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Abstract.  We examined various methods to enhance the accessibility of intracytoplasmic sperm injection (ICSI) 
technology to more users by making the technique easier, more efficient, and practical. First, the methods for 
artificially removing the mouse sperm tail were evaluated. Trypsin treatment was found to efficiently remove the 
sperm tails. The resultant sperm cells had a lower oocyte activation capacity; however, the use of activated oocytes 
resulted in the same fecundity as that of fresh, untreated sperm. Pre-activated oocytes were more resistant to 
physical damage, showed higher survival rates, and required less time per injection. Testing this method in rats 
yielded similar results, although the oocyte activation method was different. Remarkably, this method resulted in 
higher birth rates of rat progeny than with conventional methods of rat ICSI. Our method thereby streamlines mouse 
and rat ICSI, making it more accessible to laboratories across many disciplines.
Key words: Intracytoplasmic sperm injection (ICSI), Mouse, Oocyte activation, Rat, Trypsin treatment
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Intracytoplasmic sperm injection (ICSI) has been improved in 
mice through the usage of piezo-driven micromanipulators [1, 2]. 

However, it is difficult for inexperienced operators to hold a motile 
sperm cell with a thin glass pipette, remove the sperm tail with a 
piezoelectric pulse, and inject only the sperm head into a fragile oocyte. 
ICSI would be more accessible if the technique were streamlined.

Currently, various mechanical and chemical methods are employed 
to remove the tail or plasma membrane of spermatozoa to study 
fertilization. Mechanical treatments, including sonication, freeze-
thawing, and freeze-drying, have been reported [3–8]. When these 
sperm are injected, the oocytes are activated. However, studies showed 
that spermatozoa with their tails removed by heat, lysolecithin, 
pronase, and NaOH treatments could not activate oocytes after ICSI 
[9–12]. Nonetheless, artificial activation of injected oocytes by SrCl2 
or electrical stimulation treatments [13, 14] can result in live offspring 
[9–13, 15]. However, in both cases, the developmental potential of 
ICSI embryos from these spermatozoa is reduced compared to that 
of recently generated and untreated spermatozoa [3, 4, 16]. Thus, 
mechanically or chemically treated spermatozoa may lose their 
activation capacity as well as their nuclear integrity. To simplify the 

ICSI technique, a method to remove the sperm tails while retaining 
the developmental potential of the sperm is crucial.

First, we attempted to remove the sperm tails by the following 
methods: two different freeze-thaw procedures (freezing at –30°C 
[–30°CFT] and freezing in liquid nitrogen [LNFT]), glass-bead 
homogenization (glass beads), trypsin treatment (trypsin), and 
TrypLETM Select (TS) (Thermo Fisher Scientific, Inc., Minato-ku, 
Tokyo, Japan) treatment. Trypsin is commonly used in cell culture, 
and its action can be easily halted by serum, whereas TS is widely 
used as a trypsin substitute. All methods successfully removed the 
tails with varying efficiency (Fig. 1A, Supplementary Fig. 1). The 
freeze-thaw methods of –30°CFT and LNFT resulted in 16% and 
16.7% tailless sperm, respectively. Treatment with glass beads, 
trypsin, and TS removed the tails in 99.7%, 79.3%, and 25.4% of 
the total sperm cells, respectively (Fig. 1A).

Secondly, to examine the developmental ability of sperm after 
each treatment, we injected the sperm heads into mature oocytes. The 
freeze-thaw methods retained the sperm cells’ oocyte activation ability, 
while the other treatments did not. Sperm heads from glass beads, 
trypsin, and TS treatments showed a significantly lower pronucleus 
formation rate than those from the untreated piezo-cut control (Table 
1). However, as mentioned earlier, even sperm cells that are unable 
to activate oocytes may still produce offspring upon artificially 
activating the oocytes after injection. Incomplete oocyte activation 
by the injected sperm head can cause early termination of embryonic 
development, which complicates developmental analysis. To avoid 
these complications, we artificially activated the oocytes prior to the 
injection of glass bead-, trypsin-, and TS-treated sperm. After ICSI, 
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embryos produced from the treated sperm, except those treated with 
glass beads, showed blastocyst development rates similar to those 
produced from the untreated control sperm (Supplementary Table 
1). Kishigami et al. [17] showed that activated oocytes were more 
tolerant than non-activated oocytes to the mechanical stress involved 

in the injection procedure (Table 1), which is very advantageous for 
inexperienced operators. They also reported that artificially activated 
oocytes can support full-term development following the injection 
of sperm or round spermatids for 100 min after activation.

