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Abstract: A weak aspect of the electro-Fenton (EF) oxidation of contaminants is the dependence
of the Fenton reaction on acidic pH values. Therefore, the rationale of this work was to develop a
novel catalyst capable of promoting the EF oxidation process at near-neutral and basic pH values.
In this framework, rhombohedral FeCO3 was synthesized hydrothermally and used as a catalyst in
the EF oxidation of p-benzoquinone (BQ). The catalyst was characterized using various surface and
spectroscopic methods. Moreover, the effects of applied current (100–500 mA), time (1–9 h), catalyst
dosage (0.25–1.00 g L−1), and initial concentration of BQ (0.50–1.00 mM) on the total organic carbon
removal efficiency were determined. The results indicated that a 400 mA current was sufficient for a
95% total organic carbon removal and that the increase in catalyst dosage had a positive effect on the
mineralization of BQ. It was determined that at pH 3, FeCO3 behaved like a homogeneous catalyst
by releasing Fe3+ ions; whereas, at the pH range of 5–7, it shifted to a homogeneous/heterogeneous
catalyst. At pH 9, it worked solely as a heterogeneous catalyst due to the decrease of Fe ions passing
into the solution. Finally, the spent catalyst did not undergo structural deformations after the EF
treatment at higher pH values and could be regenerated and used several times

Keywords: electro-Fenton; siderite; ferrous carbonate; benzoquinone; wastewater treatment

1. Introduction

p-Benzoquinone (IUPAC name cyclohexa-2,5-diene-1,4-dione, referred to as BQ thereof)
is a naturally occurring, crystalline organic compound with a strong odor. Although BQ is
a natural organic compound, it is also produced synthetically as it has several industrial
applications. BQ is used directly in the dye, textile, pesticide, and drug industries and has
been detected as residue in various industrial effluents [1]. As an example, BQ is one of the
most frequently encountered compounds identified in the wastewater of the production of
polyaniline (PANI) conductive polymer [2], and lignocellulose biorefinery processes [3].
Moreover, BQ is also one of the main intermediate products formed during the oxidation
of various benzene derivatives [4].

Exposure to BQ may result in acute and chronic effects, such as eye irritation, conjunc-
tiva, cornea discoloration, and acute inhalation toxicity [5,6]. Additionally, long exposure
to p-Benzoquinone may cause serious genetic damage in humans, and its toxicity has been
reported as 267 times that of phenol [1]. For these reasons, BQ has been added to the
TRI-Listed Chemicals of the United States Environmental Protection Agency [7]. The LC50
value of BQ has been reported as <0.01 mg L−1 for Escherichia coli [4]. Moreover, according
to the LC50 value of 0.125 mg L−1 for fish (96 h exposure), it is classified as an ecotoxin.

Its high toxicity and environmental recalcitrance render biological treatment processes
inadequate and disrupt the functioning of biological wastewater plants [1]. Therefore,
the efficient elimination of BQ and its derivatives requires the design and use of more
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effective treatment processes. The efficiency of advanced oxidation processes (AOPs)
for wastewater treatment and the strong oxidation potential of the hydroxyl radicals
(E0(•OH/H2O) = 2.8 V/SHE) for persistent contaminants have been well-established. Con-
ventional AOPs are Fenton-based, O3-based, and photocatalyst-based processes. In the
Fenton process, ferrous ions react with H2O2 to produce hydroxyl radicals, as follows [8]:

Fe2+ + H2O2 → Fe3+ + •OH + OH− k = 63 M−1 s−1 (1)

However, as seen in Equations (2) and (3), Fenton reagents can scavenge the generated
hydroxyl radicals. Therefore, determining the optimal conditions is the most critical step [9]

Fe2+ + •OH→ Fe3+ + OH− (2)

H2O2 + •OH→ HO2
• + H2O (3)

