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Ultrafast laser structuring has proven to alter the wettability performance of surfaces
drastically due to controlled modification of the surface roughness and energy. Surface
alteration can be achieved also by coating the surfaces with functional materials with
enhanced durability. On this line, robust and tunable surface wettability performance can
be achieved by the synergic effects of ultrafast laser structuring and coating. In this work,
femtosecond laser-structured stainless steel (SS-100) meshes were used to host the
growth of NaAlSi2O6–H2O zeolite films. Contact angle measurements were carried on
pristine SS-100 meshes, zeolite-coated SS-100 meshes, laser-structured SS-100
meshes, and zeolite-coated laser-structured SS-100 meshes. Enhanced hydrophilic
behavior was observed in the zeolite-coated SS-100 meshes (contact angle 72°) and
in laser-structured SS-100 meshes (contact angle 41°). On the other hand, superior
durable hydrophilic behavior was observed for the zeolite-coated laser-structured SS-100
meshes (contact angle 14°) over an extended period and reusability. In addition, the zeolite-
coated laser-structured SS-100 meshes were subjected to oil–water separation tests and
revealed augmented effectuation for oil–water separation.
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INTRODUCTION

Industrial wastewater from food and chemical processing, oil refining, and metal structuring consists
of water contaminated with oil, which needs an efficient oil–water separation (Ranade and Bhandari,
2014). Moreover, oil spills in oceans cause drastic impact on marine life, human health, and the
environment. Hence, the development of cost-effective and highly efficient oil–water separation
methods for water purification, pollution control, and oil spill recovery is of great interest.
Traditional methods of oil separation techniques from oil-polluted wastewater involve heating,
skimming, and chemical dispersion (Rasouli et al., 2021). Despite their effectiveness in oil separation,
these methods suffer from producing harmful products leading to a reduction in the oil separation
efficiency with time (Rasouli et al., 2021). To overcome this shortcoming, various techniques (Pal,
2017) have been proposed in the literature to separate oil from oil-contaminated wastewater.
Recently, porous polymeric membrane-based filters have been widely used in the separation of
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oil–water due to their high separation efficiency and simple
operating conditions (Wang et al., 2018; Bolto et al., 2020).
Moreover, nanoparticles mixed with different porous
polymers, known as composite membranes, have also been
widely used due to their effective selectivity, low cost, and ease
of manufacturing (Al-anzi et al., 2017; Noamani et al., 2019).
However, the major problem with porous membranes, regardless
of their synthesis method, is that they suffer from fouling by
organic materials, microplastics, proteins, and biofilms, which
reduces their filtration/separation efficiency (Tummons et al.,
2020; Junaidi et al., 2021). The accumulated foulants are removed
from the surface of membranes by cleaning them in place using
strong oxidizing agents. These chemicals, however, can damage
the membrane structure and thus decrease membrane lifetime
(Zhang et al., 2016; Li et al., 2019). Furthermore, the brine
generated from backwashing and cleaning results in the
generation of highly toxic waste that results in severe
contamination of the environment (Katibi et al., 2021). Thus,
the use of clean and sustainable organic membranes for oil–water
separation is still a standing challenge to be resolved.

Inorganic membranes based on ceramic and carbon materials
exhibit higher efficiencies for oil–water separation and are very
durable due to their superior chemical and physical properties
(Ding and Gao, 2021; Usman et al., 2021). Ceramic-based
membranes are synthesized from oxides (e.g., zirconia, silica,
and alumina), zeolites, and metal–organic frameworks (MOFs)
(He et al., 2019). Carbon-based membranes involve carbon
nanotubes (CNTs) and graphene (Al-anzi et al., 2017).
Furthermore, ceramic-based membranes exhibit low fouling,
high microbial resistance, and high porosity and possess
excellent thermal and chemical properties (He et al., 2019).
They are mechanically strong and durable and can withstand
high pressure in industrial applications (Lee et al., 2015).
However, they are heavyweight, expensive, and physically
brittle (Siskens, 1996). On the other hand, although carbon-
based membranes such as CNTs and graphene possess high
surface area, uniform porosity, tunable surface chemistry,
chemical and thermal stability, and high charge conduction
(Gu et al., 2016), they show low resistance to fouling and
uniform pore size distribution (Fard et al., 2018). Recently, it
was reported that coating membranes or metal mesh substrate
with functional thin-film structures tunes their physical
wettability performance (Wang et al., 2018). In this context,
the low surface energy property of the coating adds either
tuneable superhydrophobic or tunable superoleophobic
functionalities to the substrates (Wang et al., 2018).