To evaluate the full-term developmental ability of sperm heads 

Fig. 1. Comparison of the efficiency of sperm tail removal between treatments, and the comparison of two different ICSI methods, conventional and 
trypsin treatment with pre-activated oocytes. (A) The percentage of tailless sperm in sperm suspensions after each treatment. All treatments could 
remove the sperm tail, but the efficiency varied. non-treated control: non-treated, –30°C freeze-thawed: –30°CFT, liquid nitrogen freeze-thawed: 
LNFT, glass bead homogenized: glass beads, trypsin-treated: trypsin, and TrypLETM Select-treated: TS. * P ≤ 0.05, ** P ≤ 0.01, ns P > 0.05 using 
Kruskal–Wallis test with Dunn’s multiple comparisons test. Mean ± SD. (B) Comparison of control conventional ICSI and ICSI with trypsin-
treated sperm with pre-activated oocytes. Eight operators with different ICSI technical experience performed both ICSI methods. Survival rate 
(%) refers to the oocyte survival rate after sperm injection. Time (min)/oocyte denotes the required time for sperm injection per one oocyte. PN/
surviving oocyte (%) and 2-cell/surviving oocyte (%) indicate the rate of ICSI embryos that developed into PN and 2-cells among the surviving 
oocytes, respectively. Pups/ET (%) corresponds to the litter size rates from ICSI embryos that were transferred into pseudo-pregnant females. Time 
(min)/oocyte, survival rate (%), PN/surviving oocyte (%), and 2-cell/surviving oocyte (%) in control and trypsin treatment. n = 8. Pups/ET (%) in 
control and trypsin treatment. n = 4. Normality was tested with the Shapiro–Wilk test. ** P ≤ 0.01, ns P > 0.05 using Wilcoxon test (Time (min)/
oocyte, PN/surviving oocyte (%)) and paired t-test (survival rate (%), 2-cell/surviving oocyte (%), pups/ET (%)). See Supplementary Table 1 for 
the original data for the graphs of Fig. 1B. All data were analyzed using the Prism 9 software (GraphPad, San Diego, CA).
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from each treatment group, ICSI embryos were transferred into the 
oviducts of pseudo-pregnant female mice. As shown in Table 1, 
ICSI embryos from all treatment groups could develop to full-term; 
however, the developmental rates of –30°CFT-, LNFT-, glass beads-, 
and TS-treated sperm (10%, 37%, 18%, and 26%, respectively) were 
significantly lower than those of the non-treated piezo-cut control 
(54%). We also examined the combination of pre-activated oocytes 
injected with –30°CFT or LNFT sperm. Even in this case, the full-term 
developmental rates of the sperm were significantly lower than 
those of the control (Table 1), indicating that oocyte activation itself 
does not affect the in vivo developmental efficiency of mouse ICSI 
embryos. Conversely, sperm treated with trypsin showed full-term 
developmental rates equivalent to those of non-treated control sperm 
(52%, Table 1). TS treatment, but not trypsin treatment, diminished 
the full-term developmental potential of the sperm. Unlike trypsin 
treatment, it is not necessary to quench the enzymatic reaction of 
TS with trypsin inhibitors (e.g., serum) in cell culture. Instead, 
the enzyme was diluted through several washes. The remaining 
enzyme, although negligible in cell culture, may have affected the 
developmental ability of the ICSI embryos.

To investigate why trypsin-treated sperm exhibited higher viability 
than sperm treated by other means, we analyzed the chromosome 
dynamics of ICSI embryos using live-cell imaging with monomeric 
red fluorescent protein 1 fused with histone H2B (H2B-mRFP1, 
Supplementary Fig. 2A). Normal chromosome segregation during 
early cleavage of the embryo is necessary for full-term development. 
Previous studies demonstrated that membrane-damaged sperm, such as 
those subjected to freeze-thaw treatment, showed chromosomal aber-
rations after ICSI [18], and such abnormal chromosomal segregation 
(ACS) during early embryogenesis in ICSI or cloned embryos leads 
to early pregnancy loss [6, 18]. In our experiment, the percentages 
of embryos from the –30°CFT-, LNFT-, glass beads-, and TS-treated 
groups with normal chromosome segregation (NCS) through the 
morula stage were only 10%–24% (Supplementary Fig. 2B). In 
contrast, 40% of ICSI embryos from trypsin-treated sperm developed 
to the morula stage without ACS, and the overall NCS rates were 
the same as those from the untreated control (Fig. Supplementary 
2B). These results applied to the embryo birth rates as well. Thus, 
trypsin treatment may be gentler on the sperm genome than the 

other tail-removal methods tested, although it impedes the oocyte 
activation ability of the sperm heads.