Based on the typical Fenton reactions, there are also three distinct types of applications:
Fenton-like, photo-Fenton, and electro-Fenton [10,11]. In the electro-Fenton (EF) process,
H2O2 is continuously electrogenerated due to reducing O2 at the suitable cathode in an
acidic medium, as shown in Equation (4). In addition, the catalytic amount of Fe2+ added
to the solution is oxidized to Fe3+ as a result of the Fenton reaction. However, it is reduced
to Fe2+ at the cathode (Equation (5)) and participates in the Fenton reaction again [12]

O2 +2H+ +2e− → H2O2 (E0 = 0.695 V/SHE) (4)

Fe3+ + e− → Fe2+ (E0 = 0.770 V/SHE) (5)

The optimum working pH value for the electro-Fenton method has been determined
as 2.8. The presence of iron ions in the form of hydroxides above this pH value weakens the
oxidation power of this method and also leads to iron sludge precipitation [8,13]. Recently,
heterogeneous electro-Fenton studies have attracted attention. The use of heterogeneous
iron-containing catalysts, either alone or supported on modified carbon electrodes, has
provided the opportunity to work in broader pH ranges. Some of these catalysts have
been used as both pH regulators and Fe2+ ion sources. For the heterogeneous EF method,
iron oxide [13,14], FeFe/CuFe layered double hydroxides [15,16], zero-valent iron [17,18],
and iron-containing natural structures [19] have been investigated. For example, Fe3O4
containing Fe2+ and Fe3+ in its structure, as a stable heterogeneous catalyst, is effective
and reusable in the EF process. The efficiency of an Fe3O4 heterogeneous catalyst, as
free or loaded on graphene oxide, has been most effective at pH 3.0. However, it also
acted as an effective catalyst at other pH values to degrade organic compounds, such
as amoxicillin [20], aniline [21], chloramphenicol, and metronidazole [22]. In particular,
natural pyrite (FeS2) effectively catalyzed the degradation of a synthetic azo dye [23],
levofloxacin [24], tyrosol [25], and sulfamethazine [26] by adjusting the pH of the solution
to suitable values for the EF process. Heidari et al. (2021) compared the efficiencies of
naturally occurring minerals chromite (FeCr2O4), chalcopyrite (CuFeS2), and ilmenite
(FeTiO3) as catalysts in the oxidation of the antibiotic cefazolin by the EF process, and it
was determined that the chalcopyrite structure was more effective than the others [27]. The
use of pyrite and chalcopyrite acted as buffers and regulated the pH of the medium in the
range of 3–4 depending on the catalyst dosage, according to the Equations (6)–(9) [23,25,26]

2FeS2 + 7O2 + 2H2O→ 2Fe2+ + 4SO4
2− + 4H+ (6)

2FeS2 + 14H2O2 → 2Fe3+ + 14H2O + 4SO4
2− + 2H+ (7)

FeS2 + 14Fe3+ + 8H2O→ 15Fe2+ + 2SO4
2− + 16H+ (8)