Zeolite membranes have attracted considerable attention from
researchers around the world for their high porosity,
hydrophilicity/oleophobicity, and chemical and thermal
stability (Barbosa et al., 2020; Anis et al., 2021). They exhibit
microporous 3D crystalline solid structures and contain silicon,
aluminum, and oxygen in their framework (Carolyn Rulli).
Zeolites are considered to be environmentally friendly and
thus have replaced phosphates in many chemical detergents,
which led to a significant reduction in water pollution (Li
et al., 2017). Owing to their excellent absorption properties
and thermal stability, they have also been used in catalytic

converters (Premkumar and Balaji, 2020). As effective
adsorbents, zeolites are employed in water treatment for the
removal of harmful organic pollutants and heavy metals (Li
et al., 2017). In particular, sodium-based zeolite
(NaAlSi2O6–H2O) has been widely used in membrane
applications for oil–water separation due to their isometric
trapezohedron structure, which exhibits a large surface area
and large pore diameter (>0.5 nm). These properties allow the
passage of large ions and molecules through its framework
(zeolite | Structure, Properties, and Facts | Britannica, 2020;
Mahmodi et al., 2020). As a result, sodium zeolite can be used
for better molecular sieving properties. It has been shown in the
literature that sodium-based zeolite modifications lead to large
pore size substrates with contact angles ranging from 156° to
163.7° with efficient water–oil separation exceeding 99% (Cui
et al., 2008; Liu et al., 2018; Mahmodi et al., 2020; Anis et al.,
2021). Even though the above-reported methods can efficiently
separate oil–water mixtures, they involve toxic chemicals in their
synthesis. In addition, they lack durability and longevity (Chu
et al., 2015).

Nowadays, surface structuring of pristine metals and alloys
with ultrafast laser has been proved to induce effective and
durable surface wettability properties (Boltaev et al., 2020;
Khan et al., 2021a, 2021b; Yalishev et al., 2021). In this regard,
metal surface structuring using femtosecond laser technology has
newly emerged as a robust, contactless, and mask-less technique
that structures surfaces of any materials with very fine resolution
(Toyserkani and Rasti, 2015; Amoako, 2019). Femtosecond laser
structuring of different materials is used for many applications
such as enhancing the surface area of electrodes for hydrogen
production (Amoako, 2019), solar cells (Zhang et al., 2015;
Imgrunt et al., 2017), dielectrics (Englert et al., 2008), self-
cleaning surfaces (Wu et al., 2021), and water filtration (Zhang
et al., 2021). Recently, ultrafast laser structuring of metals and
alloys surfaces has been employed in oil–water separation (Zhang
et al., 2017; Qin et al., 2019). The laser structuring of surfaces for
this application is achieved either by drilling micro-holes through
the surfaces or by fine structuring of metal meshes (Qin et al.,
2019). Compared with wet chemistry techniques, e.g.,
hydrothermal and sol-gel, femtosecond laser nanostructuring
provides robust, stable, and durable superwetting surfaces for
oil–water separation (Yin et al., 2017). Sen et al. fabricated a
superhydrophobic titanium filter for oil–water separation by
drilling micro-holes through a titanium foil (Ye et al., 2016).
Zhou et al. prepared copper filters from Cu sheets by drilling
micro-holes with a diameter of 200 μm followed by a raster scan
approach to create nanostructures on the surface (Zhou et al.,
2019). The sheet was further decorated with graphene oxide
through the electrophoresis method to create a
superhydrophilic/oleophobic surface with an underwater oil
contact angle (OCA) of 165° (Zhou et al., 2019). Titanium
oxide film was grown on titanium substrate (TiO2@Ti)
through femtosecond laser ablation where the laser ablation
process oxidized the surface of Ti substrate and formed
microchannels with a rough TiO2 layer, which created highly
stable, self-cleaning, and pollutant-free oil–water filters with high
separation efficiency (Cao et al., 2019). Yang et al. structured Ti
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foam (∼1-mm thickness) using a femtosecond laser (Yang et al.,
2019). The surface structured Ti foam exhibited superwetting
properties and yielded separation efficiency of 99% for emulsified
oil–water separation (Yang et al., 2019). In general, structured
surfaces of metals generated as a result of laser ablation
demonstrate either superhydrophilic or underwater
superoleophobic properties, depending on the type of material,
ablation environment, and other laser parameters (Schnell et al.,
2019). However, these properties decay significantly with time

