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Abstract: Activated sludge (AS) microcosm experiments usually begin with inoculating a bioreactor
with an AS mixed culture. During the bioreactor startup, AS communities undergo, to some extent, a
distortion in their characteristics (e.g., loss of diversity). This work aimed to provide a predictive
understanding of the dynamic changes in the community structure and diversity occurring during
aerobic AS microcosm startups. AS microcosms were developed using three frequently used carbon
sources: acetate (A), glucose (G), and starch (S), respectively. A mathematical modeling approach
quantitatively determined that 1.7–2.4 times the solid retention time (SRT) was minimally required
for the microcosm startups, during which substantial divergences in the community biomass and
diversity (33–45% reduction in species richness and diversity) were observed. A machine learning
modeling application using AS microbiome data could successfully (>95% accuracy) predict the
assembly pattern of aerobic AS microcosm communities responsive to each carbon source. A feature
importance analysis pinpointed specific taxa that were highly indicative of a microcosm feed source
(A, G, or S) and significantly contributed for the ML-based predictive classification. The results of
this study have important implications on the interpretation and validity of microcosm experiments
using AS.

Keywords: machine learning; microcosm; activated sludge; reactor startup; carbon source

1. Introduction

Activated sludge (AS) processes have commonly been used in full-scale municipal
wastewater treatment plants (WWTPs) for the past 100 years. AS processes are considered
one of the most successful environmental biotechnologies, serving as a final barrier for
preventing undesirable environmental consequences (e.g., eutrophication, harmful algal
blooms, dead ecosystems, and waterborne diseases) [1]. Microbial communities are intri-
cately linked to the major ecosystem functions of AS, directly affecting the overall system
performance (e.g., removal of bulk organic matter, nitrogen, and phosphorous compounds).
There have been many technological research efforts to achieve the development, optimiza-
tion, and sustainable management of AS processes [2]. Numerous studies are also being
performed currently to address ecological questions, because microbial ecology provides
the scientific foundation underlying pollutant removal, thereby helping to achieve the
system’s practical goals [1].

AS communities with practical and scientific significance have been studied in both
laboratory microcosms and field (full-scale WWTPs) experiments [3]. An ecological micro-
cosm is a miniature environment designed for simulating a larger-scale environment of
interest. Laboratory microcosms can be easily set up at a low cost, can be strictly controlled
under laboratory conditions, and are easily replicated [4]. The precise control and manipu-
lation of variables in replicates help researchers to test hypotheses with statistical power,
advancing the mechanistic understanding of AS processes. A common practice in many
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laboratory microcosm studies begins with the inoculation with raw AS communities taken
from those of a full-scale WWTP [5,6]. Through the startup period in the bioreactor, AS
communities are eventually acclimated (i.e., changes in the community structure and di-
versity from those of the raw starting material) to the laboratory conditions. The biological
features of acclimated AS are designed to serve as experimental “controls”. The acclimated
AS (or those further subcultured in separate replicated settings) are then manipulated by
experimental treatments [7,8]. The community features of the “treatment groups” are then
compared to those of the experimental controls, allowing a systematic description of the
treatment and effect and hypothesis testing with statistical support.

Studies related to the protocols and guidelines of the reactor startups are scarce in
the literature, although the startup steps (intentional or not) are essential in many AS
microcosms and can affect the long-term performances of the microcosms [9]. For example,
AS communities acclimated to laboratory conditions during a startup might have lost
their original diversity; however, it is still unclear whether this is significant and, if so,
how it can be considered in designing and interpreting experiments. Research questions
associated with the startup of microcosm experiments can thus include the following: To
what extent do AS communities change in community structures and diversity during a
microcosm startup? How can the microcosm startup period be quantitatively determined?
While several carbon sources (e.g., glucose) are frequently used for microcosm experiments,
what are the impacts of the carbon source on the duration of the startups, the degree of
community phenotypes, and the extent of the community structure?

