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A B S T R A C T   

Permeability is the most important petrophysical characteristic for determining how fluids pass 
through reservoir rocks. This study aims to develop and assess intelligent computer-based models 
for predicting permeability. The research focuses on three novel models—Decision Tree, Bagging 
Tree, and Extra Trees—while also investigating previously applied techniques such as random 
forest, support vector regressor (SVR), and multiple variable regression (MVR). The primary 
dataset consists of 197 data points from a heterogeneous petroleum reservoir in the Jeanne d’Arc 
Basin, including laboratory-derived permeability (K), oil saturation (SO), water saturation (SW), 
grain density (ρgr), porosity (φ), and depth. The most effective machine learning models are 
identified by a thorough analysis that makes use of a variety of statistical metrics, such as the 
coefficient of the determinant (R2), mean squared error (MSE), mean absolute error (MAE), root 
mean square error (RMSE), mean absolute percentage error (MAPE), maximum error (maxE), and 
minimum error (minE). Additionally, core features are ranked based on their importance in 
permeability modeling. This study deviates from conventional approaches by proposing an effi
cient means of forecasting permeability, reducing reliance on labor-intensive and time-consuming 
laboratory work. The findings reveal that MVR is unsuitable for permeability prediction, with all 
developed models outperforming it. Extra Trees emerges as the most accurate model, with an R2 

of 0.976, while random forest and bagging tree exhibit slightly lower R2 values of 0.961 and 
0.964, respectively. The ranking of these algorithms based on performance criteria is as follows: 
extra trees, bagging tree, random forest, SVR, decision tree, and MVR. The study also presents a 
detailed analysis of the impact of input parameters, highlighting porosity (φ) and water saturation 
(SW) as the most influential, while grain density (ρgr), oil saturation (SO), and depth are 
considered less important. This study contributes to the petroleum industry’s knowledge by 
showcasing the inadequacy of MVR and highlighting the superior performance of machine 
learning models, particularly Extra Trees. The proposed models employed in this study can help 
engineers and researchers determine reservoir permeability quickly and accurately by using a few 
core attributes, reducing the dependency on resource-intensive and time-consuming laboratory 
work.   
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1. Introduction 

The process of characterizing a reservoir involves combining a vast amount of seismic data, well logs, and geological samples. The 
best and most important tools for figuring out reservoir characteristics are those that use petrophysical log analysis. Since permeability 
is a crucial petrophysical parameter that captures the inherent dynamic flow characteristic of rocks, it is an essential component of 
reservoir characterization [1]. Precise permeability forecasting encompasses crucial information regarding fluid saturation distribu
tion, prospective recoverable oil and gas yield from the reservoir, projected future exploration, appropriate production equipment 
selection, efficient reservoir management, and efficacious water injection plans [2]. The laboratory analysis on core plugs, which 
consumes a significant amount of time and materials, provides the most accurate permeability data [3]. Nevertheless, due to the 

Table 1 
Data-driven approaches exist in literature to attain log generated permeability.  

SN Reference Input Log Variables Output 
Variables 

Sample 
Size 

Statistical 
Parameter 

Algorithms Test Scores 

2010 Al-Anazi & Gates 
[9] 

GR, DT, RHOB, LLD, φN K, φ 701 R 
MSE 

BPNN GRNN SVM R2: 0.885 R2: 0.930 
R2: 0.896 

2011 Olatunji et al. 
[10] 

MSFL, DT, NPHI, PHIT, RHOB, Sw K 155 R2 

RMSE 
Ea 

ANN SVM Type-1 
Fuzzy Type-2 Fuzzy 

R2: 0.820 R2: 0.874 
R2: 0.914 R2: 0.921 

2012 Gholami et al. 
[11] 

DT, GR, NPHI, ROHB, PEF, MSFL, LLS, 
LLD, 

K 175 R 
RMSE 

SVM GRNN R2: 0.96 R2: 0.94 

2014 Olatunji et al. 
[12] 

MSFL, DT, NPHI, PHIT, RHOB, Sw K 1854 R2, RMSE 
AAPRE(Ea) 

SBLLM type-2 FLS R2: 0.869 R2: 0.938 

2014 Ahmadi et al. [13] DT, RHOB, NPHI, PHIT K, φ 1000 MSE 
R-square 

LSSVM FIS GA-FIS R2: 0.994 R2: 0.837 
R2: 0.962 

2014 Baziar et al. [14] GR, DT, LLD, RHOB, φN K 161 R 
MSE 
AAPE 

MLP-NN CANFIS 
SVM 

R2: 0.652 R2: 0.789 
R2: 0.652 

2014 Kaydani et al. 
[15] 

Depth, SGR, PHIT, RHOB, CT, Sw, 
NPHI 

K 980 MAE 
RMSE 
R2 

R 

MGGp ANN-LM 
ANFIS GP 

R2: 0.947 R2: 
0.890 R2: 0.935 R2: 
0.812 

2015 Santisukkasaem 
et al. [16] 

Fluid residence with PRB, Pressure 
drop, dynamic viscosity of fluid, 
porosity, volumetric flow rate, particle 
size, length of reactor, 