Subsequently, to investigate whether our method could practically 
facilitate mouse ICSI, eight operators with varying levels of micro-
manipulation experience were asked to perform both conventional 
piezo-cut and trypsin-treated sperm ICSI with pre-activated oocytes. 
Pre-activated oocytes injected with trypsin-treated sperm by seven 
operators tended to have higher survival rates than those injected 
conventionally, and the time taken for injection was also shorter 
in the trypsin/pre-activation method than the conventional method 
(Supplementary Table 2). Although there were no significant dif-
ferences in the two-cell and full-term developmental rates between 
the two methods, statistical analysis using all operator data showed 
significant differences between the two ICSI methods in oocyte 
viability and the time required for sperm injection (Fig. 1B). This 
reduction in time may be effective in reducing the burden on the 
operators and vulnerability of the tailless sperm during incubation 
[19]. Survival rates also tend to be higher with the new method, 
which will be useful in the maintenance of mouse strains, and in 
reproduction and fertilization studies. Operator proficiency plays a 
vital role in the developmental rate of ICSI embryos using either 
method; however, these data suggest that the new ICSI method is 
simpler than the conventional method, even when performed by 
operators with suboptimal manipulation experience.

Rat sperm and oocytes are more difficult to handle than those 
of mice; thus, rat ICSI has been a challenge in many laboratories. 
Therefore, in this study, we validated the ICSI method using rats. 
Because tail removal by sonication is commonly employed in rats 
[20, 21], we compared ICSI using sonicated and trypsin-treated sperm 
(Supplementary Figs. 1G–I). As expected, trypsin treatment removed 
the tails of the rat sperm. Conventional rat ICSI is performed with 
a thin injection needle to prevent oocyte death [20, 22]. However, 
the thin injection needle cannot aspirate the entire rat sperm head. 
As only one sperm head can be aspirated at a time, conventional 
rat ICSI requires more skill and time than that required for mice 
(Supplementary Fig. 3A–A”). However, as in mice, activated rat 
oocytes were resistant to physical manipulation and enabled the use of 
a larger needle (Supplementary Fig. 3B–B”). Despite the thick needle, 
sperm injection into pre-activated rat oocytes resulted in embryonic 

Table 1. In vivo development of mouse ICSI embryos using sperms with their tails artificially removed

Animal Treatment of 
sperm

Pre-activation 
of oocyte

No. of oocytes 
injected

No. of oocytes 
survived (%) *

No. of embryos developed to No. of embryos 
transferred

No. of offspring 
(%) ***pn (%) ** 2-cell (%) **

Mouse Piezo-cut – 116 93 (80) 91 (98) 91 (98) 91 49 (54) a

Naturally tail less – 55 53 (96) 52 (98) 50 (94) 50 8 (16) b

–30°CFT – 119 110 (92) a 98 (89) 88 (80) 88 9 (10) b

–30°CFT + 60 60 (100) b 60 (100) 57 (95) 57 12 (22) b

LNFT – 126 105 (83) 103 (98) 100 (95) 100 37 (37) b

LNFT + 60 55 (92) 55 (100) 51 (93) 51 10 (20) b

Glass-beads – 60 52 (87) 18 (35) N.D. N.D. N.D.
Glass-beads + 119 111 (93) 111 (100) 105 (95) 105 19 (18) b

Trypsin – 60 41 (68) a 11 (27) N.D. N.D. N.D.
Trypsin + 109 96 (88) b 93 (97) 93 (97) 93 48 (52) a

TS – 60 44 (73) a 11 (25) N.D. N.D. N.D.
TS + 109 94 (86) b 93 (99) 89 (95) 89 23 (26) b

* Percentages relative to the number of oocytes injected. ** Percentages relative to the number of oocytes survived. *** Percentages relative to the 
number of embryos transferred. Each experiment was repeated three times. N.D.: not determined. pn: pronucleus. – indicates not artificially activated 
oocyte. + indicates artificially activated oocyte. Statistical analysis of oocyte viability was performed between – and + oocytes before activation for each 
treatment, and that of the number of offspring was performed between piezo-cut control and each treatment. Significant χ2 comparisons a vs. b, P < 0.05.
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survival rates comparable to or better than those of conventional rat 
ICSI with a thin needle. Furthermore, oocyte pre-activation improved 
the birth rate in rats, unlike in mice (Table 2). Collected rat oocytes 
are known to show spontaneous activation [23], and we avoided this 
by artificially activating oocytes immediately after their collection. 
These findings indicate that this method not only streamlines ICSI, 
but also improves the rat oocyte survival rate.