To gain insights into these issues, the present study established three sets of triplicate
microcosms developed with three frequently used carbon sources: acetate (A), glucose
(G), and starch (S). Since A, G, and S are the small metabolic intermediates of saccharides,
unit sugars (monosaccharides), and sugar polymers (polysaccharides), we chose them
as carbon sources, because they are frequently used for microcosm experiments and
well-represent carbon sources of varying levels of structural complexities among the
chemically defined substrates. This study carried out a mathematical modeling approach to
quantitatively define the time-dependent dynamic changes in the community phenotypes
during the startup period. Time-series 16S rRNA gene sequence data were obtained
from the microcosm reactors, followed by machine learning (ML) modeling using the
microbiome data. ML-based analyses were employed to advance the current understanding
for the effects of carbon sources on the community structure, diversity, and microcosm
composition. Overall, the results of this study have implications for the experimental
design and interpretation of microcosm studies using AS.

2. Materials and Methods
2.1. Establishment of AS Microcosms

A bioreactor feed was composed of the following chemicals in one liter: NH4Cl (0.6 g);
K2HPO4 (0.34 g); KH2PO4 (0.6 g); CaCl2 (0.05 g); FeSO4·7H2O (0.09 g); MgSO4·7H2O
(0.27 g); and 10 mL of a 100× trace mineral solution consisting of ZnSO4·7H2O (0.35 mg),
MnSO4·H2O (0.21 mg), H3BO3 (2.1 mg), COCl2·2H2O (1.4 mg), CuCl2·2H2O (0.07 mg),
NiSO4·6H2O (0.14 mg), and Na2MoO4·2H2O (0.21 mg). The feed also contained a carbon
source (3.45 g/L of sodium acetate, 1.83 g/L of glucose, or 1.5 g/L of starch), each of
which was designed to provide the same level of organic loading rate [10]. A total of nine
reactors were established by an inoculation with an AS sample taken from a local full-scale
sequencing batch reactor (SBR) process. Three sets of triplicate reactors were developed
with three different carbon source feeds, respectively: acetate (A), glucose (G), and starch
(S). The reactors were maintained in sequencing-batch mode (e.g., filling, reaction, and
decanting) with a cycle duration of 3.5 days. The reactors were aerated with 3 to 4 mg/L of
dissolved oxygen during a reaction period. The reactors were operated with 10.5 days of
solid retention time (SRT) and 0.2kg COD/m3·d of organic loading rate (OLR), comparable
to those of full-scale SBR processes [2].
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2.2. Mathematical Model for Describing Dynamic Functional Acclimation of AS

The phenotypes of the AS communities were analyzed for 77 days by measuring
mixed liquor volatile suspended solids (VSS) and COD removal rates. VSS and COD
were measured following the standard methods [11]. These two functions are frequently
used indicators of biomass growth and heterotrophic activities [7]. The dynamics of a
reactor phenotype (VSS concentration in this study) during a startup period of a microcosm
experiment was described using the mathematical model previously developed based
on an analogy of a mechanical spring and damper system [12]. A functional feature
of a model system could be described as a function of time with the parameters in the
model equation. The model was chosen because it could describe any dynamic functional
response of a biological system over time (e.g., from system startup to steady state) and
provide two quantitative values of the dynamic response: a new functional feature of
interest that stabilized after reaching a quasi-steady state and the time period taken to reach
the quasi-steady state (Timess). A VSS concentration was used as the functional feature
of an AS microcosm over time in this study, resulting in VSS concentrations at a steady
state (VSSSS). The exact ordinary differential equation and the script written in R that were
used in this study were described in reference [12]. The method used is detailed in the
Supplementary Method.

2.3. 16S rRNA Gene Sequencing and Analysis

Three mixed culture samples were taken from the inoculum AS cultures (designated
as I). Triplicate mixed culture samples were sampled at days 28 and 77 from three sets of
bioreactors fed by A, G, and S, respectively. Genomic DNA was extracted using the MoBio
PowerSoil® DNA isolation kit (MOBIO, Carlsbad, CA, USA). A 16S rRNA gene was PCR-
amplified with a universal bacterial primer set that targeted the V3–V5 region (305F–805R).
The PCR gene amplicon products were sequenced using Illumina’s MiSeq sequencing plat-
form by Macrogen Inc. (Seoul, Korea). Raw sequence data generated from the sequencer
were processed using MOTHUR (v.1.41.0), following the MiSeq SOP pipeline [13–15]. In
brief, the sequence data were filtered with the parameters: maximum length of homopoly-
mer = 8, maxambig = 0, minimum length = 200, and all other parameters at default settings.
The resulting sequences were chimera-checked using chimera.vsearch and taxonomically
analyzed using classify.seqs. Chimeric sequences and those taxonomically associated with
eukaryotes, chloroplasts, archaea, and mitochondria and those unknown were excluded
from further analysis. The remaining sequences, after the exclusions, were grouped into
operational taxonomic units using the 97% nucleotide identity cutoff. Alpha-diversity
indices were evaluated using rarefaction.single, with a rarefied number of sequences
(29,000 sequences per sample). Statistical testing for examining the differential features in
the community phenotypes and structure was performed with the Mann–Whitney U test
using R software.

