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Abstract

Antibodies and B-cell receptors (BCRs) are produced by B cells, and are built of a heavy
chain and a light chain. Although each B cell could express two different heavy chains and four
different light chains, usually only a unique pair of heavy chain and light chain is expressed—
a phenomenon known as allelic exclusion. However, a small fraction of naive-B cells violate
allelic exclusion by expressing two productive light chains, one of which has impaired function;
this has been called allelic inclusion. We demonstrate that these B cells can be used to learn
constraints on antibody sequence. Using large-scale single-cell sequencing data from humans,
we find examples of light chain allelic inclusion in thousands of naive-B cells, which is an order
of magnitude larger than existing datasets. We train machine learning models to identify the
abnormal sequences in these cells. The resulting models correlate with antibody properties that
they were not trained on, including polyreactivity, surface expression, and mutation usage in
affinity maturation. These correlations are larger than what is achieved by existing antibody
modeling approaches, indicating that allelic inclusion data contains useful new information. We
also investigate the impact of similar selection forces on the heavy chain in mouse, and observe
that pairing with the surrogate light chain significantly restricts heavy chain diversity.
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Introduction

B cells are a crucial component of the adaptive immune system and they carry out many of their
characteristic functions via the B-cell receptor (BCR) [1]. The BCR recognizes antigens through
a membrane bound immunoglobulin (Ig) molecule, made up of two antigen-binding fragments,
each containing a heavy (H) chain and a light (L) chain. Some B cells can secrete Ig molecules as
antibodies in response to the presence of antigens. In humans, although each B cell could genetically
express two different H chains and four different L chains (two κ and two λ), usually only a unique
pair of H chain and L chain is expressed in each B cell, known as the allelic exclusion phenomenon
(Figure 1) [2]. Antibodies are also of interest as experimental tools and therapeutics, because they
can be engineered to bind desired targets [3].

An important problem in immunology and antibody engineering is to describe the constraints on
antibody sequences imposed by properties like stability and polyreactivity. Although the theoreti-
cal space of antibodies is massive, most sequences are either unstable or highly polyreactive [2, 4].
These antibodies are generally not useful and can be associated with disease [5]. Our understand-
ing of these properties has been limited by a lack of negative examples of sequences that violate
such constraints, which we hereafter refer to as dysfunctional. The natural immune system filters
dysfunctional BCRs via sequential checkpoints in B-cell development, occurring primarily in the
bone marrow (Figure 1A). It is possible to sequence the distribution of BCRs before and after these
checkpoints to observe what kinds of BCRs satisfy constraints [4, 6]. However, the throughput of
such experiments in humans has been very low because of the difficulty in collecting bone marrow
samples. There has also been work on measuring stability and polyreactivity via in vitro assays,
but such assays are typically much lower throughput than binding assays and may differ from in
vivo constraints [7–10].

In this work, we propose a new source of dysfunctional BCRs to use as negative examples for
modeling antibody constraints. To observe dysfunctional sequences, we use B cells that violate the
allelic exclusion phenomenon. During B-cell development, B cells first generate a heavy (H) and
then a light (L) chain for the BCR (Figure 1A). These sequences must properly express, pair, and
display limited autoreactivity. At each stage, if a rearrangement fails, additional rearrangements can
be attempted in a process known as receptor editing [11]. The allelic exclusion phenomenon specifies
that most B cells only express the final, successful rearrangements of the H and L chains. However, a
small fraction (∼1%) of naive-B cells in humans have been shown to express two productive L chains
at the level of mRNA [2], a phenomenon referred to as allelic inclusion (Figure 1B). When allelic
inclusion occurs, one of the two transcripts has low surface expression or is autoreactive [12, 13].
Notably, naive-B cells circulate in peripheral blood, and can therefore be sequenced at much higher
throughput than early B-cell precursors in the bone marrow [14–17]. Allelic inclusion has also been
reported in memory-B cells, but this is much less well-characterized [18].

We sought to use dysfunctional rearrangements from allelically included B cells as negative train-
ing examples for a machine learning model (Figure 1C). Previous work observing allelic inclusion
has only characterized it at a small scale (hundreds of B cells) [12,13,18,19]. By leveraging recent,
large single-cell BCR repertoires in humans, we were able to observe light-chain allelic inclusion at
a much larger scale (several thousand B cells). However, we do not know a priori which sequence
in each cell is dysfunctional. We developed a framework to train models on allelic inclusion data
without this information and can then use the trained models to score individual sequences. The
model scores generalize to predict several antibody properties associated with dysfunctionality with
no additional training. These properties include polyreactivity, surface expression, and mutation
usage in affinity maturation (Figure 1D).

Previous work has attempted to understand constraints on antibody sequence by only mod-
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Figure 1: Learning antibody sequence constraints from allelic inclusion. (A) Overview
of B-cell development. Random heavy and light chains are generated separately, with each being
tested for functionality in sequential checkpoints. The heavy chain is generated in pro-B cells
and must express with the surrogate light chain (SLC). The light chain is generated in pre-B
cells and must express with the heavy chain with low autoreactivity. (B) Overview of light-chain
allelic exclusion in B-cell development. Light chains are initially generated in small pre-B cells. If
the initial light chain does not express on the surface or is autoreactive, new rearrangements are
attempted via receptor editing. Usually only a final, successful pair of heavy and light chains is
expressed as mRNA (allelic exclusion) but sometimes two attempts can be observed, one of which
is autoreactive or not expressed on the surface (allelic inclusion). Cells that are still missing non-
autoreactive surface BCR after receptor editing will die. (C) We develop machine learning models
that classify antibody sequences as coming from an allelically included B cell or not. (D) Machine
learning models of allelic inclusion generalize to predict antibody properties they were not trained
on, including polyreactivity, mutation usage, and surface expression level.
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eling functional BCR sequences that passed developmental checkpoints [14, 20–22]. However, the
distribution of such sequences is shaped by both the V(D)J recombination process and the devel-
opment checkpoints. A BCR sequence could appear unlikely in the distribution of functional BCRs
either because it is unlikely to be generated by V(D)J recombination or because it is dysfunctional.
Models that only examine functional sequences and no negative examples cannot distinguish these
scenarios. Another line of work has proposed simulating the V(D)J recombination process in silico
to generate BCR repertoires that are not subject to any selection pressures [23, 24]. This work
uses unproductive BCR sequences from naive-B cells (those that are out-of-frame or have a stop
codon) to fit the parameters of the simulation. However, the accuracy of this approach has not
been assessed on a pre-selection repertoire of productive BCR sequences, because a sufficiently
large repertoire of this kind has not previously existed. We compare our new models against these
approaches and show improved ability to predict light chain sequence constraints, demonstrating
the value of learning from dysfunctional examples from allelic inclusion.

Our models trained on light chain allelic inclusion are not applicable for heavy chain constraints,
but we explore the impact of similar selection forces on the heavy chain using bulk repertoires in
mice. We observed evidence that surface expression significantly constrains heavy-chain diversity
through pairing with the surrogate light chain.