In conclusion, we found that trypsin treatment efficiently removed 
the sperm tail, and pre-activated oocytes injected with such trypsin-
treated sperm had higher full-term developmental potential when 
compared with that used in conventional ICSI, in both mice and rats. 
Moreover, the time required for the injection procedure can be reduced 
and the oocyte survival rate can be increased by using trypsin-treated 
sperm and pre-activated oocytes. Thus, trypsin treatment of sperm 
and pre-activation of oocyte will make mouse and rat ICSI procedures 
easier and more readily accessible to laboratories.

Methods

Animals
Female and male C57BL/6 × DBA/2 (B6D2F1) and ICR mice (8–10 

weeks of age) were obtained from SLC (Hamamatsu, Japan). Female 
and male Wistar rats were obtained from Charles River Laboratories 
(Yokohama, Japan). Four-week-old females, 12–16-week-old males, 
and eight-week-old female rats were used for oocyte collection, 
sperm collection, and embryo transfer, respectively. Animals were 
maintained in pathogen-free conditions. All animal experiments were 
approved by the Animal Experimentation Committee of Yamanashi 
University, University of Tokyo, and University of Tsukuba, and 
performed in accordance with the guidelines of the committee.

Media
HEPES-buffered CZB [1] medium was used for gamete handling 

and ICSI. TYH medium (LSI Medience Corporation, Tokyo, Japan) 
[24] was used for rat sperm collection. CZB [25] for mice and 
mR1ECM [26] or rat KSOM (ARK Resource, Kumamoto, Japan) for 
rats were used as embryo culture media in an atmosphere of 5% CO2.

Collection of spermatozoa and removal of sperm tail
Mouse sperm cells were collected from the cauda epididymides of 

male mice. While testing various methods of removing sperm tails, 
sperm clumps were placed in tubes containing 1 mL of HEPES–CZB, 
centrifuged at 200 g for 5 min, and incubated at 37°C for 30 min 
to disperse the intact sperm. After incubation, they were aliquoted 
into other tubes and subjected to various treatments to remove the 

tails, and one tube was used as the control for untreated sperm. For 
freeze-thaw treatment, tubes with sperm suspension were placed 
directly in a freezer at –30 °C and stored overnight (–30°CFT) or in 
liquid nitrogen for 5 min (LNFT). For the glass-bead homogeniza-
tion treatment, approximately half the volume of glass beads was 
added to the tubes and vortexed for 45 sec, and the supernatant 
was transferred to a new tube. For tail removal with trypsin, the 
sperm suspension was centrifuged again at 200 g for 5 min. After 
discarding the supernatant, 0.25% trypsin–EDTA was added to the 
tube and was mixed by gentle pipetting, and incubated at 37 °C for 
5 min. DMEM with 10% fetal bovine serum was added to inactivate 
the trypsin and centrifuged at 200 g for 5 min at 4°C. It was washed 
three more times with DMEM. After washing, approximately 10 µl 
of HEPES–CZB was added to the tube and stored at 4°C until further 
use. For the TrypLETM Select treatment, the sperm suspension was 
centrifuged again at 200 g for 5 min. After the supernatant was 
discarded, TrypLETM Select was added to the tube. They were mixed 
by gentle pipetting, and the tube was incubated at 37 °C for 20 min. 
After incubation, the sperm samples were washed three times with 
DMEM and resuspended in 10 µL of HEPES–CZB. The suspension 
was stored at 4°C until further use. The percentage of tailless sperm 
in each treatment group was calculated using a counting chamber.

Rat sperm clumps were collected from the cauda epididymides of 
male rats and suspended in 1 ml of TYH medium. After incubation 
for 30 min, the supernatant of the sperm suspension was transferred 
to another tube. Sonication was performed for 15–20 sec using VS-25 
(VELVO-CLEAR Co., Tokyo, Japan). Trypsin treatment of rat sperm 
was performed in the same way as for mouse sperm.