2.4. ML Modeling

Four ML models: logistic regression (LR), support vector machine with linear kernel
(SVC Linear), support vector machine with radial basis function kernel (SVC RBF), and
random forest (RF) were used for ML modeling with a supervised learning algorithm, as
described previously [16], using Scikit-Learn 0.23.2 [17]. The training and test datasets
were randomly subsampled from the original family composition dataset generated from
the MOTHUR analysis. The subsampling for each dataset was performed 10 times with a
size of 500 counts. The stratified split resulted in a total of 210 subdatasets from I (n = 30), A
(n = 60), G (n = 60), and S (n = 60) using train_test_split From each group of the subdatasets,
the training subdatasets (80% of the randomly drawn subdatasets) was used to train
each model with a five-fold cross-validation approach with StratifiedKFold, determining
the optimum hyperparameters using a random search with RandomizedSearchCV. The
prediction performance of each ML model, with the hyperparameters optimized from the
five-fold cross-validation, was assessed 100 times with the test (hold-out) dataset (20%
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of the randomly drawn datasets) using two indices: area under the receiver operating
characteristic curve (AUC) and accuracy. The accuracy was determined by dividing
the number of correct classifications by the total number of classifications. The receiver
operating characteristic curve (ROC) was constructed based on the true positive rate and the
false positive rate. The AUC value was the area under the ROC, representing the model’s
prediction performance. To enhance the interpretability of the ML modeling prediction, a
feature importance value (e.g., usefulness/contribution for predicting a target classification)
was estimated for the linear model (LR) using the one-versus-rest approach [18]. For the
nonlinear model (RF), SHapley Additive exPlanations (SHAP) [19] was used to assess
a feature ranking (e.g., an alternative index for a feature’s contribution for a predictive
classification). The mean absolute SHAP impact value was estimated using the python
implementation (https://github.com/slundberg/shap, accessed on 3 May 2021).

2.5. Nucleotide Sequence Accession Number

The 16S rRNA gene sequence datasets used in this study were deposited in Gen-
Bank under the following accession numbers: I0_1 (SRS2340223), I0_2 (SRS2340241), I0_3
(SRS2340242), A28_1 (SRS2340238), A28_2 (SRS2340243), A28_3 (SRS2340193), G28_1
(SRS2340219), G28_1 (SRS2340221), G28_1 (SRS2340217), S28_1 (SRS2340190), S28_1 (SRS2340187),
S28_1 (SRS2340206), A77_1 (SRS2340236), A77_2 (SRS2340194), A77_3 (SRS2340191), G77_1
(SRS2340222), G77_2 (SRS2340214), G77_3 (SRS2340224), S77_1 (SRS2340188), S77_2 (SRS2340185),
and S77_3 (SRS2340208).

3. Results and Discussion
3.1. Quantifying Functional Dynamics of AS Microcosms during Startups

Three sets of laboratory microcosms inoculated from one identical AS culture were
maintained over 77 days by feeding A, G, and S, respectively. The COD removals and VSS
levels were measured to monitor the microcosms’ phenotypes, because they are practical
indicators directly associated with the system performance (e.g., organic matter removal)
and an important operational parameter (e.g., biomass growth) in full-scale processes.
The COD removals by the three sets of bioreactors were 90–95% over the entire duration
(Figure S1) and were not significantly different among the A, G, and S bioreactors. In
contrast, the VSS levels of the three bioreactors changed dynamically over time (Figure 1).
The initial VSS concentration (2.1 mg/L at day 0) gradually decreased for about a month
and then began to level off. The VSS concentrations did not further change significantly
after the startup period. The time-course VSS data over the entire operational period
(Figure 1) were fitted to the mathematical model [12] with a high goodness of fit (>0.92 of
coefficient of determination). The VSSSS was 0.55 ± 0.01, 0.83 ± 0.05, and 0.91 ± 0.03 g/L
for A, G, and S, respectively, and the Timess was 17.7 ± 1.2, 25.0 ± 3.0, and 19.4 ± 2.0 days
for A, G, and S, respectively. The modeling approach could quantitatively define the
quasi-steady state of a functional feature of interest (i.e., the VSS concentration in this
study) after a full-functional acclimation and the minimal time (TSS) taken for reaching the
quasi-steady state.