CuFeS2 + 16Fe3+ + 8H2O→ Cu2+ + 17Fe2+ + 2SO4
2− + 16H+ (9)
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Moreover, Hajiahmadi et al. (2021) investigated the catalytic ability of five natural
iron minerals, including hematite (Fe2O3), magnetite (Fe3O4), siderite (FeCO3), limonite
(FeOOH·nH2O), and pyrite (FeS2), as natural sources of iron in the heterogeneous electro-
Fenton process for the degradation of gemcitabine [28]. The authors obtained their optimum
results with a pyrite catalyst. Hadjltaief et al. (2018) investigated the degradation of 4-
chlorophenol (4-CP) by the photo-Fenton process using natural hematite and siderite
as heterogeneous catalysts and reported complete mineralization of 20 mg L−1 4-CP at
pH 3 with siderite catalyst after 120 min [29]. Acisli et al. (2017) studied the effects of
different milling times of the siderite mineral on the catalytic degradation of Reactive
Yellow 81 dye by the ultrasound-assisted Fenton process and observed that its efficiency
increased after 6 h of milling due to the reduced particle sizes [30]. At the same time, Yan
et al. (2013) determined that trichloroethylene degradation efficiency was higher due to the
simultaneous activation of hydrogen peroxide and persulfate by siderite compared to that
obtained by hydrogen peroxide activation alone [31]. It has been suggested that the use of
iron-containing minerals as catalysts may add several advantages to the Fenton process.
To name a few, the catalyst can be removed by precipitation and filtration, it is reusable,
the initial pH value of the wastewater can be expanded to a wider range (pH 5–9), and the
process remains largely unaffected by the presence of inorganic carbonate [32]. Ganiyu
et al. (2018) reported the pH values of several real wastewater pH values and stated that,
in most cases, the pH value was neutral or slightly basic [33]. Therefore, provided that
heterogeneous EF applications remove the pH limitation of the typical EF process, the
applicability of this process will be improved without the need for pH adjustment.

It is known that the combination of Fe2+ and carbonate ions performed remarkably well
in activating H2O2 under neutral and alkaline conditions [34,35]. Moreover, FeCO3 complexes
have higher quantum yields and molar absorption coefficients at UV254 [36]. As mentioned
earlier, the efficiency of natural siderite in electro-Fenton and photo-Fenton applications is
promising, even more so following the reduction of the particle size by grinding.

In the laboratory, the synthesis of nano-sized FeCO3 is achieved through a surfactant-
assisted hydrothermal reaction of iron sulfate and urea or iron sulfate and a carbonate
source [37,38]. However, naturally occurring and laboratory-prepared siderite have dif-
ferent morphologies, surface area, crystallinity, and other physicochemical properties [39].
Therefore, it cannot be assumed that the latter will exhibit the same catalytic performance
as the naturally occurring mineral and further research is required.

Given the proven applicability of natural siderite in EF applications, the rationale
of this work was to investigate the potential of laboratory-prepared siderite to act as a
catalyst in the electro-Fenton oxidation of a recalcitrant contaminant at a wide pH range.
Therefore, rhombohedral shape FeCO3 was prepared by a facile hydrothermal method. The
physicochemical and surface properties of the as-synthesized catalyst were investigated
by different techniques such as X-ray diffraction (XRD), N2 adsorption/desorption analy-
sis, Fourier-transform Infrared, and Raman spectroscopy, scanning electron microscopy
combined with energy dispersive X-ray analysis (SEM-EDX). The catalytic efficiency of
FeCO3 in the EF process was examined at the degradation of BQ at a near-neutral pH value.
Furthermore, the mineralization of the BQ solution was monitored at different applied
currents, pH values, times, and FeCO3 dosages. Finally, the pH regulation ability and
reusability of FeCO3 and the amount of Fe ions leaching into the solution during the EF
process were studied.

2. Results and Discussion
2.1. Characterization of FeCO3 Catalyst

The SEM images of FeCO3, synthesized by the hydrothermal method at 140 ◦C,
were depicted in Figure 1a,b. The SEM images showed agglomerates, composed of
rhombohedral-shaped FeCO3 crystals in the size range of 300–500 nm. This observation
comes in agreement with earlier works where laboratory-prepared siderite was applied in
environmental remediation [40,41]. As shown in Figure 1c,d, the rhombohedral shape of
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the crystals was largely maintained after use, although covered with amorphous clusters of
molecules of BQ and degradation products.
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Figure 1. SEM images of as-prepared (a,b) and used (c,d) FeCO3. Operating conditions: pH = 5.6,
400 mA.