due to weak adhesion, thus needing proper coating techniques
that produce better adhesion (Schnell et al., 2019). Although there
are some reports in the literature on surface engineering of
metals, alloys, and polymer composites with a femtosecond
laser that created durable superhydrophilic and underwater
superoleophobic surfaces for oil–water separation, the
technique is still rudimentary (Alnaser et al., 2019). Hence, it
is very desirable to investigate the combined effect of coating and
laser nanostructuring on metal mesh filters.

FIGURE 1 | Experimental setup for mesh structuring using a femtosecond laser with half-wave plate (HWP) and a thin-film polarizer (TFP) to control the average
power of laser pulses.

FIGURE 2 | X-ray diffraction spectrum of (A) zeolite-coated laser-structured SS meshes (peaks that belong to zeolite are marked with “*”). (B) Zeolite target for
pulsed laser deposition (PLD). (C) SS-100 substrate. The thickness of the film used is 800 nm.
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FIGURE 3 | Scanning electron microscopy (SEM) micrograph of SS-100 mesh surfaces. (A–C) Uncoated SS-100 mesh surface structured with laser-induced
periodic surface structure (LIPSS). (D–F) Structured SS-100 mesh with LIPSS after coating with zeolite surface. (G–I) Unstructured SS-100 mesh with zeolite-coated
surface.

FIGURE 4 | Scanning electron microscopy (SEM) analysis of aging sodium zeolite-coated SS mesh. D1, D15, and D30 represent days, while * represents the
unstructured surface.
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In this work, sodium zeolite (NaAlSi2O6–H2O)-coated filters
with superhydrophilic and underwater superoleophobic
properties were prepared. The substrate SS-100 mesh was first
nanostructured by a femtosecond laser and later coated with
zeolite using the pulsed laser deposition (PLD) technique. The
wettability nature of these meshes was evaluated by contact angle
measurements and used for oil–water separation. The
regeneration of the used zeolite-coated laser-structured SS-100
meshes was achieved by calcination and evaluated for wettability,
reusability, and stability. The cycle was repeated for 30 days using
water–n-hexane mixtures, and the results were compared.

MATERIALS AND METHODS

Materials and Method
SS-100 mesh (316 L), NaAlSi2O6–H2O (99.9% purity), and
methylene blue dye were purchased from Sigma-Aldrich (St.
Louis, MO, USA). Double distilled deionized (DI) water was
used throughout the study.

Instrumentation
An amplified high-powered-based laser system (AFS-UFFL-300-
2000-1030-300 from Active Fiber Systems GmbH, Jena,

Germany) was employed for the nanostructuring of meshes
(Figure 1). F-Theta lens and a raster scanner using the scan
head (SH) (FARO tech. Xtreme-20, Faro Technologies, Inc., Lake
Mary, FL, USA) was used for laser focusing. Thin-film
depositions were performed by Neocera Pioneer 180 PLD
system equipped with 248-nm KrF excimer laser (Coherent
COMPex Pro 102 F, Coherent, Inc., Santa Clara, CA, USA).
Scanning electron microscopy coupled with energy-dispersive
X-ray spectroscopy (SEM-EDX) was performed on TESCAN
VEGA3 SEM equipped with an EDX spectrometer (Tescan,
Brno, Czechia). Phase and crystallographic analyses were
performed using X-ray diffraction (XRD) (Malvern
Panalytical’s X’Pert³, Malvern, UK). Contact angle
measurement was conducted using Drop Shape Analyzer
(DSA-100, KRUSS, Matthews, NC, USA).