https://github.com/slundberg/shap
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tions. The time periods (Timess) taken to reach the steady state of VSS (D) and the VSS (VSSSS) levels 
at the steady state (E) were estimated using the model predictions. The range of the Timess measured 
with the three carbon sources are shown with shaded areas in (A–C). 

The modeling approach quantitatively determined the degree of community func-
tional change occurring during the microcosm startups. The initial VSS concentration (2.1 
g/L) rapidly decreased during the laboratory startups and reached the steady state of 0.55–
0.91 gVSS/L. Since the reactor influents contained no microbial inputs, the VSS leaving the 
reactor (0.18–0.30 gVSS for 3.5 days) should equal that yielded within the reactor at the 
steady state. The VSS yield was thus 0.32–0.58 gVSSsynthesized/gCODconsumed, considering the 
stable COD removal rates observed (0.53–0.57 gCOD consumed for 3.5 days). The biomass 
yield (0.3–0.6 gVSS/gBOD) of the microcosm bioreactors with three carbon sources were 
comparable to 0.4–0.6 gVSS/gBOD of aerobic heterotrophs in full-scale AS WWTPs [2]. 

The model predictions could also quantitatively address the minimal period of the 
microcosm startups, suggesting 18–25 days for the acclimation periods. The time periods 
for a microcosm startup are often expressed with a unit of SRT. SRT, also known as the 
mean cell residence time, is the average residence period of microorganisms staying in a 
system. SRT is an important design and operating parameter for AS processes, because 
those growing slower than SRT are expelled from the reactor (i.e., those with doubling 
times longer than the system’s SRT are washed out with the reactor effluents). The startup 
periods were equivalent to 1.7, 2.4, and 1.8 times the SRT for A, G, and S, respectively, 
considering the 10.5 days of SRT established in this study. Many previous studies empir-
ically observed 1.5–5 times the SRT as typical acclimation periods for reaching a quasi-
steady state in functions associated with the removal of specific substrates (e.g., xenobiot-
ics), nitrogen (e.g., ammonia and nitrite) metabolism, and oxygen uptake [5,6,20], as well 
as those measured in this study (biomass growth and organic matter removal). 

Microbial community acclimation is associated with the dynamic functional changes 
during startups. The concept of microbial community acclimation is clear, but the quanti-
tative definition remains elusive. Many factors (e.g., type of function to be measured, type 
of inoculum, and given environmental conditions) can affect the degree and rate of accli-
mation, which makes quantification challenging. There is no standardized defini-
tion/method available for quantitatively determining the acclimation period and the new 
acclimated functional state. A general rule of thumb for process engineers is that microbial 
community acclimation in AS microcosms occurs in about three complete reactor turno-
vers (i.e., about three the times SRT) [3,21], despite variations with distinct operational 
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Figure 1. Dynamic functional acclimation during reactor startups. VSS concentrations (open circles)
in the A (A), G (B), and S (C) reactors are shown over time. Dotted lines indicate the model predictions.
The time periods (Timess) taken to reach the steady state of VSS (D) and the VSS (VSSSS) levels at the
steady state (E) were estimated using the model predictions. The range of the Timess measured with
the three carbon sources are shown with shaded areas in (A–C).

The modeling approach quantitatively determined the degree of community func-
tional change occurring during the microcosm startups. The initial VSS concentration (2.1
g/L) rapidly decreased during the laboratory startups and reached the steady state of 0.55–
0.91 gVSS/L. Since the reactor influents contained no microbial inputs, the VSS leaving
the reactor (0.18–0.30 gVSS for 3.5 days) should equal that yielded within the reactor at
the steady state. The VSS yield was thus 0.32–0.58 gVSSsynthesized/gCODconsumed, consid-
ering the stable COD removal rates observed (0.53–0.57 gCOD consumed for 3.5 days).
The biomass yield (0.3–0.6 gVSS/gBOD) of the microcosm bioreactors with three carbon
sources were comparable to 0.4–0.6 gVSS/gBOD of aerobic heterotrophs in full-scale AS
WWTPs [2].