EDS analysis results showed that the FeCO3 crystals were composed of Fe, C, and
O atoms in a ratio close to 1:1:3 and did not contain any impurities (Figure 2a). In the
natural siderite structure, Mn, Al, Si, and Mg often occur as impurities [29,30]. The XRD
pattern of FeCO3, which included characteristic diffraction peaks of siderite, is presented
in Figure 2b. The XRD patterns showed that the diffraction peaks at 2θ values of 24.7◦,
32.0◦, 38.2◦, 42.3◦, 46.1◦, 50.7◦, 52.6◦, 61.4◦, 65.3◦, and 69.2◦ corresponded to (012), (104),
(110), (113), (202), (024), (116), (122), (214), and (300) planes of the FeCO3, respectively. The
pattern matches the typical crystal faces of siderite (JCPDS No. 00-029-0696) and recently
reported patterns of laboratory-prepared siderite [42]. The interplanar spacing (d-spacing)
of the FeCO3 structure was determined as 0.2796 nm [43]. The crystals have an average size
of 400 nm while the mean crystallite size calculated using Scherrer’s formula was found to
be about 86.6 nm for the FeCO3. Similarly, Nassar et al. (2016) hydrothermally synthesized
FeCO3 structures using iron sulfate: ascorbic acid: ammonium carbonate (in a ratio of 1:3:6)
at 140 ◦C after 3 h. They achieved FeCO3 structures with an average crystallite size of
80 nm [38]. Furthermore, the XRD spectrum of the FeCO3 catalyst was examined after its
use in the EF process. As shown in Figure 2b, any distinct peaks corresponding to iron
oxides or other impurities have not been observed, and the main diffraction peaks have
remained intact, although of slightly reduced intensity. Combined with the SEM image
observed earlier (Figure 1c,d), it can be supported that the FeCO3 structures remained
largely intact during use.
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electro-Fenton process. Operating conditions: pH = 5.6, 400 mA.

According to the IUPAC classification, the N2 adsorption–desorption isotherm of FeCO3
resembles that of a Type IV isotherm (Figure 3a). This type of isotherm is observed in
mesoporous materials and contains hysteresis (p/p0 = 0.5–1.0), indicating slit-like pores.
The BET and Langmuir surface areas of FeCO3 were calculated as 29.09 and 37.07 m2 g−1,
respectively. The average pore width according to Barrett–Joyner–Halenda (BJH) method and
total pore volume were determined at 8.1 nm and 0.0317 cm3 g−1, respectively. Figure 3b
highlights the BJH cumulative pore volume distribution against pore width for FeCO3.
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The FT-IR spectrum of the FeCO3 catalyst is shown in Figure 4a. The broadband observed
around 3400 cm−1 belongs to the O-H stretching vibrations. The broad and intense band at
1390 cm−1 is attributed to the asymmetric stretching vibrations of the CO3 group. Moreover,
the bending vibrations of carbonate can be seen at 863 cm−1 and 738 cm−1 [30,38,44]. In the
Raman spectrum of the FeCO3 structure, the characteristic symmetrical stretching vibration
(ν1), the out-of-plane band (ν2), and in-plane bending (ν4) peaks of the CO3

2− ion were
observed at 1086 cm−1, 854 cm−1, and 720 cm−1, respectively (Figure 4b). Moreover, the
bands belonging to the translational lattice mode (T), and librational lattice mode (L) were
observed at 181 cm−1 and 284 cm−1, respectively [45,46]. Therefore, all the above analyses
confirm the successful synthesis of pure FeCO3 crystals using the facile hydrothermal method.
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2.2. Oxidation of p-Benzoquinone by the Electro-Fenton Process

The effect of the applied current on the oxidation of p-benzoquinone by the EF process
using the FeCO3 catalyst is presented in Figure 5a. It can be seen that the applied current of
200 mA was inadequate due to insufficient hydroxyl radical production for the mineraliza-
tion of 0.5 mM BQ solution. By raising the applied current to 300 mA, the mineralization
efficiency was increased from 31 to 50% due to the enhanced •OH production. At the
same time, the increase in the current has improved the efficiency of the Fenton reaction
by causing enhancement of the Fe3+/Fe2+ cycle [47,48]. At the 400 and 500 mA applied
currents, the comparable total organic carbon (TOC) reduction values (~90%) might be
reasonably explained by the increasing occurrence of side reactions. These reactions are
anodic oxygen discharge (Equation (10)), cathodic hydrogen evolution (Equation (11)), and
secondary reactions of •OH (Equation (12)) [13]. Therefore, 400 mA can be considered the
optimum applied current under our experimental setup.