Oocyte preparation
To efficiently induce superovulation, mature female mice and 

rats were injected with equine chorionic gonadotropin (eCG, ASKA  
Animal Health, Tokyo, Japan) followed by human chorionic gonado-
tropin (hCG, ASKA) after 48 h. For rats, LHRH and anti-inhibin serum 
(Central Research, Tokyo, Japan) were administered simultaneously 
2 days before eCG administration [27]. Cumulus–oocyte complexes 
were collected from the oviducts 14–16 h after the injection of 
hCG, and incubated in HEPES–CZB drops containing 0.1% bovine 
testicular hyaluronidase (Sigma-Aldrich, MA, USA) for 3 min to 
disperse the cumulus cells. The denuded oocytes were washed twice 
and transferred to fresh embryo culture medium.

ICSI and embryo transfer
To inject spermatozoa, 1–2  μL of untreated or treated spermatozoa 

suspension was added to a drop of HEPES–CZB containing 10% 

Table 2. In vivo development of rat ICSI embryos using sperms with their tails artificially removed

Animal Treatment of 
sperm

Type of injection 
needle *

Pre-activation 
of oocyte

No. of oocytes 
injected

No. of oocytes 
survived 
(%) **

No. of embryos 
developed to pn 

(%) ***

No. of embryos 
transferred

No. of 
offspring 
(%) ****

Rat Sonicated Thin – 89 66 (74) 61 (92) 61 5 (8)
Sonicated Thick – 70 52 (74) 52 (100) 36 2 (6)
Sonicated Thick + 141 118 (84) 118 (100) 90 16 (18)
Trypsin Thick – 70 50 (71) a 41 (82) 31 0
Trypsin Thick + 302 252 (83) b 225 (89) 167 26 (16)

* The diameters of the thin and thick injection needles are approximately 3 µm and 10 µm, respectively. ** Percentages relative to the number 
of oocytes injected. *** Percentages relative to the number of oocytes survived. **** Percentages relative to the number of embryos transferred. 
Each experiment was repeated three times. pn: pronucleus. – indicates not artificially activated oocyte. + indicates artificially activated oocyte. 
Statistical analysis of oocyte viability was performed between – and + oocytes before activation for each treatment. Significant χ2 comparisons a 
vs. b, P < 0.05.
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(w/v) polyvinylpyrrolidone and mixed. Sperm heads were then 
injected into oocytes following the method described by Kimura 
and Yanagimachi [1]. Mouse oocytes were pre-activated by culturing 
in Ca2+-free CZB medium containing 10 mM SrCl2 for 20 min and 
washing thrice in CZB medium, and rat oocytes were cultured in 
medium containing 5 µM ionomycin for 5 min and washed thrice in 
a new culture medium [12, 28]. The sperm heads were then injected 
into the activated oocytes. The oocyte-injected sperm were incubated 
in culture media at 37 °C and 5% atmospheric CO2. ICSI embryos 
with two pronuclei at 6 h for mice and 20 h for rats after injection 
were considered fertilized. Two-cell-stage mouse embryos and 
pronuclear-stage rat embryos were transferred to a 0.5-day pseudo-
pregnant female oviduct that had been mated with a vasectomized 
male. The offspring were delivered by cesarean section on days 18.5 
and 20.5 in mice and rats, respectively.

Live-cell imaging analysis
To observe the chromosome dynamics in ICSI embryos, mRNAs 

of H2B-mRFP1 and EGFP-tubulin were prepared as previously 
described [29]. The collected oocytes were injected with a few pL 
of the mRNA solution before activation or sperm injection. The 
embryos that formed pronuclei were transferred to drops of CZB 
medium on a glass-bottomed dish, placed in an incubator with the 
CV1000 imaging system (Yokogawa Electric Corp., Musashino, 
Tokyo, Japan), and incubated at 37°C and 5% atmospheric CO2. 
Time-lapse images were taken over a duration of 70 h at 15 min 
intervals. At each time point, 51 fluorescence images were captured 
2 μm apart along the z-axis for optical sectioning.

Statistical analysis
The oocyte survival rates (Table 1, Table 2, Supplementary Table 

1), blastocyst development rates (Supplementary Table 1), and 
offspring birth rates (Table 1 and Table 2) were analyzed using the 
chi-squared test. P < 0.05 was considered statistically significant. 
Fig. 1A and B data were analyzed using Prism 9 software (GraphPad, 
San Diego, CA, USA).
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