METHODS

All samples were cleaned with isopropanol followed by DI water
and dried in a convection oven before being subjected to laser
processing. A femtosecond laser generates a sequence of pulses
with a single pulse duration of 40 fs at central wavelength of
1,030 nm, with a single pulse energy of 160 μJ at a repetition rate

FIGURE 5 | Energy-dispersive X-ray (EDX) spectra and color mapping of pristine and sodium zeolite-coated SS mesh.
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of 50 kHz. We selected a scanning speed of 100 mm/s with a
spacing width of 100 μm between adjacent laser beam paths. The
laser beam was initially redirected by mirror systems to a linear
attenuator to adjust the laser power, then was focused onto the SS
meshes by F-Theta lens, and raster-scanned using the SH, which
allowed adjustment of the focal diameter of the laser beam at
60 μm with a laser fluence of 5.6 J/cm2.

Sodium zeolite of 2.5-cm diameter × 0.5-cm-thick target for
PLD was prepared by hot pressing of fine powder of
NaAlSi2O6–H2O. Then thin-film depositions were performed
by Neocera (Beltsville, MD, USA) Pioneer 180 PLD system
equipped with 248-nm KrF excimer laser. The background

pressure in the vacuum chamber was 120 mTorr at a constant
flow rate of oxygen. The deposition was performed at 500°C,
21,000 laser pulses, 120-mJ pulse energy, and 7-Hz frequency.
This condition produces an 800-nm-thick coating on the mesh
surface, which was examined through a SEM. The substrate was
stationary while the target was rotated along with rastering during
a deposition to circumvent local heating and uniform
consumption of the material.

Following the PLD coating, the surface morphology and
elemental dispersion analyses of zeolite-coated SS mesh were
performed using the SEM-EDX system. Phase and
crystallographic analyses on coated meshes were performed

FIGURE 6 |Wettability test of SS meshes. (A)Water contact angle (WCA) test for the zeolite-coated laser-structured SS-100 meshes. (B) Oil contact angle (OCA)
test for the zeolite-coated laser-structured SS-100 meshes. (C)WCA for uncoated laser-structured. (D)WCA for coated non-laser-structured. (E)WCA for pristine SS-
100 mesh.

FIGURE 7 | Effect of aging time on the water contact angle (WCA) (A) and OCT (B) of the zeolite-coated laser-structured SS-100 meshes.
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using XRD. Wettability characterization of pristine, laser-
structured, and coated meshes for air–water contact angle
(WCA) and underwater OCAs were performed with Drop
Shape Analyzer. The results reported for wettability analysis
are the average of three measurements on three different
places in the same area of interest. Moreover, for OCA, the

untreated surface of meshes was horizontally stuck to glass slides
with tape, and the treated surface was dipped in the water for
analysis with n-hexane oil (2 μl of bubble volume) for each
contact angle measurement.

The oil–water separation experiment was performed with
20 ml of water–n-hexane mixture (1:1 by volume) and poured

FIGURE 8 | Oil–water separation apparatus using the zeolite-coated laser-structured SS-100 meshes.

FIGURE 9 | (A) Water separation efficiency from the water–oil mixture using the zeolite-coated laser-structured SS-100 meshes during 15 separation cycles. (B)
Separation efficiencies of the zeolite-coated laser-structured SS-100 mesh in deionized (DI) water, 1 M of NaCl, 1 M of KOH, and 1 M of HCl.
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on the SS mesh. The two liquids were distinguished by coloring
water with methylene blue dye. The total water flux through the
mesh and oil intrusion pressure was calculated by Eqs 1 and 2,
respectively (Zhang et al., 2020).

F � V

A × t
(1)

where F is the permeation flux of water, V is the volume of the
liquid permeated through the mesh area A (m2), and t is the total
time of separation.