2H2O→ 4H+ + O2(g) + 4e− (10)

2H+ + 2e− → H2(g) (11)

2•OH→ O2(g) + 2H+ +2e− (12)
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Figure 5. Effect of (a) current ([BQ]0 = 0.5 mM) and (b) initial concentration of BQ on TOC removal
efficiency at 400 mA. Operating conditions: [FeCO3] = 0.5 g L−1, pH = 5.6, V = 200 mL.

The concentration of BQ in the solution is expected to affect the efficiency of the EF
process, so three different initial concentrations were studied at 400 mA applied current.
Figure 5b showed that increasing the BQ concentration had a negative effect on TOC
reduction. At the BQ concentrations of 0.5, 0.75, and 1.0 mM, mineralization of 62%, 56%,
and 47% was achieved after 300 min, respectively. At the end of the process (550 min), ~90%
of 0.5 mM BQ solution was mineralized. This is probably due to the increased number
of BQ and intermediate molecules that react with the hydroxyl radical, thus reducing the
efficiency of the process [49,50].

The mineralization of 0.5 mM BQ solution at pH 3 in the presence of 0.35 mM
(~19.55 mg L−1) Fe2+ ions by the homogeneous electro-Fenton control experiment is de-
picted in Figure 5b. It can be seen that the use of Fe2+ ions in the homogeneous control
experiment achieved a near-complete mineralization (>97%) after 550 min which is compa-
rable to the 90% mineralization achieved with FeCO3 heterogeneously at the same time.
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From Figure 6a, BQ mineralization was seen depending on the FeCO3 catalyst dosage,
and the increase in the mineralization efficiency due to the rise in the quantity of the
catalyst was quite evident. While the TOC removal efficiency at 360 min was increased
from 54 to 65% by increasing the catalyst dose from 0.25 to 0.50 g L−1, 84% TOC removal
was achieved using 1.00 g L−1 of catalyst. When 1 and 0.75 g L−1 were used as catalyst
doses, 95% mineralization was reached after 500 and 550 min, respectively, while lower
yields were observed at other doses. The increase in the amount of catalyst provided an
increase in the absolute number of active sites, therefore, promoting the production of more
hydroxyl radicals.
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Figure 6. (a) Effect of catalyst amount at 300 mA on TOC removal efficiency and (b) pH change and
Fe ion release during the EF process at 400 mA. Operating conditions: [BQ]0 = 0.5 mM, [FeCO3] =
0.5 g L−1, pH = 5.6, V = 200 mL.

The total concentration of iron ions released into the solution with the change of pH
during the oxidation of BQ with 0.5 g L−1 FeCO3 catalyst is shown in Figure 6b. Until now,
EF experiments were carried out at pH 5.6, which is the natural pH value of the BQ solution,
without adjusting the pH value. The solution pH value decreased to 3 in the first 30 min
and remained practically stable in the range of 3–4 throughout the 300 min of electrolysis.
The solubility of FeCO3 in water is low (pKsp = 10.67). However, in the reaction between
FeCO3 and hydrogen peroxide under neutral conditions (Equation (13)), Fe2+ was oxidized
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to Fe3+, and the medium became acidic. At the same time, Fe(OH)3 and carbonic acid were
formed as a result of the reaction of FeCO3 with oxygen (Equation (14)) [51]

FeCO3 + H2O2 → Fe(OH)3 + CO2+ O2 + H+ (13)