Results

Finding dysfunctional BCRs by observing allelic inclusion at scale

We looked to use dysfunctional BCRs observed in allelic inclusion as training data for a machine
learning model. However, existing evidence of allelic inclusion in naive-B cells were based on low-
throughput sequencing, with each analysis involving hundreds of B cells at most [12]. To obtain
a larger training dataset, we examined recent single-cell BCR repertoires that include hundreds of
thousands of B cells. In particular, a recent collection of single-cell repertoires from Jaffe et al.
includes over 400,000 human naive-B cells [15], while another collection from van der Wijst et al.
includes over 30,000 human naive-B cells [25]. A technical challenge for analyzing these data is
the existence of multiplet errors. Multiplet errors occur during single-cell sequencing when two B
cells are erroneously labeled with the same barcode by falling into the same droplet. A multiplet
that includes two standard, allelically excluded B cells could manifest as a single barcode being
associated with multiple BCR transcripts. The smaller dataset from van der Wijst et al. includes
single-cell gene expression vectors, which were used to identify and filter multiplets computationally
(Methods). However, the larger dataset from Jaffe et al. does not include gene expression vectors
and has not had multiplets filtered out. The van der Wijst et al. dataset therefore gives a more
accurate estimate of allelic inclusion frequencies.

Table 1 shows the fraction of barcodes with different counts of heavy and light chain BCR
transcripts. In both datasets, the vast majority of barcodes exhibit a unique pair of heavy and
light chain transcripts - as expected for the standard allelic exclusion behavior. Both datasets
have about 5% of barcodes associated with two light chains and one heavy chain (referred to as
double-light). The filtered dataset (Table 1, right) has very few barcodes associated with two heavy
chains, while the unfiltered dataset (Table 1, left) has nearly 8% of barcodes associated with two
heavy chains, almost equally split between having one or two light chains.

Previous literature has found that heavy chain allelic inclusion is very rare in naive-B cells, with
a rate of less than 0.1% [2]. Since the filtered dataset has a low rate of barcodes with two heavy
chains, we postulated that the vast majority of barcodes with two heavy chains in the unfiltered
Jaffe et al. dataset are due to multiplet errors. To investigate this claim, we fit classification
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Naive-B cell breakdown
by unique transcripts
in Jaffe et al. data [15]

Heavy
Light

1 2 All

1 87.6% 5.0% 92.5%

2 3.9% 3.6% 7.5%

All 91.4% 8.6% 100.0%

Naive-B cell breakdown
by unique transcripts

in van der Wijst data [25]

Heavy
Light

1 2 All

1 93.3% 5.7% 99.1%

2 0.5% 0.4% 0.9%

All 93.8% 6.2% 100.0%

Table 1: Observing allelic inclusion in single-cell BCR repertoires. (Left) Breakdown of
barcodes in the Jaffe et al. dataset [15] by how many productive heavy and light chain transcripts
they are associated with, in naive-B cells only. This dataset has not undergone computational
multiplet filtering. Most barcodes have one of each, which is the expected standard allelic exclusion
behavior. Other barcodes may be a result of allelic inclusion or of multiplet errors. (Right)
Breakdown of barcodes in the van der Wijst et al. dataset [25] by how many productive heavy
and light chain transcripts they are associated with, in naive-B cells only. This smaller dataset has
undergone computational multiplet filtering. We therefore expect that it more accurately reflects
true allelic inclusion statistics.

models to distinguish simulated multiplet errors from barcodes with two heavy chains (Methods).
We found that these barcodes were nearly indistinguishable from simulated multiplets, supporting
the hypothesis that this part of the data is almost all multiplets (Supplementary Table S1). We
therefore restricted our remaining analysis to double-light barcodes. We show in the next section
that double-light barcodes include a substantial portion with clearly abnormal BCR sequences.

Learning to identify dysfunctional sequences in allelic inclusion

Although we have now collected double-light B cells, which each contain a dysfunctional BCR
sequence, we do not know which of the two sequences in each cell is dysfunctional. We developed a
new framework to train a machine learning model on double-light B cells without this information
(Figure 2A, Methods). Briefly, we use a neural network model that takes in the heavy and light
chain sequences and outputs a “functionality” score. We train the model such that, when given the
two BCRs from a double-light B cell, the minimum score is lower than the minimum score from two
standard B cells (which both always have a functional BCR). The scores from such a model should
then be lower for dysfunctional BCRs, allowing us to identify sequence constraints. We trained our
model on the Jaffe et al. data, which may contain multiplets. However, the presence of multiplets
in the double-light B cells should not bias predictions, since multiplet BCRs are indistinguishable
from those of standard B cells. Training on the van der Wijst et al. dataset is less effective because
the dataset is much smaller, so we reserve it for evaluation.

We compared the accuracy of our new approach to that of three other approaches adapted
suitably (Figure 2A). The adapted approaches are based on (1) ESMFold [26], a model that is
similar to AlphaFold [27,28], (2) IGoR, a simulation of V(D)J recombination [23], and (3) antibody
language models (Methods). We postulated that AlphaFold-based modeling could help distin-
guish structural differences between standard and dysfunctional BCRs, based on recent evidence
that AlphaFold confidence metrics correlate with local energetic favorability [29, 30]. After initial
experiments with AlphaFold, we switched to the much faster ESMFold for greater scalability after
noticing that it achieved similar accuracy. We used IGoR to learn constraints on antibody se-
quence by simulating an unconstrained repertoire from V(D)J recombination and then contrasting
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Figure 2: Learning to identify dysfunctional sequences in allelic inclusion. (A) Overview
of the training procedure for our new model and baselines. We train our model to give a lower
score to one of the two BCRs in double-light B cells, compared to the minimum score from two
single-light B cells with functional BCRs. Dotted arrows point from a loss function to the model
that is optimized to minimize that loss. ESMFold does not have a dotted arrow because it is
pre-trained, and we do not modify it. See Methods for details. (B-C) We assess the ability of
computational models to identify dysfunctional sequences in double-light barcodes. We find that
our approach for learning from allelic inclusion improves accuracy over alternatives. Specifically,
for each model, we compare the minimum score in double-light cells to the minimum score in pairs
of standard cells. We assess on two datasets: (B) held-out donors in data from Jaffe et al. [15] and
(C) a fully independent dataset from van der Wijst et al. [25].
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this with naive-B-cell antibodies using a neural network classifier. We used antibody language
models to score the functionality of antibody sequences based on the sequence likelihood accord-
ing to the model. Our own novel approach learns directly from double-light barcodes in the Jaffe
datasets. For a fair comparison with other approaches that do not directly use double-light bar-
codes as training data, we always assess our model on a separate donor not seen in training to
ensure that the model is not specific to particular individuals. None of the models, including ours,
is trained on any of the van der Wijst et al. data.

For each pair of heavy and light chain sequences, each machine learning method gives a score of
how “good” the sequences are. These scores are obtained in different ways from different models,
such as pLDDT from ESMFold, classification probability as a naive-B-cell sequence (as opposed
to from simulated V(D)J recombination) from IGoR, sequence likelihood from language models,
and classification score as functional from our method. To assess how well each method identifies
dysfunctional BCR sequences, we compare scores from double-light B cells with scores from pairs
of standard B cells. Specifically, we take the minimum score in each double-light cell and each pair
of standard cells, then compute the AUROC between the two cell types. More accurate methods
should have a higher AUROC, since true double-light B cells have a dysfunctional sequence but
pairs of standard B cells do not. Note that this evaluation approach does not rely on knowing
which sequence in each double-light cell is dysfunctional.

All four approaches tested have some predictive power to identify double-light cells, with our
newly proposed approach being the most accurate by a significant margin on both datasets (Fig-
ure 2B-C). Among baseline models, ESMFold does as well as other approaches despite being trained
on far fewer antibody sequences. The improved performance of our approach indicates that there
is significant learnable signal in allelic inclusion data which is not captured by existing methods.
The accuracy of all methods is limited by the presence of multiplets, especially in the Jaffe et. al.
dataset.

Across both datasets, our model identifies over 5,000 double-light barcodes as possessing a
clearly dysfunctional BCR sequence (less than 95% of scores in standard B-cells), which we interpret
as likely to be true allelic inclusion instances. This is an order of magnitude more cells than existing
analyses of allelic inclusion.