Pint � 2c
ℓ1/2

Cosθ

d
(2)

Pint is the intrusion pressure (kPa), c
ℓ1/2 is the oil and water

interfacial tension (mN/m), θ is the OCA (°), and d is the pore size
of mesh (m).

RESULTS AND DISCUSSION

Surface Characterization
The XRD spectra of zeolite-coated laser-structured SS-100
meshes (Figure 2A), zeolite (Figure 2B), and SS-100 substrate
(Figure 2C) were recorded for 800-nm films. Inspection of these
spectra reveals that the target zeolite NaAlSi2O6–H2O can be
characterized as analcime (JCPDS 41-1478) with a hexagonal
crystal structure (Ma et al., 2015; Bisung and Dickin, 2020). On
the other hand, the XRD spectra for SS-100mesh reveal that it can
be identified as a polycrystalline material with face-centered cubic
(fcc) crystal structure (Pető et al., 2020). Furthermore, the SS-100
mesh spectra show a 2θ peak at 44.5 (111) degrees with additional
peaks at 51.1 (200) and 74.9 (220) degrees. These additional peaks
could be assigned to the fcc structure (Pető et al., 2020). The
spectra of zeolite-coated laser-structured SS-100 meshes
(Figure 2A) reveal that the fabricated films were
polycrystalline (Ramakrishna et al., 2016). This is due to the
thermal treatment during the deposition in which the substrate
was kept at 500°C during the deposition. Furthermore, the spectra
in Figure 2A reveal that deposition of zeolite was successfully
achieved on SS-100 with the appearance of all its peaks marked
with *.

The surface morphology of laser-structured SS-100 mesh was
studied through SEM. Figures 3A–C show SEM images of
uncoated mesh with laser-induced periodic surface structures
(LIPSSs) of 1 μm period. The image is similar to what has been
reported earlier by our group using the same LIPSS (Khan et al.,
2020). It can be concluded that the induced surface roughness
with LIPSS structuring is a key factor for the observed underwater
superoleophobic property (Li et al., 2016). The SEM images for
the PLD thin film on SS-100 unstructured mesh and LIPSS
structured meshes are presented in Figures 3D–I. Inspection
of these images reveals that coating with zeolite produced a
uniform film with a crystallite-like structure. Furthermore, the
zeolite crystallites along with LIPSS induce much higher surface
roughness as compared with the uncoated surface (Figure 3C)
and unstructured surfaces (Figure 3I). This high surface
roughness is believed to be the crucial factor behind the

enhancement of surface hydrophilic property (Polini and
Yang, 2017).

Figure 4 shows the changes in surface morphology after aging
and application in oil–water removal for 30 days. In these
experiments, the oil–WCA analysis was done every other day.
After each test, the meshes were calcined at 250°C for 20 min to
remove hydrocarbons. The reported SEM images (Figure 4) show
that the loosely bonded zeolite seeds on the surface of meshes
eroded with time during calcination. On the other hand, the
LIPSS structured surface with tightly bonded zeolite powder is
still there, which was the reason for the permanent surface
wettability response.

For the elemental composition of sodium zeolite coatings,
EDX analysis was performed on the pristine and coated meshes.
EDX spectra in Figures 5A,B for pristine and coated meshes with
zeolite show that Al, Si, and Na were uniformly distributed over
the mesh surface at 11%, 7.8%, and 7.3%, respectively, which can
be seen in the color mapping below the spectra.

Surface Hydrophilic/Oleophobic Properties
It was reported earlier that the surface roughness with proper
microstructures engineered using a femtosecond laser tends to
produce superwetting states with extreme superhydrophilic or
superhydrophobic films (Nakae et al., 1998). These unique
modified properties of the meshes are of high demand in
oil–water separation industries, for they can yield efficient oil
removal from contaminated water for environmental
remediation. Hence, the development of robust and efficient
superhydrophobic or superhydrophilic meshes is attracting
major research in this field.