K NA AARE 
SSE 
TS 
R, E 

ANN LR Non-LR – 
– 
– 

2017 Rafik & Kamel 
[17] 

GR, RLLD, DT, NPHI, RHOB, SW K, φ 927 FZI 
HFU 

ACE GAM NNET – 
– 
– 

2017 Al-Mudhafar [18] Shale Volume, neutron porosity, water 
saturation 

Lithofacies 
K 

669 RMSPE 
R-Square 

PNN GBM Adj R-sq: 0.9551 
Adj R-sq: 0.9953 

2019 Erofeev et al. [19] Salts concentration, Formation top 
depth, formation bottom depth, 
porosity before desalination, Absolute 
permeability before desalination, 
Sample depth, Sample density, 
Average grain size, Color, Depth 
horizon 

K, φ 102 R2 

MAE 
MSE, 

LR DT RF GB 
XGBoost SVM NN 

R2: 0.852 R2: 0.677 
R2: 0.775 R2: 0.809 
R2: 0.856 R2: 0.850 
– 

2020 Urang et al. [20] RHOB, Water Saturation K 1199 RMSE 
R-squared 
Adjust R 
Squared 
SE 

ANN Nonlinear 
Regression (Curve 
fittings) 

R2: 0.9758 R2: 
0.9753 

2020 Wood [21] GR, LLD, DT, RHOB, DT, φN K, φ, Sw 1000 R 
AAPE 
MSE, RMSE 

Transparent open 
box optimized data- 
matching algorithm 

R2: 0.999 

2021 Tian et al. [3] Porous Media K 1000 R GA-ANN R2: 0.995 
2021 Aljuboori et al. 

[22] 
NPHI, DT, RHOB, LLD, LLS, GR, and 
SP, FZI 

K 256 R2 MVR Neural 
network 

R2: 0.46 R2: 0.807 

2021 Farouk et al. [23] Resistivity, GR, RHOB, NPHI, Porosity K 95 R2, MSE PSO-NN LS-SVM R2: 0.764 R2: 0.862 
2022 Hashan et al. [24] Lithology log, porosity log, NMR log, 

Resistivity log 
K 439 R, MSE 

RMSE, 
AAPE 

MVR GPR BT SVM 
CNN ANN-LM ANN- 
SCG ANN-BR 

R2: 0.610 R2: 0.950 
R2: 0.780 R2: 0.940 
R2: 0.250 R2: 0.970 
R2: 0.690 R2: 0.980 

2022 Subasi et al. [2] Gamma Ray, depth, neutron, Electrical 
Resistivity, Density 

K 1140 R, RAE 
MAE, RMSE 
RRSE 

ANN K-NN SVM 
Random Forest SGB 

R2: 0.665 R2: 0.717 
R2: 0.691 R2: 0.784 
R2: 0.795 

2022 Miah & Abir [25] Rt, GR, RHOB, NPHI, DT K 265 AAPE, 
RMSE, CC 

LSSVM-CSA –  
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additional expenses and effort, not all wells are cored. As a result, directly measured data are only available for a small number of wells 
or well bore sections. Another helpful technique to ascertain the appropriate permeability is to conduct flow experiments with 
representative core samples [4]. However, flow studies are costly, laborious, and complex. In addition, such studies don’t yield data at 
every well’s location. This emphasizes how important it is to precisely predict permeability using other indirect approaches in order to 
achieve it throughout the entire well. 

The exploitation of large data sets derived from well logs to characterize heterogeneous reservoirs is difficult because of the res
ervoir’s nonlinearity, heterogeneity, and uncertainty. The development of three-dimensional correlations for rock-fluid characteristics 
is a significant challenge. A powerful tool is needed to overcome these obstacles [5]. In recent times, research published across several 
journals has frequently employed machine learning, data-driven deep learning, and statistical techniques to handle problems related to 
regression and classification in the oil and gas industry [6–8]. For the purpose of obtaining rock-fluid properties from well logs, a 
number of computer-based intelligent techniques have been developed, including Artificial Neural Networks (ANN), Genetic Algo
rithms (GA), Convolutional Neural Networks (CNN), Gradient Boosting (GB), Extreme Gradient Boosting (XGBoost), Stochastic 
Gradient Boosting (SGB), Fuzzy-Logic (FL), Decision Tree (DT), Random Forest (RF), and Support Vector Machine (SVM) (Table 1). 