The model predictions could also quantitatively address the minimal period of the
microcosm startups, suggesting 18–25 days for the acclimation periods. The time periods
for a microcosm startup are often expressed with a unit of SRT. SRT, also known as the
mean cell residence time, is the average residence period of microorganisms staying in a
system. SRT is an important design and operating parameter for AS processes, because
those growing slower than SRT are expelled from the reactor (i.e., those with doubling times
longer than the system’s SRT are washed out with the reactor effluents). The startup periods
were equivalent to 1.7, 2.4, and 1.8 times the SRT for A, G, and S, respectively, considering
the 10.5 days of SRT established in this study. Many previous studies empirically observed
1.5–5 times the SRT as typical acclimation periods for reaching a quasi-steady state in
functions associated with the removal of specific substrates (e.g., xenobiotics), nitrogen
(e.g., ammonia and nitrite) metabolism, and oxygen uptake [5,6,20], as well as those
measured in this study (biomass growth and organic matter removal).

Microbial community acclimation is associated with the dynamic functional changes
during startups. The concept of microbial community acclimation is clear, but the quantita-
tive definition remains elusive. Many factors (e.g., type of function to be measured, type of
inoculum, and given environmental conditions) can affect the degree and rate of acclima-
tion, which makes quantification challenging. There is no standardized definition/method
available for quantitatively determining the acclimation period and the new acclimated
functional state. A general rule of thumb for process engineers is that microbial community
acclimation in AS microcosms occurs in about three complete reactor turnovers (i.e., about
three the times SRT) [3,21], despite variations with distinct operational conditions in each
microcosm setting. Little literature about quantification methods for the acclimation period
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is available. A few studies suggested univariate and multivariate assessment approaches
using the biochemical, physical, and morphological characteristics of AS [22,23]. These
approaches suggest 20–40 days of minimal periods for microcosm startups (one to two
times the SRT in the settings), comparable to those (1.7–2.4 the SRT) measured in our study.
Reporting the biological performances of AS microcosms with no clear evidence that the
microcosm is at a steady state may hinder the accurate interpretation of the microcosm
results. Therefore, the use of a modeling approach, as applied in the previous and present
studies, would be highly desirable to ensure whether a bioreactor is at a steady state
when reporting a functional feature. Such practices would help not only to draw sound
conclusions from the system performance at the given microcosm setting but also enable
more accurate comparisons (e.g., meta-analyses) across different AS microcosm studies.

3.2. Shifts in Community Structure and Diversity during Laboratory Startups

Although previous studies have documented phenotype changes during AS micro-
cosm startups [22,23], the time-dependent shifts in the community structure, diversity,
and composition during startups remain to be further investigated. 16S rRNA gene-based
community profiling was thus carried out for the I (at day 0) and AS samples of A, G,
and S taken at day 28 (right after the acclimation period) and day 77, respectively. A
nonmetric dimensional scaling plot was constructed to illustrate the alterations in the com-
munity structure (Figure 2A). First, each group of communities (A, G, and S, respectively)
with an identical carbon source clustered closely (i.e., six communities of A, G, and S,
respectively, located within their own ellipse) and were clearly distinguished (p < 0.05 by
the PERMANOVA test) from the I communities, respectively. Figure 2B shows the low
community similarity distances (A vs. I, G vs. I, and S vs. I, respectively) between the
microcosm and the I communities. Second, although there were detectable divergences
between the communities sampled at day 28 (n = 3) and at day 77 (n = 3) within each group
(A, G, or S) (Figure 2A), the degree of the dissimilarity did not reach a typical threshold of
statistical significance (p > 0.05). Alpha-diversity indices were estimated to assess the shifts
in community diversity (Figure 3) after the startups. The Chao1 index values (a proxy
of species richness) significantly decreased from the I (395) to A, G, and S communities
(215–249) after the startups. The Shannon values were also significantly reduced from I
(4.0) in the communities after the startups (2.4–3.0). Other alpha-diversity indices such as
Ace (an alternative of Chao1) and Simpson (that of Shannon) showed similar results.
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Figure 2. Shifts in the community structure over time. A nonmetric multidimensional scaling plot
(A) was constructed based on the Bray-Curtis distance metric using the OTU composition data. Six
communities developed with a carbon source were grouped within a 68% confidence ellipse. Each of
the three groups developed with a carbon source (A, G, or S) differed in community structures from
I (p < 0.05 by the PERMANOVA test). Community similarities within and between communities
(B). The community similarities were evaluated within the communities (A, G, and S, respectively)
and between the communities (A vs. I, G vs. I, and S vs. I, respectively). The error bars indicate one
standard deviation from the mean.
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Figure S2 shows the intra-community similarities among the replicates of A, G, and
S, respectively, over time. Although the replicate communities were maintained under
identical conditions, the community similarities among the replicates decreased in general.
These results were consistent with the occurrence of random variations in the community
structure among the bioreactor replicates originating from the same inoculum [4]. The
decreasing intracommunity similarities even among the replicates may be associated with
stochastic (random) variations in the community structure. The community divergence
among the replicates increased, but the increasing rates of divergence were differential
among the replicates with different carbon sources. While stochastic forces, as well as
deterministic ones, contribute to shaping the assembly of microbial communities, the
results suggested future experiments on determining the effects of carbon sources on the
degree of stochastic forces that drive shifts in the community assembly of AS.

