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Abstract

If a freshly minted genome contains a mutation that confers drug resistance, will it be selected in 

the presence of the drug? Not necessarily. During viral infections, newly synthesized viral 

genomes occupy the same cells as parent and other progeny genomes. If the antiviral target is 

chosen so that the drug-resistant progeny’s growth is dominantly inhibited by the drug-susceptible 

members of its intracellular family, its outgrowth can be suppressed. Precedent for ‘dominant drug 

targeting’ as a deliberate approach to suppress the outgrowth of inhibitor-resistant viruses has been 

established for envelope variants of vesicular stomatitis virus and for capsid variants of poliovirus 

and dengue virus. Small molecules that stabilize oligomeric assemblages are a promising means to 

an unfit family to destroy the effectiveness of a newborn drug-resistant relative due to the co-

assembly of drug-susceptible and drug-resistant monomers.

Introduction

Darwinian theory postulates two requirements for evolution to occur. First, populations of 

individuals must display pre-existing genetic diversity. Then, there must be sufficient 

selection on survival or reproduction that some members of the population and their progeny 

become increasingly represented. Viruses often evolve quickly due to the large population 

sizes, high mutation rates, and rapidly changing environments. Dreaded evolutionary events 

such as adaptation to new hosts or outgrowths of drug-resistant viruses continue to limit 

human ability to control viral disease.

Mutational origins of viral diversity in intracellular RNA viral genomes

The low-fidelity polymerases that copy the genomes of RNA viruses are major contributors 

to viral diversity. Figure 1a describes the infectious cycle and known mutation frequencies of 

positive-strand viruses, but the arguments are similar for negative-strand and double-strand 

RNA viruses. The intrinsic misincorporation frequencies of purified RNA-dependent RNA 

polymerases during one templating event have been measured to be 3 × 10−5 

misincorporations/nt for the NS5 polymerase of dengue virus and 5 × 10−5 
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misincorporations/nt for purified 3D polymerases of foot-and-mouth-disease virus and 

poliovirus [1]. The cumulative mutation frequency after a single infectious cycle within a 

cell should then be this intrinsic mutation frequency multiplied by the number of templating 

events [reviewed in [2]].

Once the infecting RNAs are translated, the first intracellular templating event is to copy an 

original positive strand to a negative strand (Figure 1a). Then, further positive-strand 

synthesis is templated from the negative strand. In an extreme case, a ‘stamping model’, in 

which all subsequent positive strands are templated by the original negative strand, the error 

frequency per cell will be 1 × 10−4 mutations/nt, or twice the intrinsic misincorporation 

frequency. More realistic schemes posit more extended family trees, in which generations of 

negative and positive strands template each other and the mutation frequency per cell 

increases linearly with each intracellular generation. Using a clever circulization scheme that 

minimizes artifactually introduced error, Acevado et al. [3••] found the cumulative error 

frequency of poliovirus RNA replication to be 3 × 10−4 mutations/nt. This predicts an 

average of three cycles of negative-strand and positive-strand synthesis during one 

intracellular infectious cycle. Note that an intracellular quasispecies is generated by the 

infectious cycles of RNA viruses, creating the possibility that generations of RNA genomes 

that vary slightly in sequence are in close contact. It is from this intracellular viral diversity 

that newly synthesized drug-resistant genomes are initially selected.

Approaches to suppressing drug resistance

The diversity of RNA viruses results from these high mutation frequencies and other genetic 

events such as deletion, recombination, reassortment, transduction of cellular sequences, and 

the action of cellular editing enzymers. There are two general strategies to thwart the 

evolution of drug-resistant viruses: by reducing the frequency of drug-resistant viruses or 

reducing the selection for their outgrowth.

Reducing the frequency of drug-resistant viruses

Arguably the most successful strategy for the treatment of highly mutable viruses is 

combination therapy: simultaneous treatment with multiple antivirals. The frequency of 

variant viruses that are resistant to two or three drugs is the multiple of the frequencies of 

each drug-resistant variant to each individual drug. HIV-infected and HCV-infected 

individuals are currently treated with combinations of two to four medications that inhibit 

viral protein functions or stimulate host responses. These combination therapies are the 

result of decades of research by hundreds of laboratories.