Allelic inclusion model accuracy only depends on the light chain

We assessed which sequence features are most important for identifying dysfunctional sequences
by taking away features from the model one by one (Supplementary Figure S1). This is known
commonly as an “ablation” study in machine learning literature. Unexpectedly, we found that the
model predominantly relies on the L chain sequence alone and does not use information from the
paired H chain sequence, as removing the H chain does not decrease performance at identifying
double-light cells. This indicates that double-light cells have a L chain which is generally dysfunc-
tional, without a large dependence on the specific H chain of the cell. Note that this does not show
that interactions between the H and L chains are unimportant; rather, it implies that variability in
the H chain, such as at the CDRs, does not play a major role in L chain allelic inclusion. This is
because our model can learn constraints imposed by non-varying parts of the heavy chain without
explicitly taking the heavy chain as input. As a result of this finding, we hereafter use a version
of the model that only takes the light chain as input. We return to model interpretation in a later
subsection (Interpreting learned constraints on antibody light-chain sequences).

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 25, 2024. ; https://doi.org/10.1101/2024.10.22.619760doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.22.619760
http://creativecommons.org/licenses/by-nc-nd/4.0/


Allelic inclusion model predicts antibody polyreactivity

We postulated that our model trained on allelic inclusion would correlate with light-chain sequence
constraints. Concretely, we wondered whether it would correlate with specific properties associated
with dysfunctionality, such as polyreactivity or surface expression. We next assess this idea on a
few different datasets (Figure 3).

After light chain generation in small pre-B cells, most BCRs are autoreactive, whereas in mature
naive-B cells, most BCRs are not autoreactive [2, 4]. We wondered whether our model, trained
only on mature naive B-cells, would correlate with this reduction in autoreactivity observed in
B-cell development. To test this idea, we used a dataset of human paired antibodies which were
sequenced from both before and after the autoreactivity checkpoint and then assayed individually
for polyreactivity [4] (Methods). After applying our allelic inclusion model to these data, we
observed a clear correlation between antibody polyreactivity and model score, with polyreactive
antibodies having lower scores (Figure 3A). This is particularly interesting since our model is only
using the light chain, and adds to previous evidence indicating that choice of light chain is critical
in determining whether an antibody is autoreactive [31]. The allelic inclusion model predicts
polyreactivity much more accurately than baseline methods on this dataset (Figure 3C).

Allelic inclusion model predicts mutation choice in affinity maturation

Beyond initial generation through V-J recombination, light chain sequences can be further modified
through somatic hypermutation and selected for improved binding to a particular antigen (known
as affinity maturation). However, during this process, constraints on expression and autoreactivity
are still applied. We therefore wondered whether mutations that decrease scores from our model
would be depleted in somatic mutations observed in memory B cells. A depletion would indicate
that those mutations are associated with increased polyreactivity, reduced expression, or other
negatively selected traits. We explored this idea using observed somatic mutations in memory B
cells from the Jaffe et al. dataset [15].

Briefly, we reconstructed phylogenetic trees for each clone in the memory B cells and mapped
light chain mutations to this tree. We then computed the change in model score from applying
each mutation to the naive parent sequence of the light chain. As a control, we performed the same
computation for uniformly random mutations at the same positions as well as mutations sampled
from a model of BCR mutation rates conditioned on local sequence context [32]. We again only
applied our models to held-out donors. We also note that our models were only trained on naive-B
cells, but are tested in this application on memory B cells. For full details, see Methods.

We observed a difference in the change in score under our model between observed mutations
and random mutations. Mutations that significantly decrease the model score are depleted in the
observed mutation set. The effect is strongest if we restrict to mutations that occurred early in
the reconstructed trees, as well as to mutations in the V-J junction (Figure 3B, Methods). The
former assumption makes a difference because, as a clone accumulates many mutations, it moves
out of distribution from the training data of our model (naive-B cells only). The latter assumption
makes a difference for a similar reason; V-J recombination only generates complete amino acid
diversity at the V-J junction. Therefore, many mutations at other sites are out of distribution from
the training data of our model. We can remove the former assumption and observe a smaller effect
on a much larger set of mutations (Supplementary Figure S2). However, for positions outside of
the V-J junction, differences between distributions are very small. The allelic inclusion model is
somewhat more accurate than baseline methods at discriminating observed and random mutations
(Figure 3D).
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Figure 3: Allelic inclusion model predicts light-chain sequence constraints. (A) Our
model assigns lower scores (associated with dysfunctionality) to polyreactive antibodies than those
that are non-polyreactive. Data contains human paired antibodies from both before and after
the autoreactivity checkpoint [4]. The model score is the log of the ratio of class 1 over class 0
for each sequence, where class 0 is double-light associated. P-value is calculated with a Mann-
Whitney U test. (B) Mutations at the V-J junction that decrease the score from our model are
depleted in affinity maturation. Observed mutations are collected from memory B cells. Control
mutations are generated randomly at the same positions, either uniformly or based on a context-
sensitive model of BCR mutation rates. We additionally restrict to mutations that occurred early in
affinity maturation. P-values are calculated with a Mann-Whitney U test. We relax assumptions in
Supplementary Figure S2. (C-E) We compared the allelic inclusion model with baseline antibody
models and observed improved or comparable prediction accuracy. The allelic inclusion model
discriminates polyreactive and non-polyreactive antibodies with much higher accuracy than other
models. It discriminates observed versus random somatic mutations with higher accuracy (here,
random is using 5-mer context). Enrichment of extreme scores in IgM low versus high is the second
largest, behind the baseline model based on IGoR.
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Low model scores are correlated with BCR surface expression

As a final application, we wondered whether our model scores would correlate with variation in
BCR function across naive-B cells. Previous work has found that naive-B cells have large variation
in surface IgM level (sIgM), and that cells with low sIgM have reduced antigen sensitivity and higher
autoreactivity [33–35]. We wondered whether low scores from our model would be associated with
the low sIgM phenotype, since such scores should be associated with impaired light chain function.
Existing studies have not sequenced light chain repertoires stratified by this phenotype. To fill this
gap, we collected new single-cell repertoires of paired BCR heavy and light chains, using naive-B
cells stratified into IgM low and IgM high (Methods). We then applied our allelic inclusion models
to all repertoires. We filtered out all double-light B cells to ensure these do not affect comparison
of IgM low and IgM high compartments.

We observed an enrichment of very low model scores in the IgM low repertoires relative to IgM
high. For example, at a threshold corresponding to the bottom 3% of IgM high sequences, scores
below the threshold are enriched in IgM low by an odds ratio of 1.42 (p = 1.66 × 10−3, Fisher’s
exact test). We do not observe significant enrichments for less extreme scores. This result indicates
that the majority of dysfunctional light chains are successfully filtered out in B-cell development,
but that a small fraction make it through and are subsequently associated with reduced surface
expression in naive-B cells.

Compared to baseline antibody methods, the allelic inclusion model shows the second highest
odds ratio on this data (Figure 3E). The model based on IGoR attains a higher odds ratio of 1.54
at a threshold corresponding to the bottom 3% of IgM high probabilities.

Interpreting learned constraints on antibody light-chain sequences

The application datasets provide evidence that the allelic inclusion model learns constraints on
antibody light chain sequences. We next looked to interpret the sequence features that the model
associates with dysfunctionality (Figure 4). Such an analysis would not be possible without an
accurate machine learning model, because we would not know which sequence in each true double-
light cell is dysfunctional.