3.3. Carbon Source Effects on Community Composition during Microcosm Startups

A taxonomic analysis showed that the I communities were dominated by Bacteroidetes
(33%), followed by Proteobacteria (31%), Acidobacteria (6%), Actinobacteria (5%), Chloroflexi
(5%), Planctomycetes (3%), and Verrucomicrobia (1%) (Figure S3). The relative abundance of
Acidobacteria in I was generally reduced in all microcosm communities (0.3–1.9%). Many Aci-
dobacteria are less culturable and/or grow slowly in laboratory conditions [24,25], consistent
with selective decreases in their microcosms, as observed in this study. Other major phyla
of I were also predominant (>1% on average) in all microcosm communities. The taxonomic
analysis further identified 11 major families (Figure 4) that showed differential abundance
across the A, G, and S communities. The upper dendrogram of Figure 4 differentiates a
group of families overrepresented in I (left) from those selectively enriched (right) in the
microcosm communities. Notably, Anaerolineaceae and Hyphomicrobiaceae were significantly
decreased (p < 0.05) in the microcosm communities. Nakamurellaceae and Cytophagaceae
were selectively enriched (p < 0.05) in both the G and S communities. Rhodobacteraceae and
Sphingomonadaceae particularly dominated (p < 0.05) A and S, respectively, compared to I.
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Figure 4. Major families of AS microcosm communities. Eleven major families (>2% of the total,
on average) are shown. The Log2-transformed fold change (each community over the average
of I) is shown by color. Negative/positive values of the Log2-transformed fold changes indicate
decreased/increased taxa in relative abundance in each community compared to the I communities.

A ML modeling application using the major family composition data (as shown in
Figure 4) was carried out to assess how accurately it could predict the microcosm char-
acteristics (i.e., a feeding carbon source). Four ML models, such as LR, SVC Linear, SVC
RBF, and RF, were chosen, since they are widely used models and differ in algorithm
complexities (linear vs. nonlinear). Each model was trained with the training dataset to
optimize the hyperparameters; after which, the predictive performances with the optimized
hyperparameters using the test (held out) datasets were quantified using both the AUC and
accuracy indices (Figure 5A). The four models displayed good prediction performances
based on the AUC (0.98–0.99) and accuracy (96–99%). Figure 5B,C shows the detailed pre-
dictive performances of the two models (LR and RF) with the higher predicting power. The
ML-based predictions largely agreed with the actual predictions, mostly positioned on the
diagonal boxes (true positives that ML classifications correspond to actual classifications).
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for the LR (B) and RF (C) models. The error bars indicate one standard deviation from the mean. The
colors in the matrix denote the percentages (presented out of 100).