FeCO3 + 0.25O2 + 2.5H2O→ Fe(OH)3 + H2CO3 (14)

As seen from the SEM images of used FeCO3, the rhombohedral structures were
degraded, and Fe3+ ions were released into the solution. Compared to the 0.1–0.5 mM
Fe2+ ions used in the homogeneous electro-Fenton control experiment, the 19.55 mg L−1

(0.35 mM) iron ion concentration that leached into the solution falls within this range. The
efficiency of BQ mineralization carried out at pH 3 using Fe2+ ions at this concentration
has been discussed previously and is given in Figure 5b. As seen in Figure 6b, after 1 h, an
equilibrium was reached in FeCO3 dissolution and the total Fe2+ concentration remained
practically constant. The Fe3+ ions that pass into the solution according to Equations (13)
and (14) are reduced at the cathode (Equation (5)) and participate in the Fenton reaction
during the EF process, contrary to the Fenton process. In addition, Fe3+ ions give the
hydroperoxyl radical (E0 (HO2/H2O2) = 1.46 V/SHE), which is a weaker oxidant than the
hydroxyl radical, in their reaction with hydrogen peroxide following Equation (15) [36]

Fe3+ + H2O2 → Fe2+ + HO2
• +H+ k = 0.002-0.01 M−1s−1 (15)

The catalytic effect of FeCO3 on BQ oxidation by the EF process at different pH
values was also examined. As seen earlier in the homogeneous EF experiment, the best
mineralization efficiency was observed at pH 3 (Figure 7a). This result can be explained
by Equation (16). Under acidic conditions, Fe2+ ions pass into the solution and participate
directly in the Fenton reaction.

FeCO3 + 2H+ → Fe2+ + CO2 + H2O (16)
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The 91% of mineralization efficiency was achieved when the pH of the BQ solution was
adjusted to 3.0. TOC removal efficiencies close to each other were obtained as 84 and 81%
at pH 5.6 and 7.0, respectively. When compared to pH 3.0, very effective mineralization
was achieved at near-neutral pH values in the EF process with FeCO3. The observed
decrease in TOC removal at pH 9.0 agreed with earlier results [52]. Siderite shows a very
stable structure between pH 5–8 [53], but iron hydroxide precipitation realizes at high
pH values on the catalyst surface and results in catalyst poisoning [54,55]. Acisli et al.
(2017) investigated the effect of pH on the oxidation of Reactive Yellow 81 dye using
milled natural siderite by ultrasound assisted-Fenton process and determined the most
effective pH value as 3.0 [30]. As a different result, they reported that when the solution pH
increased from 3.0 to 4.0, the removal percentage decreased significantly from 92 to 21%.
This significant decrease in removal efficiency might be explained by the inadequacy of the
Fe3+/Fe2+ cycle in the Fenton process and •OH production. On the other hand, effective
degradation was obtained in the pH 3–9 range using high siderite amount (6 g L−1) and
H2O2 dosages (100 mM) for a low concentration of sodium sulfadiazine (10 mg L−1) in
the Fenton method [52]. Consequently, while the homogeneous EF process due to free Fe
ions passing into the environment at the pH value of 3.0 and 5.6 (the natural pH value
of BQ solution) is effective, the heterogeneous EF process is dominant at basic pH values
(Equation (17)). In case the solution pH value is 9.0, the Fe ion concentration is 2.8 mg L−1,
supporting this statement.

FeII
solid + H2O2 → FeIII

solid + •OH + OH− (17)

After using the FeCO3 catalyst, it was filtered, washed, and dried. Then its effec-
tiveness in the EF process was tested in five successive runs (Figure 7b). XRD analysis of
the used FeCO3 catalyst showed that no structure was formed to passivate the catalyst
surface. A certain amount of FeCO3 had dissolved and passed into the aqueous medium.
A significant decrease was not observed in the effectiveness of the catalyst after five uses.
This catalyst, which was easy to prepare, reusable, and most importantly, can be used in
near-neutral solutions without pH adjustment, has high applicability as an alternative to
pyrite minerals in the homogenous/heterogeneous EF process.