We first calculated the enrichments of different light-chain V-genes in dysfunctional versus
functional light-chains as predicted by our model (Methods). Enrichment is defined as the ratio
of the frequencies in the two groups for each V-gene. We restricted to V-genes that have at least
1% usage in functional light-chains to ensure that we only analyzed those that have some chance
of being functional. We observe that many V-genes are highly enriched in one group or the other
(Figure 4A). We also observe strong selection on the length and amino acid composition of CDRL3
(Figure 4B, Supplementary Figure S3). In particular, short CDRL3s and CDRL3s of length 12 are
enriched for dysfunctionality. However, the latter two analyses are confounded by varying V-gene
usage between functional and putatively dysfunctional sequences.

To better understand what drives these enrichments, we examined predictions for a particular
V- and J- gene (IGKV2-30 and IGKJ1) which are highly enriched for dysfunctionality but also have
sufficient sample size in both groups (Figure 4C-D). We observe sharp selection on the length of
CDRL3 (Figure 4D); nearly all functional sequences are length 11, while dysfunctional sequences
are much more likely to be length 12. Within the preferred length of 11, we also find amino acid
usage differences in the highly diverse V-J junction when contrasting functional and putatively
dysfunctional sequences (Figure 4C). These learned patterns can be interpreted by examining the
germline sequences for IGKV2-30 and IGKJ1 (Figure 4E). Our model predicts that CDRL3 should
have length 11 to ensure functionality, but this requires three nucleotides to be deleted from the
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Figure 4: Interpreting learned constraints on light-chain sequences. Surprisingly, we found
that model accuracy does not depend on the heavy chain (Supplementary Figure S1); we therefore
focus on interpreting the light-chain sensitivity of our model. (A) Certain V-genes are highly
enriched in dysfunctional light chains as predicted by our model, while others are highly enriched
in functional light chains. Putatively dysfunctional light chains are those with a score less than
95% of scores in standard naive-B cells (Methods). (B) Short CDR3s and CDR3s of length 12
are enriched in dysfunctional light chains under our model (aggregated across all V- and J-genes).
(C-D) We zoom in on IGKV2-30 and IGKJ1, a particular V- and J-gene with sufficient sample size
in both the functional and putatively dysfunctional sets. We observe strong selection on CDRL3
length. Within the preferred length of 11, we observed significant differences at and near the V-J
junction (position 9). Sample sizes in the functional and putatively dysfunctional sets are 747 and
491 across all lengths, and 634 and 72 within length 11. (E) The learned selection effects for this V-
and J- gene pair can be interpreted by examining the germline sequences. To be functional, three
nucleotides must be deleted during V-J recombination while preserving the surrounding nucleotides,
which is a strict set of requirements.
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germline V- and J- genes during V-J recombination. In addition to this requirement, our model
predicts that the nucleotides around these deletions must be somewhat conserved. These strict
requirements help explain why this V-gene is enriched for dysfunctionality. Most V- and J-genes
have insufficient sample size to enable such analysis. However, we verified that these general trends
hold for a few more V- and J- gene pairs (Supplementary Figure S4).

Early heavy chain repertoires contain sequences predicted to mispair

We have observed that selection on the light chain sequence is mostly independent of the paired
heavy chain sequence, and that heavy chain selection does not play a major role in allelic inclusion
in naive-B cells. The heavy chain is known to also be constrained by stability and autoreactivity,
however, and we next sought to observe these constraints through other means. Allelic inclusion
on the heavy chain has been observed at an earlier stage in pre-B cells [36]. However, due to the
difficulty of sequencing the bone marrow, where pre-B cells reside, no large single-cell repertoire
sequencing of pre-B heavy chains exists. This prevents us from conducting an analysis of heavy
chains that is analagous to our light chain results.

Although large scale BCR repertoires from the bone marrow are not available in humans,
previous work has collected such data in mice, with bulk instead of single-cell sequencing [6]. As an
alternative approach to study heavy chain constraints, we used these data to compare naive-B-cell
heavy chains with heavy chains from earlier development repertoires. During B-cell development,
heavy chain rearrangement precedes light chain rearrangement, and a surrogate light chain (SLC)
is expressed at the pre-B stage for screening pairing constraints on the heavy chain (Figure 5A).
Between the pre-B and naive-B stages, the heavy chain is then screened for autoreactivity with
a generated light chain. We looked to understand how SLC pairing and autoreactivity constrain
the heavy chain by comparing heavy-chain repertoires at these three stages: VDJ recombination,
pre-B cells, and naive-B cells. VDJ and pre-B repertoires have not passed all checkpoints and will
therefore contain dysfunctional sequences. This approach does not require single-cell data, but is
less precise because we cannot pick out the dysfunctional sequences via allelic inclusion. We used
naive- and pre-B repertoires from C57BL6 mice [6] and simulated VDJ recombination repertoires
from IGoR [23] (Methods).

Similar to our results on light-chain modeling, we found that AlphaFold-predicted structural
interaction between the heavy chain and the SLC provides differential signals on the VDJ, pre-
B, and naive-B repertoires. Simulated VDJ recombination sequences from IGoR are predicted by
AlphaFold to form an incorrect structure in complex with the SLC much more frequently than naive-
and pre-B sequences (Figure 5B). Specifically, the CDR3 in naive-B heavy chains is almost always
placed in a specific location, but is often displaced in structures for IGoR-generated sequences
(Figure 5C). Here, we calculate displacement as the distance between the the center of CDR3 and
the typical location of the CDR3 center for naive-B heavy chains (Methods). Surprisingly, pre-B
sequences also have higher displacement compared to naive-B sequences.

A higher predicted mispair rate among simulated VDJ recombination sequences reflects the
fact that proper pairing with the SLC is enforced at the pre-B stage. However, it is unclear how
to explain a higher rate of mispairing in the pre-B repertoire than the naive-B repertoire. We
speculate that this is evidence of some pre-B cells displaying heavy chain allelic inclusion with one
heavy chain not expressing on the surface, as has been previously observed [36]. We are unable
to test this hypothesis at present because all sufficiently large pre-B-cell repertoires are from bulk
sequencing.

When looking into what contributed to the observed differences in predicted structures, we
found that IGoR heavy chain sequences are much more likely to have hydrophobic residues in
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Figure 5: Surrogate light chain pairing constrains the heavy chain. (A) Overview of
heavy chain generation. Heavy chains are generated in pro-B cells and tested for pairing with the
surrogate light chain before progressing to pre-B cells. (B) Predicted heavy chain-SLC structures
are abnormal much more frequently for IGoR heavy chains than naive-B heavy chains. Pre-B heavy
chains are also predicted to form abnormal structures more frequently. Structures were predicted
using AlphaFold, and structure abnormality is measured as the displacement of the heavy chain
CDR3 from its typical location (Methods). P-values are from a Mann-Whitney U test. (C)
We show example structures for correct (top) and incorrect (bottom) heavy chain-SLC structures.
Functional heavy chains almost always have CDR3 in a particular location, whereas many IGoR
heavy chains misplace CDR3. (D) Predicted structural differences appear to be driven by the
amino acids in the D-gene region in the middle of CDR3 (Methods, Supplementary Figure S6).
IGoR repertoires have higher usage of hydrophobic residues in this region. Naive repertoires use
more tyrosine and aspartic acid.
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the middle of CDR3, while pre-B and naive-B sequences replace these hydrophobic residues with
residues such as tyrosine and aspartic acid (Figure 5D). Interestingly, these amino acid usages are
mediated by the reading frame of the D-gene in CDR3. In many mouse D-genes, we observe one
reading frame that contains a stop codon, one that is hydrophobic, and one that contains several
tyrosines and aspartic acids (Supplementary Figure S5). IGoR heavy chains generally use all frames
with significant probability, whereas pre- and naive-B heavy chains strongly prefer the last. These
findings add to the evidence of previously speculated selection on the D-gene region of the heavy
chain CDR3 sequence [37,38].