ML modeling was then used to quantify an importance value of each feature (e.g.,
important family indicators for a feeding source) that contributed to making a predictive



Microorganisms 2021, 9, 1387 9 of 13

classification decision. The feature importance analysis was designed to enhance the
interpretability of the ML modeling prediction approach. The analysis was performed
using the one-versus-rest approach often used for multicategory classification, which
applies a binary classifier for a class against the rest of the other classes. The analysis was
performed with the two models with high prediction power, respectively (Figure 6). A
family with a positive feature weight value implied strong contribution/usefulness of the
family for the predictive classification with the LR model. The analysis identified a list of
families strongly associated with each carbon source (Anaerolineaceae for I; Rhodobacteraceae
for A; Nakamurellaceae for G; and Flavobacteriaceae, Cytophagaceae, and Sphingomonadaceae
for S). The feature importance analysis was also performed with the nonlinear ML model
RF, which provided the mean absolute SHAP value of a family for each classification. The
SHAP value estimates (Figure 6) suggested the particular significance of Anaerolineaceae,
Rhodobacteraceae, Nakamurellaceae, and Sphingomonadaceae, for I, A, G, and S, respectively.
The RF-based feature importance results were highly consistent with those from the LR
model (Figure 6) and conventional statistical testing based on the differential relative
abundances (Figure 4).
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Anaerolineaceae are often found in both natural (e.g., rice paddy soil and marine sedi-
ment) and engineered (e.g., activated sludge and anaerobic digester) environments. They
can utilize carbohydrates and proteins as electron donors (i.e., chemoheterotrophs) and can
optimally grow under both mesophilic and thermophilic conditions [26]. They are strict
anaerobes, which likely resulted in their underrepresentation in the microcosm setting of
this study, in which 3 to 4 mg/L of DO was strictly maintained. Many AS microcosm ex-
periments are conducted in a single chamber where a redox condition is strictly controlled,
as in this study (aerobic). Microcosm experiments with different redox conditions (e.g.,
adding anoxic/anaerobic chambers in addition to the aerobic one, as in this study) can be
considered if organisms with different growth characteristics (e.g., Anaerolineaceae) are to
be maintained in microcosms. Hyphomicrobiaceae are an alphaproteobacterial family group
that is phylogenetically diverse (e.g., encompassing 18 known genera) and metabolically
versatile [27]. Many of the family members are aerobic/facultative and oligocarbophilic.
The oligocarbophilic organisms preferably grow at low levels of carbon and are unable
to thrive in rich carbonaceous media. They are frequently found in cellulose-degrading
communities, suggesting they have the capability to metabolize complex natural organic
matters (e.g., lignocellulose) [28]. Cellulose accounts for about half of organic matter in
municipal wastewaters. The underrepresentation of Hyphomicrobiaceae in the microcosm
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communities was likely because the abundance of complex carbohydrates in real waste
streams was missing in the microcosm feeds. Many AS microcosm studies are performed
with chemically defined single-carbon sources (e.g., glucose and acetate, as in this study) or
complex sources (peptone and yeast extract). Depending on the purpose of the experiment,
microcosms may be designed to retain those organisms (e.g., Hyphomicrobiaceae), prefer-
ably utilizing natural complex organic matters, which was not performed in this study
and, thus, is the subject of future studies. Those settings can be established by providing
broad substrates (a carbon mixture including lignocellulose, more resembling those of
real wastewaters).

Nakamurellaceae and Cytophagaceae were commonly overrepresented in the G and
S communities. It was expected that the G and S communities might commonly select
some taxa that have competitive fitness for metabolizing a glucose unit, because starches
are composed of many glucose units that are joined with a glycosidic bond. Of note
was their differential abundance in the A communities, where only Nakamurellaceae were
significantly underrepresented. A previous study reported some members of Nakamurel-
laceae (N. panacisegetis) as unable to metabolize acetate as a carbon and energy source [29],
implying that they may be less competitive for multiplication in the acetate-enriched con-
dition. Rhodobacteraceae are an alphaproteobacterial group widely distributed in marine
environments, participating in global biogeochemical cycles (e.g., sulfur and carbon). They
are aerobic/facultative anaerobic, characterized by their highly diverse ecological niches
(comprising approximately 170 genera) [30]. A stable isotope probing analysis showed
that Rhodobacteraceae are one of the major acetate-assimilating bacterial groups in AS, in
agreement with its selection in the A communities, as observed in this study. The enrich-
ment of Sphingomonadaceae in S communities was noticeable. A breakdown of glycosidic
linkage is the first and rate-limiting catabolic step for cells utilizing starch as a carbon and
energy source. The first metabolic step is carried out by a specific enzyme (e.g., glycoside
hydrolase) that transforms complex carbohydrates into simpler forms (e.g., monosaccha-
rides), enabling the transportation of simpler substrates across bacterial membranes. Some
members of Sphingomonadaceae are characterized by their genetic potential associated with
glycoside hydrolase genes [31]; their enzymatic activities in the degrading glycosidic bonds
were experimentally confirmed by biochemical assays [32]. Overall, the carbon source used
for developing microcosm experiments had a profound impact on shaping the community
structure and composition.