The wettability tests of the laser-structured and coated
meshes in the air with water droplets and underwater with
oil bubbles were carefully studied by the contact angle method.
As shown in Figure 6A (Supplementary Video S1), the water
droplet in contact with the zeolite-coated laser-structured SS-
100 meshes spread immediately over the surface and permeated
completely through the mesh within 20 ms, exhibiting
superhydrophilic nature. Furthermore, underwater oil
measurements reveal that the zeolite-coated laser-structured
SS-100 meshes show superhydrophilic with non-adhesive
nature as evident from the deformation of the oil bubble
from ellipsoidal to circular shape under slight pressure
against the mesh surface (Figure 6B and Supplementary
Video S2). It could be deduced that the superhydrophilicity
provided the zeolite-coated laser-structured SS-100 meshes with
underwater superoleophobicity property (Wu et al., 2018). On
the other hand, the uncoated structured, coated laser-
unstructured, and pristine meshes are not superhydrophilic
and show a WCA of 41°, 72°, and 105°, respectively (shown
in Figures 6C–E).

To test the durability of the zeolite-coated laser-structured SS-
100 meshes with aging time, WCA and OCA were measured over
30 days and shown in Figures 7A,B. Inspection of this figure
reveals that the surface wettability of the zeolite-coated laser-
structured SS-100 meshes changed by small angles over 30 days’
period and thus retained their superhydrophilic and underwater
superoleophobic property.
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Application in Oil–Water Separation
To test the performance of the zeolite-coated laser-structured SS-
100 meshes in oil–water separation, experiments were performed
as shown in Figure 8 and Supplementary Video S3. In these
experiments, the mesh was placed such that the structured and
coated surface faces the downward flowing flux. Due to the
superhydrophilic surface property, the water passed through the
mesh surface in a fraction of seconds while oil was repelled beyond
the mesh surface and rejected from passing through. Specifically,
the separation of water from the oil–water mixture was carried out
through gravitational pull in 18 s with the permeating water flux of
12,738 L·m−2·h−1 and yielded a separation efficiency greater than
95% with oil intrusion pressure of 1.2 kPa. Figure 9A shows the
water separation efficiency for the zeolite-coated laser-structured
SS-100 meshes after operation of 15 cycles and reveals that an
average efficiency of 94.4% was achieved in the last cycle. These
outstanding results demonstrate the durability and applicability of
the zeolite-coated laser-structured SS-100 meshes over extended
use. This observed stability and reusability of the zeolite-coated
laser-structured SS-100 meshes render them as powerful and
robust in oil–water separation in industrial processes.

To test the efficiency and durability of the zeolite-coated laser-
structured SS-100 meshes under corrosive field conditions, the
oil–water separation was conducted in 1 M of NaCl, KOH, and
HCl water solutions (Figure 9B). The results reveal that the
separation efficiency maintained a value of 94% as compared with
the pure water of 95%. Therefore, it can be concluded that there is
no significant difference between the performance of these
meshes in corrosive media as compared with DI water
environment. This could be attributed to the formation of thin
films with good chemical and physical stability on the SS-100
mesh substrate, which renders them highly tolerant towards
corrosive conditions (Wen et al., 2013; Zhang et al., 2013).

CONCLUSION

In this study, NaAlSi2O6–H2O zeolite was grown on femtosecond
laser-nanostructured stainless steel substrates. The coated surface
was analyzed by XRD, SEM, and EDX and compared with
pristine steel meshes, zeolite-coated meshes, and laser-
structured meshes, as controls. Detailed contact angle

measurements were carried out on pristine steel meshes,
zeolite-coated meshes, laser-structured meshes, and zeolite-
coated laser-structured-100 mesh specimens. Enhanced
superhydrophilic behavior was observed in coated and
structured specimens, with the zeolite-coated laser-structured
SS-100 meshes exhibiting an average contact angle of 15°

along with superior durability over an extended period and
repeated use. In addition, the zeolite-coated laser-structured
SS-100 meshes were subjected to oil–water separation
experiments and revealed augmented effectuation for oil–water
separation. In particular, the separation was carried out through
gravitational pull in 18 s with the permeating water flux of
12,738 L·m−2·h−1 and yielded a considerable separating
efficiency of 95%.
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