Machine learning models predict large restriction from heavy chain expression

We explored the possibility of training machine learning models to distinguish the three stages of
mouse heavy chain repertoires (Methods). Concretely, we trained models to take a heavy chain
sequence and predict whether it came from an IGoR, pre-B, or naive-B repertoire. Heavy-chain
sequences that can confidently be predicted as non-naive are likely to fail development checkpoints.
More specifically, sequences that are confidently predicted as coming from an IGoR repertoire are
likely to not express, since all sequences in pre- and naive-B repertoires must have had adequate
surface expression to progress. Sequences that express, in contrast, should be predicted as coming
from pre- or naive-B cells with significant probability. Within sequences that express, those with a
higher predicted probability of coming from a pre-B cell may be more autoreactive, since sequences
are tested for autoreactivty between the pre- and naive-B stages.

We found that the vast majority of IGoR sequences are confidently predicted as being generated
by IGoR, even if we only provide CDR3 to the model (Supplementary Figure S6). In contrast,
pre- and naive-B heavy chain sequences can only be distinguished with modest accuracy. This
indicates that cell surface expression constrains the heavy-chain repertoire more than autoreactivity.
However, this claim depends on the reliability of simulated repertoires from IGoR.

Machine learning models of mouse heavy chains correlate with polyreactivity

We next examined whether model predictions of pre- versus naive-B correlate with autoreactivity.
We applied our model to a dataset of mouse antibodies that have been assayed for polyreactivity
[39]. For each antibody in this dataset, we computed the predicted log odds of naive- to pre-B
based on the heavy chain only (Methods). We observed a modest but statistically significant
difference, with more polyreactive antibodies being associated with lower naive-B and higher pre-B
probabilities (Supplementary Figure S7). No statistically significant correlation with polyreactivity
is observed if we instead use a log odds to predicted IGoR probability. High polyreactivity will
cause autoreactivity, so this result shows that the model can learn sequence determinants of heavy
chain autoreactivity. However, we note that autoreactivity depends on the light chain, as we have
seen in humans. Our mouse models only have access to the heavy chain in their training data and
so their accuracy at identifying autoreactive sequences will be limited.

Discussion

There has been broad interest in applying machine learning techniques to immune repertoire anal-
ysis, with applications in antibody engineering [40, 41] and clinical diagnostics [42, 43]. We have
demonstrated that allelic inclusion in naive-B cells can be observed at sufficient scale to enable
machine learning models of antibody sequence. Our results rely on recent advances in single-cell
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repertoire sequencing and depend on machine learning to identify the specific dysfunctional se-
quences in double-light B cells. Compared to baseline antibody modeling approaches, our new
models showed improved correlation to properties like polyreactivity and mutation usage. This
demonstrates the value of high-quality negative examples, compared to models trained only on
positive examples [20–22, 26] or models trained with simulated negative examples [23, 24]. We
also carried out an investigation into how similar forces constrain heavy chain sequences using
bulk repertoires in mice. Beyond the new insights into B-cell development, our findings could be
more generally integrated into machine learning approaches for antibody engineering and immune
repertoire-based clinical diagnostics.

Our results suggest that constraints on heavy and light chain are largely applied independently.
In particular, we found that the functionality of a light chain does not depend on which specific
heavy chain it must pair with. Most constraints on the heavy chain, meanwhile, are enforced by
the pre-B stage via the surrogate light chain, which does not depend on variability in the light
chain. In addition, the specific constraints imposed on each chain are quite different. Heavy chain
CDR3s showed evidence of strong selection against hydrophobicity in the D-gene region. Light
chain CDR3s have particular lengths that are highly preferred and also preferred amino acids at
the VJ junction. However, length of heavy chain CDR3 was not as tightly regulated, and light
chain amino acid preferences do not show a clear effect due to hydrophobicity. Thus, despite their
similarities, the differing structural roles of the heavy and light chain lead to significant differences
in the selection forces affecting them.

Our allelic inclusion models learn a single overall functionality score that correlates with both
polyreactivity and surface expression. However, the relationship between polyreactivity and surface
expression is itself complex and unlikely to be fully captured by our models. For example, a CDR3
that is slightly more hydrophobic than usual may also be somewhat polyreactive. This could
reduce surface expression by disrupting pairing, but also could increase polyreactivity even for
molecules that make it to the surface. Experimental studies jointly measuring expression and
binding properties of the same antibody sequences may help pull apart these factors. It is also
interesting that antibody models have differing relative strengths on the application datasets we
studied (Figure 3C). This may indicate that certain models correlate more with polyreactivity and
others more with expression.

Among all the different sequence features tested, we observed that V and J genes alone are
predictive of whether a light-chain sequence comes from an dysfunctional double-light cell (Supple-
mentary Figure S1). It is possible that V and J gene usages may be biased by factors not related to
biophysical functionality of a light chain sequence, such as the locality of the gene on the chromo-
some. Previous work has shown that downstream V and J genes are enriched in B cells that have
used multiple rearrangements to generate a light chain [11, 12]. We observe this trend in λ-locus
V gene usages, but do not see a significant effect in κ-locus V gene usages or J gene usages for
either locus, and only saw slight shifts on κ- and λ-locus usage in double-light versus standard cells
(Supplementary Figure S8). Even though V and J gene identities alone are predictive features, we
found that other features regarding the biophysical determinants of antibody functionality, such
as CDR3 length and CDR3 amino acid identities, further improve the model accuracy. Further-
more, the somatic mutation evaluation (Figure 3B) has an identical distribution of V and J genes
between observed and control mutation sets, but we still observe significant predictive signal from
our model.

Our study on allelic inclusion among light chains could be generalized in several directions.
Allelic inclusion on the heavy chain has been observed in pre-B cells at small scale [36]. If larger
single-cell sequencing repertoires of heavy chains from human pre-B cells become available, the
same modeling approach could be applied there as well. Beyond B cells, allelic inclusion also exists
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in T cells and additionally interacts with MHC restriction [44–46].

Methods

Datasets

Single-cell human B-cell repertoires

From paired heavy and light chain sequencing data of 1.4 million B cells collected by Jaffe et
al. [15], we train the allelic inclusion model on the subset of 448,650 cells marked as naive-B cells
from flow cytometry and proceed with the same sequencing quality control filtering and V/J allele
inference as in the original work. For Figure 4C-D and Supplementary Figure S4, we increased
the sample size by additionally evaluating our model on sequences from cells in the pools labeled
“naive + switched” and “naive + unswitched”. To restrict to naive sequences that have not
undergone somatic hypermutation, we only kept sequences where the V-gene portion is unmutated
from the germline. We additionally use the memory compartment of these data for analyzing
somatic hypermutation.

We also use paired single cell BCR repertoires that were sequenced by van der Wijst et al. [25].
For these data, we recovered both gene expression vectors and BCR transcripts, and annotated cell
types and doublets, using CellRanger as previously described [25]. We filtered out doublets and
non-naive B cells, and then restricted to B cells with one heavy chain and at least one light chain.
To apply models that were trained on the Jaffe et al. dataset, we further restricted to V-genes that
were present in that data, which filtered out about 10% of remaining cells in the van der Wijst et
al. dataset.

