophoblast dysfunction in PE.103 
Targeting these inflammatory macrophages may provide 
new therapeutic strategies to improve pregnancy outcomes 
in women with hypertensive disorders.

DCs play a crucial role in maternal–fetal tolerance during 
pregnancy.104 Changes in DC populations and proportions 
in the circulation and at the tissue level have been implicated 
in disrupted maternal–fetal tolerance.105–107 Notably, the 
decidua of women with PE had increased expression of 
DC-specific lnc-DC (long noncoding RNA that regulates DC 
maturation by phosphorylating STAT3)108; and p-STAT3, 
along with increased number of mature DCs suggesting the 
role of lnc-DC in the induction of DC maturation.109 Mature 
DCs present antigens to T cells and stimulate proliferation 
of Th1/Th17 cells, resulting in pro-inflammatory responses 
consequently disrupting maternal–fetal tolerance.109,110

Tregs are the most critical adaptive immune cell type 
that help create an immunosuppressive environment for 
the maintenance of maternal–fetal tolerance during preg-
nancy.111 Reduction in the percentage of Tregs and the ex-
pression of Treg-related transcription factors like FOXP3 
and GATA3 along with an increase in the percentage of 
Th17 cells in the circulation were reported in women with 
PE.106,107,112–119 Moreover, the Treg/Th17 imbalance observed 
at the maternal–fetal interface in women with PE has been 
attributed to decreased expression of programmed cell 
death-1 (PD-1) and PD-ligand 1 (PD-L1), altered proportions 
of DC subsets in the circulation and impaired lymphangio
genesis.106,107,118,120 In PE, there is a significant decrease in 
clonally expanded populations of effector Tregs in the de-
cidua during the third trimester.121 In women with PE, there 
was increased expression of the transcription factors T-bet 
and retinoic acid receptor-related orphan receptor (ROR)γt 
(which regulates differentiation of Th cells into Th1 or Th17) 
in peripheral blood mononuclear cells.122 siRNA-mediated 
knockdown of T-bet and RORγt in activated T cells in vitro 
ameliorated T cell imbalance by increasing FOXP3 expres-
sion.122 The role of activated T cells in the pathogenesis of PE 
was supported by increased expression of activation markers 
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like HLA-DR and CD122 and increased placental γδ T 
cells.123,124 Activated proportions of CD4+ memory, CD4+ 
effector memory (EM), and CD4+ central memory (CM) 
cells were reduced in the peripheral circulation of women 
with PE.125 Similar to changes observed in circulating T cell 
populations, increased activated CD4+ and CD8+ memory 
cells were reported at the fetal–maternal interface in women 
with early-onset PE and decreased CD4+ CM and CD8+ 
memory cell populations in the decidua from both early- 
and late-onset PE groups.126 Interestingly, there was an in-
crease in decidual CD8+ EM cells lacking PD-1 expression 
in women with PE and miscarriages.127 The contribution 
of B cells in the pathogenesis of PE came to light with the 
finding of auto-antibodies against AngII AT1R in pree-
clamptic women.128 However, a study in the RUPP rat model 
reported no change in B1 and B2 cell populations in periph-
eral blood, spleen, and placenta, and B cell depletion with 
anti-CD20 antibody was found to be ineffective against PE 
symptoms.129 Hence, extensive research is needed to provide 
deeper insights into the contributions of different immune 
cell subsets to local and systemic inflammation in women 
with pregnancy complications due to hypertension.

CONCLUSION AND FUTURE DIRECTIONS

Certain factors relating to induction and progression of hy-
pertension were not presented extensively in this review such as 
the role of the complement system, oxidative stress, cytokines, 
chemokines, and MHC in immunological contributions to di-
sease progression. The influence of the immune system and its 
role in hypertension can be further elucidated due to complex 
system interactions. A key area of developmental focus relates 
to the interface between the gut flora and metabolite alterations 
in hypertension. Current treatments for hypertension include 
lifestyle modifications or pharmacotherapies, often used in 
combination to reduce hypertensive effects; however, most 
therapeutics focus on inhibition of the renin–angiotensin–al-
dosterone system and in turn fail to prevent end-organ damage 
showcasing the need for further development in the treatment 
field of hypertension.
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