Reducing the concentration of the target pollutant during the process does not mean
the removal of the pollution, so TOC removal was followed. Therefore, the decrease in
BQ concentration and degradation products during the process was followed by HPLC
analysis. Decomposition products were determined by comparing the retention times of
the standards. In the EF process performed with the 1 g L−1 of FeCO3 catalyst at pH 5.6 and
400 mA constant current, it was observed that the 0.5 mM BQ was completely degraded
within 30 min. During the BQ degradation, hydroquinone and aliphatic carboxylic acids
such as maleic, fumaric, formic, and acetic acids were determined as degradation products.

It should be mentioned that under real conditions, the presence of natural organic
matter and chloride ions, commonly found in natural waters and wastewater, may affect the
degradation of BQ. In a recent study by Cai et al. (2022), the presence of Cl− dramatically
enhanced the degradation of acetaminophen because Cl− reacted with peroxymonosulfate
to generate hypochlorous acid and chlorine radicals [56]. However, humic acid had the
opposite effect acting as a radical scavenger. The above observations were confirmed by
Li et al. (2022) who tested acetaminophen degradation in a heat/peroxymonosulfate system
using 10–30 mM Cl−. At lower Cl− concentrations, the inert B(OH)3OCl· was formed,
thus reducing the formation of the chlorine radical and consequently slowing down the
degradation of acetaminophen [57].

3. Materials and Methods
3.1. Materials

Reagent grade p-benzoquinone (C6H4O2) was purchased from Sigma-Aldrich and used
without further purification. Anhydrous sodium sulfate (Na2SO4), urea (NH2CONH2), iron
(II) sulfate heptahydrate (FeSO4·7H2O), hydroquinone (HQ), maleic acid, formic acid, fumaric
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acid, and acetic acid were supplied by Merck. Sodium dodecyl sulfate (SDS, NaC12H25SO4
> 85%) was purchased from TCI Chemicals. The solutions were prepared with high-purity
water obtained from a Millipore Milli-Q system with resistivity >18 MΩ cm.

3.2. Synthesis of FeCO3 Catalyst

FeCO3 catalyst was synthesized by the hydrothermal method described in detail in
Zhang et al., 2015 [58]. All synthesis processes were carried out in an alloy 316 stainless
steel reactor. For the synthesis of FeCO3, 5.6 g FeSO4·7H2O, 0.2 g SDS, and 2.4 g urea were
added to 40 mL ultrapure water, respectively, and mixed for 15 min. After the reactor
was closed, the air in the reactor was removed by purging with N2 gas. Following the
adjustment of the internal pressure of the reactor with N2 gas, when the reactor reached the
determined temperature, hydrothermal synthesis was carried out by stirring the mixture at
400 rpm for 240 min. Using the reagent quantities mentioned above at pH 3.6, temperature
and pressure were applied at 140 ◦C and 20 bar. Then, the reactor was cooled to room
temperature in a water bath, and the synthesized FeCO3 was filtered and washed several
times with deionized water and ethanol, respectively. Finally, the product was dried at
60 ◦C for 24 h. The formation mechanism of FeCO3 involves the reactions described by the
following Equations (18)–(24) [37,58]

FeSO4 → Fe2+ + SO4
2− (18)

CO(NH2)2 + H2O→ 2NH3 + CO2 (19)

NH3 + H2O→ NH3·H2O→ NH4
+ + OH− (20)

CO2 + H2O→ H2CO3 → 2H+ + CO3
2− (21)

Fe2+ + CO3
2− → FeCO3 (22)

Fe2+ + 2OH− → Fe(OH)2 (23)

Fe(OH)2 + CO3
2− → FeCO3 + 2OH− (24)