IGoR light-chain repertoire for human

IGoR (Inference and Generation Of Repertoires) [23] can infer V(D)J recombination simulation
models from the statistics of unproductive BCR sequence reads in a repertoire, resting on the
assumption that unproductive sequences do not interact with B-cell developmental checkpoints
and thus reflect V(D)J recombination outcomes without additional selections. We generated IGoR
light-chain repertoires for humans using the default IGoR light chain models for the human κ and
λ loci. We then sampled from each locus at a proportion matching the κ - λ proportion in standard
B cells in our single-cell human repertoire and filtered to only productive sequences. We did not
have sufficient unproductive samples in the dataset to fit IGoR models specific to the individuals
in our data.

Bulk C57BL/6 mouse B-cell repertoire

From heavy-chain only bulk sequencing data from mouse spleen and bone marrow collected by Greiff
et al. [6], we focus on the pre-B-cell and naive-B-cell subsets from the antigen-naive C57BL/6
cohort of 5 mice. VDJ alignment and clonotype assembly were performed on each of the 10
repertoires by the MIXCR software [47] according to the IMGT [48] reference for the C57BL/6
strain. For downstream analysis of productive sequences, we filter for in-frame alignments with
complete framework and CDR annotations from MIXCR and no stop codons.
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IGoR repertoire generation for C57BL/6 mice

We generated IGoR heavy-chain repertoires for C57BL/6 mice. Our mouse dataset was of sufficient
size to fit IGoR models for the specific mice in question. From each of the bulk C57BL/6 mouse
naive-B-cell repertoires, we extract sequences that are annotated by MIXCR as having out-of-
frame frameshift mutations in CDRH3 as data for an individual-specific IGoR model. We proceed
to estimate the V(D)J recombination statistics with IGoR according to default hyper-parameters
and the same IGMT reference as used in the earlier MIXCR annotation. Then, we sample 5 million
simulated V(D)J recombination sequences from each IGoR model, followed by the same MIXCR
annotation and filtering procedure as before.

ESMFold and AlphaFold structure generation

To generate predicted structures for human B-cell receptors, we use ESMFold version 1 [26], with
chains connected by a linker of length 25. For mouse heavy chains together with the mouse surro-
gate light chain (SLC), we use AlphaFold Multimer [27] with templates but no multiple sequence
alignments. In both cases, we predict structures with one copy of each variable domain, including
all framework regions and CDRs. We use VPREB for the mouse surrogate light chain. Omitting
the constant domains significantly increases speed and both models are able to infer the fold and
positioning of variable domains without explicitly being given this context. For paired heavy and
light chains, we superimpose all predicted structures to minimize the Cα RMSD on the heavy chain
variable region (excluding CDRH3). For heavy chains together with the mouse surrogate light chain
(SLC), we superimpose to minimize the RMSD on the SLC, since the SLC sequence is identical in
all structures. Initial experiments were run on ColabFold [49,50]; subsequent structure predictions
were run with local installations of AlphaFold and ESMFold. For human data, we generated 500
- 1500 predicted structures per application dataset. For mouse data, we generated 990 predicted
structures, equally split between IGoR, pre-B, and naive-B heavy chain sequences.

Polyreactivity data for human paired antibodies

Polyreactivity data for human paired antibodies were obtained from Wardemann et al. [4]. This
study sequenced antibodies from various stages of B-cell development and assayed those with a
complete BCR in five ELISA-based binding tests (Insulin, ssDNA, dsDNA, LPS, nuclear antigen
panel). We filtered to antibodies that were succesfully assayed against at least four of the five. We
labeled as polyreactive those that showed binding in at least two and as non-polyreactive those
that showed binding in none.

Expression-stratified BCR repertoires

B cells were isolated from 2 healthy PBMC donors using the EasySep™ Human B-cell Isolation
Kit (Catalog #17954) from StemCell Technologies. Cells were then stained with APC anti-IgD-
APC, anti-CD27-FITC, anti-CD19-PE, anti-IgM-APC-Cy7 antibodies and Zombie Violet Fixable
Live/Dead stain, all from Biolegend, before IgM-high and IgM-low naive B cells (live, CD19+,
CD27-, IgD+) were sorted on a BD FACSAria machine at the UCSF Parnassus Flow Cytometry
Core. Following sorting, each sample was stained with TotalSeq C hashtags from Biolegend (Cat-
alog #94661, 394663, 394667, 394671) according to Biolegend’s protocol. IgM-high and IgM-low
thresholds were chosen to take the top and bottom 20% of naive B cells, respectively. Eighty thou-
sand cells were then loaded in two Chromium Next GEM Single Cell 5’ v2 lanes from 10X Genomics
and library prep was conducted with 10X’s BCR Amplification Kit (PN-1000253). Libraries were
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pooled and sequenced at a depth of 20,000 GEX reads per cell, 10,000 BCR reads per cell, and
5,000 Feature Barcode (hashtag) reads per cell at the UCSF Center for Advanced Technologies on
a Novaseq X with 26x10x10x90 cycling parameters according to 10X’s recommendation. Data were
processed with Cellranger v7 and were demultiplexed using the hashsolo library for hashtag infor-
mation and freemuxlet for genetic information. We filtered out all doublets and cells with multiple
light or multiple heavy chains, so that the expression analysis is not confounded by double-light B
cells.

Although we sorted for CD27-, which is expected to remove memory B cells, we observed a
large degree of clonal expansion in one of our two donors, especially in the IgM-low compartment.
Concretely, for donor 2, 23% of IgM-low B cells and 9% of IgM-high B cells were in an expanded
clone (at least three cells), compared to less than 0.5% in both compartments of donor 1. Analy-
sis of gene expression vectors showed that clonally expanded cells had greatly elevated expression
of certain HLA genes (HLA-A, HLA-DQA2, HLA-DRB5), as well as elevated expression of some
conventional memory B-cell markers (CD80, CD86). CD27 was not differentially expressed, indi-
cating that we may have isolated a population of CD27- memory B cells. Many other cells had
similar expression patterns despite not being observed in expanded clones; such cells are likely to
be antigen-experienced but not have had enough cells from the clone recovered in sequencing. To
remove this antigen-experienced population, we filtered out all cells with expression of the afore-
mentioned HLA genes greater than the 95th percentile of expression in donor 1; this filter removed
over 99% of expanded clones. After this filtering, the reported odds ratios of low score enrichment
are consistent between the two donors, and the reported statistic is from combining both together.

Mouse polyreactivity data

We applied our mouse heavy chain models to a dataset of mouse antibodies screened for polyre-
activity [39]. These data include both heavy and light chains, but we only used the heavy chains
since our models did not have access to light chain data. We defined high polyreactivity sequences
as those that bound at least two out of seven antigens in the polyreactivity screen, and low polyre-
activity sequences as those that bound none.

Modeling and Analysis

Allelic inclusion model architecture and loss

For our analysis of allelic inclusion, we trained machine learning models that take a single antibody
sequence (heavy and light chains) as input and predict whether it came from a standard or a double-
light B cell. We used convolutional neural networks as the model architecture. The model uses
two 2D convolutional layers on CDRH3 and CDRL3 which can learn interactions between the two
chains. Specifically, both CDR3s are one-hot encoded, then zero-padded to length 32 and stacked
to create a 2×32×20 input, with the one-hot dimension of length 20 being the channel dimension.
The convolutional layers are followed by a single linear layer. The final output score therefore
has a range of all real numbers. Earlier layers have ReLU activation. Before the linear layer, we
concatenate the V- and J- genes for both chains with one-hot encoding. This is a small neural
network; we could not use a more powerful model because of the limited number of double-light
cells available.