3.4. Implication on Microcosm Studies Using AS

AS processes are model ecosystems for fundamental microbiological research in ecol-
ogy, in addition to their practical significance in human societies. Gaining ecological
insights from full-scale WWTPs remains challenging because of many confounding factors
simultaneously acting at different rates and at varying spatiotemporal scales. Laboratory
microcosms provide many exclusive advantages for research; however, a major criticism of
microcosms is to what extent the microcosm features (e.g., community diversity) represent
those in full-scale WWTPs. This study revealed the reduction of species richness (37–45%
by Chao) and diversity (33–40% by Shannon) in microcosm communities (Figure 3). The
loss of biodiversity and the alteration in the community structure (Figures 2 and 3) were
pronounced, particularly during the startup period, which was well-defined by the pre-
dictive model (Figure 1). The three carbon sources frequently used in microcosm settings
resulted in a similar duration of the microcosm startup and similar extent of the biodiversity
loss and divergence in the community structure. With different carbon sources in micro-
cosm startups, some degree of divergence in the community structure and composition
was inevitable.

Wastewater influents contain large amounts of microorganisms that are constantly
loaded into the AS process in full-scale WWTPs. These microbial inputs that are hardly
simulated in microcosm experiments might contribute, at least in part, to the reduced
biodiversity observed in microcosm studies. Nevertheless, these incoming microbial cells
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(e.g., fecal coliforms) are typically inactive in AS processes (e.g., subject to natural decay
out of their human/animal hosts) and not significant contributors to major AS ecosystem
functions (contaminant removals). In addition, although AS communities may have many
members, not all organisms contribute equally to ecosystem functioning. A keystone
species hypothesis suggests that key taxa exist in a community where they play a dispro-
portionately large role in the function and stability of the ecosystem [33]. Other community
members largely rely on the keystone taxa, without which the functions of the ecosystem
change significantly [8]. Recent studies have shown select core members that are abundant
and that highly frequently exist across a variety of full-scale AS processes [34–36]. These
studies report less than a dozen core species, some of which may presumably serve as
keystone organisms driving important ecosystem functions. The relevant question to be
asked is whether those core taxa can be retained during microcosm startups. It should
be noted that most of the taxa (e.g., Comanonadaceae, Campylobacteraceae, Chitinophagaceae,
Flavobacteriaceae, Pseudomonadaceae, Rhodocyclaceae, and Xanthomonadaceae) previously de-
fined as core organisms were indeed found in the microcosm communities developed with
the three carbon sources, respectively. Rare taxa that are less abundant and are transiently
occurring members may also multiply under specific environmental stimuli. For example,
rare members are often related to metabolizing small amounts of micropollutants (e.g.,
pharmaceuticals and industrial chemicals) present in wastewaters [37,38]. Rare members
with a low abundance may contribute less to major ecosystem functions [39], despite the
debates on the exact roles and importance of these rare members. Accordingly, the core
community concept puts a high priority on future experimental efforts for characterizing
AS functions, with a particular focus on the core members. Therefore, microcosm studies
using AS likely may have relevance and validity for testing ecological/technical concepts
if the laboratory microcosms are found to retain core AS members and the purposes of the
experiments are not to particularly target specific rare members.

4. Conclusions

• A mathematical model revealed 1.7–2.4 times the SRT as the minimal duration for
microcosm startups using AS.

• The species richness and diversity indices were reduced by 37–45% and 33–40%,
respectively, in the AS microcosm communities.

• The ML modeling application using microbiome data showed high performances
(>95% of accuracy) for predicting the assembly patterns of microcosm communities
shaped upon feeding carbon sources.

• Despite the inevitable reduction in community diversity, AS microcosm communities
might retain many of the core AS members often found in full-scale WWTPs.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/microorganisms9071387/s1, Figure S1: Time course COD removal rates, Figure S2: Intra-
community similarity among replicates in microcosms over time, Figure S3: Major phyla of microbial
communities.
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