A second approach to reducing the frequency of drug-resistant viruses is targeting host 
molecules required for viral infections. If an antiviral targets a human protein, for example, 

it is unlikely that genetic adaptation of host cells to facilitate viral replication would be 

selected. Sometimes, however, viruses escape drug inhibition by losing their requirement for 

the targeted host function. For example, HCV growth is dependent on cyclophilins, human 

proteins whose proline isomerase activities are inhibited by cyclosporin and related 

compounds. Nonetheless, drug-resistant viral mutations can be selected [4–6]. However, 
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there are many host functions subverted and exploited by viruses and targeting them is a 

promising approach.

Reducing the selection of drug-resistant viruses

If an antiviral compound is targeted to a crucial point in an enzyme or complex, it has been 

argued that drug-resistant viruses will sometimes sustain a high fitness cost, becoming so 

enfeebled by the mutation at these critical residues that they are not selected even in the 

presence of drug. For example, very low fitness was observed for the few HCV variants 

isolated from patients who were treated with polymerase inhibitor Sofosbuvir [7]. 

Nonetheless, high-fitness viruses selected merely for growth were found to be less 

susceptible to inhibition by Sofosbuvir [8•]. Thus, the phenomenon of fitness cost is difficult 

to predict.

An alternative approach, dominant drug targeting, seeks to identify drug targets for which 

the inevitable drug-resistant mutations arise but are not selected from the intracellular 

quasispecies. Normally, for a drug target such as a monomeric viral enzyme (Figure 2a), 

drug resistance is dominant. Resistant genomes will encode resistant enzymes that allow the 

infectious cycle to proceed for the genome that encodes them. In some cases, resistant 

products can also provide helper functions that also allow the escape of drug-susceptible 

viruses and, it is very likely, provide helper functions that allow the escape of drug-

susceptible viruses as well.

Many RNA viral products, however, form trans-assembling oligomers such as capsid and 

matrix constituents and ribonucleoprotein complexes. For oligomeric drug targets as well as 

monomeric ones, drug-resistant mutations pre-exist in every viral stock and can be selected 

in tissue culture through passage at low multiplicities of infection (MOIs). However, when a 

drug-resistant mutation first occurs in an infected cell, it is not alone, but in the presence of 

many drug-susceptible genomes (Figure 2b). Then, if the protein subunits assemble in trans, 

oligomers that contain drug-resistant subunits will also contain drug-susceptible ones. If the 

ratio of susceptible:resistant subunits is high enough, these chimeric structures will be 

nonfunctional in the presence of the drug and thus drug susceptibility will be genetically 
dominant.

Effectiveness of dominant drug targeting

The most intuitive examples of a highly oligomeric, trans-assembling assemblage during 

viral infections are structural proteins such as cores and capsids. The ability of unfit viruses 

to suppress the growth of more fit viruses present in the same cell was documented for the 

major surface glycoprotein (G-protein) of vesicular stomatitis virus by the laboratory of 

Esteban Domingo [9]. Vesicular stomatitis virus variants resistant to neutralization by 

monoclonal antibodies could be readily recovered by passage in cultured cells at low MOIs. 

However, when virus was passaged at MOIs of 5 PFU/cell or higher, the recovery of 

neutralization-resistant variants were suppressed 400-fold. The authors hypothesized that the 

mixing of G-proteins within cells (1B) led to the ‘phenotypic masking’ of antibody-resistant 

mutations and prevented their selection. The concept of phenotypic masking is, in more 
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conventional terms, the genetic dominance of the antibody-sensitive over the antibody-

resistant phenotype.

Like the dominance of antibody-sensitive phenotypes, we reasoned that some drug-

susceptible phenotypes might be dominant over newly arising genomes that could encoded 

potentially drug-resistant phenotypes. To test this hypothesis, the genetic relationships 

between drug-resistant and drug-susceptible viruses for different drug targets was 

determined in both poliovirus and dengue virus [10•,11•,12]. For inhibitors that target the 

active sites of viral enzymes such as poliovirus NTPase (Figure 3a) and the dengue virus 

RNA-dependent RNA polymerase (Figure 3c), drug-resistance viruses were dominant. 