To train our models, we used a non-standard loss function that makes full use of the single-
cell resolution in our data. We expect that each double-light cell in our data contains at least one
functional antibody sequence, because otherwise the B cell would not have survived to be sequenced.
We also do not know beforehand which sequence is dysfunctional. We therefore constructed a loss
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function that only requires our model to predict one antibody sequence per double-light cell as
dysfunctional, without knowing which one is bad a priori. At train time, we sample two standard
B cells for each double-light cell. A double-light cell provides two antibody sequences (which
have the same heavy chain but different light chains). The two standard B cells also provide two
antibody sequences (which have different heavy and light chains). Our model architecture takes
in a single sequence and outputs a score indicating whether the sequence comes from a standard
B cell. We convert this real-valued score x to lie between 0 and 1 using the sigmoid transform
σ(x) = (1 + exp(−x))−1. We then optimize the model to make the minimum output over the
sequences from the double-light cell less than the minimum output over the sequences from two
standard B cells. Mathematically, the loss function is a modified version of standard cross-entropy
loss. Denote the heavy and light chains of the standard B cells as h1, h2, l1, l2. Denote the heavy
and light chains of the double-light B cell as h̄, l̄1, l̄2. Denote the neural network as f and define
fσ(h, l) := σ(f(h, l)). Then the contribution to loss function from these three cells is:

L = − log(1−min(fσ(h̄, l̄1), fσ(h̄, l̄2)))− log(min(fσ(h1, l1), fσ(h2, l2))) (1)

Due to the sigmoid, the argument of the logarithm is between 0 and 1 and the above equation can
always be computed. At test time, we generally use the scores f(h, l) without applying a sigmoid,
such that they are real-valued and not constrained to be between 0 and 1.

We assessed the benefit of this loss function by also training a model that simply classifies
sequences as from a double-light versus a standard B cell. Our novel loss function improves accuracy
both at identifying double-light cells with at least one dysfunctional sequence and at predicting
double-light cells to have exactly one predicted dysfunctional sequence. Specifically, the fraction of
double-light cells with at least one dysfunctional sequence at a 5% false positive rate improves from
27% to 31%, and the fraction of double-light cells with two sequences predicted as dysfunctional
decreases from 1.5% to 1.1%. This behavior is more consistent with our knowledge of the B-cell
biology. Intuitively, the conventional loss function incentives the model to predict both sequences
in double-light cells as dysfunctional, which may skew the model towards relying on biases that are
not directly connected to biophysical functionality.

We trained four separate models, each of which uses only three out of the four donors in our
dataset for training. We then scored the entire dataset and, for each donor, used the model that
was not trained on that donor. We tested other train-test splits, such as random splitting and
splitting by sequence identity, and found that the held-out donor split was the most challenging
(lowest performance for our model).

Double-heavy models and simulated multiplets

We additionally tested out training classifiers on barcodes with two heavy chains and either one
or two light chains. For barocdes with two heavy chains and one light chain, the loss function is
analagous to the above but with the roles of heavy and light chains swapped. For barcodes with
two heavy and two light chains, there are several ways one could set up a predictive model. We
tested (1) randomly pairing the two heavy and two light chains to get two paired instances (2)
examining all four possible pairing instances (3) taking one heavy chain and both light chains and
(4) taking one light chain and both heavy chains. The predictive performance was very similar
in all four cases; we report results using approach (1). To generate Supplementary Table S1, we
classify each population against simulated multiplets, constructed by combining two standard B
cells, which each have one heavy and one light chain.
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Allelic inclusion baselines and ablations

We compared our machine learning model to three baselines: ESMFold, an antibody language
model, and a model trained on IGoR. For ESMFold, we first generated predicted interaction struc-
ture between the heavy and light chain variable domains (see Datasets). We then scored each
antibody sequence using the average pLDDT of the light chain CDR3. We found that this feature
was more predictive than several other features, including pLDDT of the heavy chain CDR3 and
RMSD of the structure to a reference. The use of pLDDT was inspired by recent work by Roney
and Ovchinnikov, which found that AlphaFold confidence metrics are correlated with the energetic
favorability of a structure [29]. For Figure 2 and Figure 3, we estimated the discovery rates of ESM-
Fold using 500 - 1500 predicted structures per application, because of the computational expense
of applying ESMFold to the full datasets.

For antibody language modeling, we trained our own models on paired functional antibody
sequences. While there are publicly available antibody language models [20–22], we wanted to train
a model exclusively on the Jaffe et al. dataset to have a more controlled comparison of modeling
approaches with other methods. Our training data included paired sequences from standard naive-B
cells in the dataset, excluding double-light and double heavy cells. Training data are from different
donors than the validation and test data. Each training example is a concatenated pair of a heavy
chain sequence and a light chain sequence. Each sequence is the entire variable domain, including
all framework regions and all CDRs. The models use an autoregressive transformer architecture and
are trained using the fairseq [51] package. We tested various sizes (2-6 layers, embedding dimension
64-512) and reported results from the best among these hyperparameters. We then score sequences
based on sequence log-likelihoods from the learned model.

For IGoR, we trained a model to predict enrichments of light chain sequences in standard B
cells compared to IGoR light chain sequences (see Datasets). Specifically, the model is trained to
classify light chain sequences from standard naive B cells (with one H and one L chain each) versus
light chain sequences from IGoR (filtered to productive sequences only). This is a similar approach
to the soNNia model, which builds on IGoR [24]. We used the same architecture as for our model
trained on double-light cells, with the heavy chain portion of the input set to be constant. We did
not incorporate heavy chains because no paired IGoR model is available and because we found for
the allelic inclusion model that heavy-chain information is not useful. We also tested pretrained
soNNia models for the light chain but found that these models did not support all the V-genes in
our datasets. When restricting to V-genes that were supported, we found that pretrained soNNia
models had very similar performance to our new baseline based on IGoR at classifying double-light
cells.

Interestingly, we noticed that ESMFold pLDDT had some predictive signal on all datasets, but
not always in the same direction. Concretely, for polyreactivity classification and IgM low versus
high enrichment, the best sign is opposite of the best sign for allelic inclusion prediction. For
ESMFold, we report results with the best sign on each application. Our new model and the model
trained on IGoR have a consistent best sign on all four datasets. The antibody language model
has a consistent best sign on three out of four and a statistically insignificant result in the other
direction on the fourth, and so we do not flip its sign either.

We tested several ablations to our supervised model. To train a model that does not use the
heavy chain, we used the exact same architecture but set all the heavy chain features to zero at
train and test time. To train a model that only uses V-genes, J-genes, and CDR3 length from the
light chain, we additionally set the CDRL3 sequence to be all alanines but keeping the length the
same. To train a model that only uses V- and J-genes from the light chain, we trained a linear
model on the one-hot encoded V- and J-genes.
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Somatic hypermutation phylogenetic trees

We perform clonal family and germline inference with partis [52–54], which can exploit the paired
heavy chain and light chain information provided in Jaffe et al. to form more accurate clonal
clusters of BCR sequences. For each clonal family, we keep only productive sequences that do not
have inferred insertions or deletions to avoid ambiguity of site positions. Using IQ-TREE, we then
perform phylogenetic tree inference and ancestral sequence reconstruction on each clonal family [55],
under a general time reversible substitution model and FreeRate site heterogeneity model, and
taking the inferred naive sequence as outgroup. The heavy chain and light chain sequences are
allowed to evolve at different rates under the edge-linked-proportional partition model [56].

To generate Figure 3B, we restricted the above data. First, we restricted to mutations that
are mapped to edges coming from the naive parent. Mutations further down the tree will start
to move out of distribution from the training data of our model, as BCR sequences move further
from the space of possible outputs of V(D)J recombination. Second, we restricted to mutations
at the V-J junction, defined as three positions back from the end of CDRL3. Other positions in
the light chain do not have full amino acid diversity generated during V-J recombination, so many
possible somatic mutations are out of distribution. We also tested relaxing these assumptions. If
we do not filter to mutations coming from the naive parent, we observe smaller differences in the
same direction between observed and random mutation model scores (Supplementary Figure S2).
However, for positions outside of the V-J junction there are only very small effects.