3.3. Characterization of FeCO3

The morphology and elemental composition of the FeCO3 catalyst were determined
using a scanning electron microscope equipped with energy-dispersive X-ray spectroscopy
(FEI Quanta 650, FEG-SEM). X-ray diffraction patterns were obtained with a PANalytical
Empyrean brand powder device at the 2-theta angle between 10–90◦. The FT-IR spectrum
of FeCO3 was recorded in a Jasco FT-IR-6700 spectrophotometer using the KBr technique
within the range of 400–4000 cm−1. Raman spectra were recorded with a Renishaw inVia
Qontor using a 532 nm 50 mW diode laser (M2 < 1.1, beam divergence < 0.45 mrad)
with 1800 line/mm grating and an x50 long working distance objective lens (Leica HCX
PL FLUOTAR, WD = 8 mm, NA = 0.55). The N2 adsorption isotherm was measured at
−196 °C using a Micromeritics Tristar Orion II 3020 surface area and porosimetry analyzer.
Brunauer–Emmet–Teller (BET) method was used to analyze the surface area of the FeCO3
catalyst. The amount of Fe ions leaching into the solution was determined quantitatively
by Perkin Elmer NEXION 2000 P brand inductively coupled plasma-mass spectrometer
(ICP-MS).

3.4. Electro-Fenton Experiments and Analytical Procedures

Electro-Fenton experiments were performed in a single-compartment cell. Carbon felt
cathode (15 cm × 5 cm × 1 cm, Carbone Lorraine, France) and platinum anode (20 cm2,
Sigma-Aldrich) electrodes were placed 2 cm apart. Sodium sulfate (50 mM) was used as
the supporting electrolyte, and the pH of the solution was adjusted with a pH meter (WTW
3110) using either 0.3 M H2SO4 or 0.3 M NaOH solution. The solution was saturated with
O2 gas 15 min before the current was applied, and O2 was continuously bubbling and
compressed to keep the concentration constant throughout electrolysis. Then the constant
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current was applied in the range of 100–500 mA by an MCH 303 D-II dual power supply.
At the same time, a conventional homogeneous electro-Fenton experiment was carried out
using 0.5 mM FeSO4 at pH 3 for control purposes.

The mineralization of the BQ solutions during electrolysis was determined by mea-
suring the total organic carbon (TOC) value with a Shimadzu TOC-LCPH analyzer after
passing the solution through a 0.22 µm syringe filter (PTFE, hydrophilic). The BQ and HQ
structures were monitored by a high-performance liquid chromatographer fitted with a
C18 column (Lichrospher, 250 mm × 4 mm, 5 µm) and photodiode array detector (254 nm).
The mobile phase consisted of acetonitrile/water mixture (60/40, v/v), and 1 mL min−1

flow rate was applied. For the separation of organic acids intermediates, the Grace Prevail
Organic acid column (250 mm × 4.65 mm, 5 µm) was used at 210 nm with 25 mM KH2PO4
solution (adjusted pH 2.5) as mobile phase (0.5 mL min−1).

4. Conclusions

This study systemically investigated the potential catalytic effect of rhombohedral
FeCO3 in the homogenous/heterogeneous electro-Fenton degradation of the emerging
contaminant p-Benzoquinone. Following the successful hydrothermal synthesis of FeCO3
at low temperatures, its catalytic behavior was investigated in the pH range of 3–9. At the
lower pH range of 3–4, FeCO3 released Fe2+ ions into the solution, thus creating homoge-
neous catalytic conditions for the electro-Fenton oxidation of BQ. As the pH of the solution
was raised, the release of Fe2 + ions was largely diminished; however, the catalytic efficiency
of FeCO3 was comparable, achieving high mineralization rates. As a result, the reusability,
pH-regulating capacity, and stability of FeCO3 catalyst are promising for the application of
the catalyst in heterogeneous electro-Fenton degradation of recalcitrant contaminants.
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