However, for inhibitors of the poliovirus capsid (Figure 3b) or dengue virus core proteins 

(Figure 3d), drug resistance was suppressed when drug-susceptible viruses were present in 

the same cell. The dominance of drug susceptibility in tissue culture correlated with the 

suppression of drug resistance during growth of these viruses in mouse models (Figure 3e).

To identify other potential dominant drug targets besides capsid proteins, we look to the 

literature of dominant-negative mutations [13]. A recent contribution to the endogenous 

retrovirus literature is a description of Refrex-1, a truncated envelope protein encoded in the 

genomes of domestic cats that confers protection from feline leukemia virus infection by 

titration of the viral receptor [14]. The genome of thirteen-lined ground squirrels encodes a 

protein that is highly homologous to bornavirus nucleoprotein; this host restriction factor 

inhibits exogenous bornavirus infection by incorporating into viral ribonucleoprotein 

complexes [15••]. These examples illustrate two of the mechanisms for molecular dominance 

by defective proteins described by Herskowitz: competition for a limiting binding partner 

and inactivation of oligomeric complexes by the formation of chimeras [13].

Competition for limiting resources is likely to be the mechanism by which defective 

interfering viral particles inhibit the growth of the competent, wild-type genomes. A strategy 

to deploy engineered defective interfering particles of HIV to fight the infection is a 

promising and daring idea [12,16]. On the other hand, defective chimera formation is likely 

to be the mechanism for many dominant-negative effects of defective viral products. Isolated 

domains of alphavirus, flavivirus, and HIV structural proteins can inhibit virus membrane 

fusion, presumably by forming mixed oligomers [17–19], and uncleaved precursors of HIV 

capsids dominantly inhibit viral maturation by hyperstabilizing the highly oligomeric 

immature capsid [20]. Expression of nonstructural viral proteins can also dominantly inhibit 

intracellular processes. Mutant influenza PB1 proteins and defective HCV NS5A proteins 

have both been shown to dominantly interfere with viral replication in cultured cells [21,22].

We have used an approach of co-transfecting wild-type and non-viable mutant RNAs to 

identify mutations that dominantly inhibit the growth of wild-type poliovirus. Of the several 

single polymerase mutations tested, only those near the ‘translocation loop’ [23] were found 

to have dominant negative effects. From these studies, we conclude that promising dominant 

drug targets in RNA viruses include capsids, cores, replicase functions in initiation and 

translocation and intramolecularly cleaving proteases [24]. Other oligomers, such as the 

matrix proteins of enveloped viruses and components of negative-strand ribonucleoprotein 

complexes are excellent candidates as well.
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Broadening the concept of dominant-drug targeting

Drug-resistant viruses can be selected within an organism at several stages. The initial 

inoculum, if sufficiently large, can already include mutant genomes resistant to any single 

antiviral compound. Assuming no previous drug selection, such variants are expected to 

present at frequencies no greater than 10−4 until subject to selection. When viruses are 

replicating intracellularly, drug-resistant variants will arise within populations of relatives 

that can help or hinder their growth and selection. This is the stage at which the dominant 

drug targeting strategy can exert a powerful effect. Any drug-resistant viruses that escape 

their cell of origin may then have the opportunity to infect new cells in the absence of other 

family members, which can readily lead to selection for drug resistance. However, many 

viruses do not spread dispersively, but locally, to neighboring cells. In these cases, any 

escaping drug-resistant virus is likely to co-infect these neighboring cells with its susceptible 

cousins, thus continuing the dominant inhibitory effect.

How general is the principle of dominant drug targeting? Some other events that give rise to 

drug resistance arise in polyploid genetic environments. One usually thinks of retroviruses, 

with their high error frequencies, of being in this category, but retroviral diversity is 

predominantly extracellular and thus not conducive to the dominant drug targeting strategy. 