Two control mutation sets were generated. For uniformly random mutations, we took the amino
acid position of each observed mutation and uniformly sampled nucleotide positions and mutant
nucleotides (with synonymous and stopgain variants set to zero probability). For local context
dependent random mutations, we used 5-mer nucleotide contexts to adjust the probability of each
mutation based on the HKL S5F model [32]. This model was inferred based on mutation patterns
in productive light chains at sites that are 4-fold degenerate for the codon they belong to. These
sites still experience somatic hypermutation but are not subject to selection because these are
synonymous changes leaving the amino acid unchanged.

For each observed and control mutation, we computed the change in model score as the difference
in score between the naive parent sequence and the naive sequence with the amino acid mutation
applied.

Functional and putatively dysfunctional sequences

We visualized functional and putatively dysfunctional light chain sequences according to our model
(Figure 4A-D, Supplementary Figure S4). Putatively dysfunctional sequences are sequences from
a double-light cell with model score below 95% of scores in standard B cells. Functional sequences
are sequences from a standard B cell with model score that is not below 95% of scores in standard
B cells. For Figure 4A, log-enrichments are the natural log of the ratio of V-gene frequency in the
two sets, restricting to V-genes with at least 1% usage in functional light chains.

Heavy-chain model architecture and loss

For heavy-chain modeling in mice, we trained machine learning models that take a single heavy
chain as input and predict whether it came from IGoR, a pre-B cell, or a naive-B cell. The model
uses four 1D convolutional layers on CDRH3, followed by two fully connected layers and a softmax.
Before the fully connected layers, we concatenate the V- and J- genes with one-hot encoding. This
model is significantly larger than our model for allelic inclusion, because the datasets are much

21

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 25, 2024. ; https://doi.org/10.1101/2024.10.22.619760doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.22.619760
http://creativecommons.org/licenses/by-nc-nd/4.0/


larger. We trained our models with standard multi-class cross-entropy and provided a balanced
distribution of the three classes at train time.

Analysis of heavy-chain AlphaFold predictions

We showed that IGoR heavy chains are predicted by AlphaFold to have a displaced CDR3 when
interacting with the SLC more often than naive heavy chains (Figure 5B). To define a CDR3
displacement, we first calculated the mean location of CDR3 alpha-carbons for all structures, ex-
cluding the first three and last three positions. We then take the average of these CDR3 locations in
naive heavy chain structures. The displacement for a particular CDR3 is then the distance between
its mean location and the average in naive structures. We tested differences in the distribution of
displacement using Mann-Whitney U tests.

Heavy chain amino acid and D-gene analysis

We analyzed amino acid and reading frame usage in the D-gene region of heavy chain CDR3s
(Figure 5, Supplementary Figure S6). We calculated amino acid usages as the average number of
occurrences of an amino acid in the middle five amino acids of CDRH3. We defined hydrophobic
amino acids as I, V, L, F, C, M, and A based on the Kyte and Doolittle scale [57]. We extracted
D-gene reading frames based on MIXCR annotations of the D-gene and its starting position.
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Supplementary Figures

Figure S1: Feature ablations to allelic inclusion model. We tested removing different input
features from our model. The accuracy of our model does not decrease when the heavy chain is
removed. Within the light chain, removing CDR3 amino acids, and removing CDR3 length reduces
performance further. A model that only sees VL, JL gene identities maintains significant accuracy,
which is unsurprising since the full model predicts large differences in V-gene usages between normal
and dysfunctional sequences.
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Figure S2: More general versions of somatic mutation bias. In Figure 3B, we showed a
difference in model scores between observed and random somatic mutations, when restricting to
mutations that occurred early in affinity maturation at the V-J junction. Here, we show the effect
of removing these restrictions. (Top) We remove the first restriction, so that we keep mutations
that occurred at any time in affinity maturation. A smaller effect in the same direction is observable
over a much larger set of mutations (over 5000 versus around 500 in the original plot). (Bottom)
We perform the same analysis on mutations at CDRL3 positions other than the V-J junction.
Observed effects are much smaller.
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Figure S3: Amino acid usages in CDRL3. We compare sequence motifs for functional and
putatively non-functional light chains in CDR3 conditioned on a particular length across all V- and
J- genes. We observe clear biases, but also note that this analysis is confounded by varying V- and
J- gene usages between the two sets.
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Figure S4: Functional and putatively non-functional sequences for more V- and J- gene
pairs. We show length distributions and sequence motifs in the light chain CDR3 conditioned on
two other V- and J- gene pairs, as in Figure 4C-D. We consistently observe strong length selection
effects, although the preferred length varies by V-gene.
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Figure S5: D-gene reading frames. (Top) In many mouse D-genes, there are large shifts in the
reading frame usage from before (IGoR) to after (pre-B) selection for pairing with the SLC. The
effects are largest for the IGHD2 family, which are used in about 40% of sequences in our dataset in
all repertoire stages. (Bottom) We show the three D-gene forward reading frames for two D-genes
(reverse frames are almost never used). Two of the three frames are negatively selected and have
stop codons or high hydrophobicity. The third frame has several tyrosines and aspartic acids.

Figure S6: Machine learning on mouse heavy chains. We trained a machine learning model
on antibody heavy chain sequences to predict selection stage. Nearly all IGoR sequences can be
easily distinguished as abnormal, indicating that SLC pairing, which is enforced by the pre-B stage,
significantly restricts the heavy chain repertoire. On the left, we show the distribution of predicted
naive probability for all three classes, and on the right we show the 3-class confusion matrix.
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Figure S7: Mouse heavy chain polyreactivity. We applied our model of mouse heavy chain
development to a dataset of mouse antibodies that were assayed for polyreactivity [39] (Methods).
We found that polyreactive mouse antibodies were predicted to have lower naive to pre-B log odds
from our model compared to non-polyreactive antibodies. P-value is computed with Mann-Whitney
U test.
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Figure S8: Gene usages. For both analyses, we used all DL barcodes, including multiplet errors.
(Top) We calculated enrichment of light chain V- and J- genes in DL versus standard B-cell
sequences as the ratio of the fraction of DL sequences over the ratio of standard sequences. We
restricted to genes with at least 0.1% usage in standard sequences. We observed a statistically
significant correlation between enrichment of λ-locus V-genes and their physical location in the
genome. We did not observe a statistically significant effect for κ-locus V-genes or J-genes for
either locus. This phenomenon has been previously reported and is a result of the mechansisms
of receptor editing. (Bottom) κ- versus λ- locus usage only shows a minor shift between DL and
standard B-cell sequences.
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Supplementary Tables

Percentage of cells
classified as non-standard

Alternate cell
population

False positive percentage
1 5 10

Double-light 12 30 42

Double-heavy (one light) 3 12 22

Double-heavy (two light) 2 11 21

Control (random guess) 2 10 19

Table S1: Classifying each multi-transcript population against simulated multiplets.
We trained separate predictive models to distinguish each alternate population from simulated
multiplets (pairs of standard B-cells) based on antibody sequence (Methods). The final row
shows the percentages that would be predicted by random guessing as a control. On both types
of double-heavy barcodes, the excess number of abnormal cells compared to control is very small,
indicating that these populations are barely distinguishable to simulated multiplets. In contrast,
double-light barcodes are predicted with an accuracy that implies a significant fraction of true
allelically included cells in the population.
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