The most error-prone step in the retrovirus infectious cycle is reverse transcription of the two 

packaged strands of genomic RNA into double-stranded DNA (Figure 4a). The 

misincorporation frequencies of reverse transcriptases are high: recent measurements of the 

misincorporation frequency of purified HIV reverse transcriptase by deep sequencing have 

shown 10−4 mis-misincorporations/nt [25]. Subsequent steps — the replication of integrated 

viral DNA, with the low host misincorporation frequency [(10−10/nt) [26]] and the 

generation of new genomic RNA by host transcription [(10−5–10−6/nt) [27]] — generate 

comparatively little intracellular variability. If we assume that retroviral infections of 

individual cells are mostly initiated by single virions, the genetic diversity will be 

predominantly between infected cells rather than within single infected cells.

Intracellular bacteria and eukaryotic parasites that replicate within human cells can, at the 

error frequency of their DNA polymerases, generate variants that confer resistance to anti-

microbial compounds. Such pathogens are known to secrete virulence factors into a shared 

mileiu (Figure 4b) to hijack host machinery to support their replication and evade innate 

immune responses. Any of these factors that are oligomeric, such as anthrax toxin [28] could 

be dominant drug targets.

The effectiveness of most cancer chemotherapies is compromised by drug resistance 

[reviewed in [29]]. Gene duplication events are common and can correlate with aggressive 

tumorigenesis and drug resistance. Some oncogenes thus amplified, such as HER2, function 

as homodimers or heterodimers [30]. As is the case with viruses, drugs that hyperstabilize 

homo-oligomers have the potential to decrease selection for resistant mutations.
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Figure 1. Polyploid genetics of RNA viral infections
(a) The amplification scheme of a positive-strand RNA virus illustrates the principle of 

cumulative error frequency, relevant to negative-stranded, double-stranded, and ambisense 

RNA genomes as well. (b) When mutations occur, the intracellular accumulation of all 

parental and progeny genomes leads to the possibility of mixed oligomer formation, as 

exemplified by a chimeric poliovirus capsid in which the gray subunits are bound to capsid 

inhibitor V-073 [10•].
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Figure 2. The selection pressures on drug-resistant viruses differ with target biochemistry
(a) When antiviral targets are trans-acting monomeric proteins or cis-acting molecules [31], 

production of drug-resistant entities directly benefits replication of the drug-resistant 

genome. Thus, selection for drug resistance is unimpeded. (b) When the drug target is a 

trans-assembling oligomer, the formation of chimeric oligomers can lead to suppression of 

the drug-resistant phenotype.
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Figure 3. Some antiviral targets allow the selection of drug-resistant variants and some do not
(a) At low concentrations, guanidine hydrochloride is a potent inhibitor of picornavirus 

RNA replication, and resistant mutations map to viral NTPase 2C [32]. When cells were 

infected with a drug-resistant variant in the presence of increasing amounts of drug-

susceptible virus, drug resistance is dominant. (b) V-073 is a compound being developed for 

the poliovirus eradication campaign [33] and has 60 binding sites on the poliovirus capsid 

(Fig. 1b). Drug-susceptibity is dominant. (c) MK-0608 is a nucleoside analog that inhibits 

the active site of hepatitis C, dengue, and zika virus polymerases [34–36]. Drug resistance is 

dominant. (d) ST-148 is a small molecule that hyper-stabilizes dengue core protein 

oligomers [37,38]. Drug susceptibility is dominant. (e) Poliovirus and dengue virus were 

grown in susceptible mice for five and four days, respectively, in the presence of individual 

antiviral compounds. Reduced selection for drug resistance was observed for the capsid and 

core inhibitors.
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Figure 4. Examples of intercellular and intracellular variation
(a) Retroviruses synthesize new genomes via cellular transcription, but the most error-prone 

step is reverse transcription. (b) Many bacteria and eukaryotic parasites amplify within cells. 

Although products within the microbial cells are not shared between organisms, many of the 

virulence factors that they encode are secreted into a common milieu, creating the possibility 

of dominant inhibition of drug-resistant variants by drug-susceptible subunits. The 

oligomeric states of most of these virulence factors are not known. (c) The proliferation of 

cancer cells is often driven by the amplification of oncogenes or growth factors. It is possible 

that drug resistance could be thwarted should the drug target by an oligomeric product of 

such amplification events.
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