Al-Mudhafar [26] incorporated the Bayesian Model Averaging, which reduces uncertainty in permeability modeling. Findings from 
Akande et al. [27] revealed that the PSO-SVR model outperforms ordinary SVR and RAND-SVR models in permeability modeling. 
Anifowose et al. [28] compared common and sophisticated machine learning techniques using seismic and wireline data in a carbonate 
reservoir. His finding reveals that a depth-matched dataset improves permeability prediction with a higher correlation coefficient. In 
order to forecast φ and K, Erofeev et al. [19] combined a wide range of inputs, including salt concentration, formation top depth, 
porosity before desalination, sample depth, formation bottom depth, absolute permeability before desalination, sample density, 
average grain size, color, and depth horizon. The authors used techniques such as GB, DT, ANN, XGBoost, RF, SVM, and linear 
regression. Al-Mudhafar [29] employed LASSO and BMA techniques to model permeability in uncored sections of a well within a 
sandstone reservoir. LASSO slightly outperformed BMA in core permeability prediction. Urang et al. [20] conducted experiments in the 
Niger Delta region to predict K using ANN and standardized nonlinear regression (curve fits), integrating RHOB and water saturation 
as input features. Kamali et al. [30] developed a group method of data handling (GMDH) algorithm with superior accuracy for precise 
permeability prediction in carbonate gas condensate reservoirs compared to established empirical correlations. These studies, in 
conjunction with Tables 1 and 2, suggest that intelligent-based models are favored for addressing computational and data-related 
problems. 

However, most of the studies were performed using well log data, as tabulated in Table 1. Only five studies (included in Table 2) 
dealt with permeability prediction utilizing input features acquired from laboratory-generated core data. Al Khalifah et al. [31], 
Mahdaviara et al. [1], Topór [32], Mohammadian et al. [34], Mahdaviara et al. [33], and Kamali et al. [30] applied different 
computer-based intelligent techniques to derive accurate permeability from core data. As input features, the following were used: 
depth, grain density, pore throat radius, flow zone indicator, pore-specific surface area, porosity, irreducible water saturation, and 
formation resistivity factor, all of which were determined in the lab. However, no one ranked core features based on their significance 
in permeability modeling. The impact of water and oil saturations on a core’s permeability has not yet been investigated. Moreover, 
comprehensive fine-tuning is not provided in these studies. The field of core data-based permeability prediction has not yet established 
decision tree, extra trees, or bagging tree formulation. To improve the performance of any classifier or regressor, decision tree, extra 

Table 2 
Data-driven methods available in the literature to attain core-data generated permeability.  

Year References Input Log Variables Output 
Variable 

Input 
Variables 
Ranking 

Sample 
Size 

Statistical 
Parameter 

Algorithms Testing Score 

2020 Al Khalifah et al. 
[31] 

Porosity, Formation 
resistivity factor, 
pore throat diameter 

K No 130 R2 

MSE 
GA ANN R2: 0.858 R2: 0.886 

2021 Mahdaviara et al. 
[1] 

Pore-specific surface 
area, porosity, and 
irreducible water 
saturation 

K No 66 MSE 
RMSE 
Adjusted R2 

GPR Adjusted R2: 0.9864 
MSE: 7456 

2021 Topór [32] Depth, porosity, 
Grain Density 

K No 1002 MAE 
RMSE 
R2 

RF MLR R2: 0.834 R2: 0.800 

2022 Mahdaviara et al. 
[33] 

Pore-specific surface 
area, porosity, and 
irreducible water 
saturation 

K No 66 MSE 
RMSE 
R2 

LSSVM-CSA MLP- 
LMA MLP-BR 
CFNN-LMA CFNN- 
BR GRNN 

R-Squared: 0.904 R- 
Squared: 0.999 R- 
Squared: 0.996 R- 
Squared: 0.998 R- 
Squared: 0.998 R- 
Squared: 0.997 
– 

2022 Mohammadian 
et al. [34] 

Porosity, connate 
water saturation, 
pore throat radius, 
FZI 

K No 128 R2 

MAE 
XGBoost R2: 0.970  
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trees, and bagging tree are helpful techniques. By using them, a predictor can be strengthened and balanced. When it comes to 
generalizing any predictor in the testing dataset, these techniques perform remarkably well. They can also assist with overfitting issues. 
Due to their increased computing efficiency in large-scale datasets and new optimization methodologies, these methods gained appeal. 
So, permeability prediction from core analysis needs a thorough investigation and optimization using decision tree, extra trees, and 
bagging tree. It is also necessary to evaluate the influence of core’s water and oil saturations on the permeability. 

In this study, machine learning models such as Multiple Variable Regression (MVR), decision tree, extra trees, bagging tree, random 
forest, and SVR are adopted to measure permeability. The considered input parameters are depth, porosity, oil saturation, water 
saturation, and grain density. These parameters are also ranked to ascertain their significance in respect to permeability. The approach 
proposed in this study has the potential to help engineers rapidly and precisely determine permeability using only a few core features 
so that laborious, costly, time-consuming, and monotonous laboratory procedures can be reduced. Although machine learning ap
proaches offer several advantages, they require substantial amounts of high-quality data, which can be a challenge for researchers due 
to the difficulty of obtaining accurate core data in a laboratory environment. 

The goal of the current study is to fill in the research gap by systematically achieving multiple novelties, which may be categorized 
as follows.  

• In the realm of reservoir permeability modeling, intelligent computer-based models, such as decision tree, extra trees, and bagging 
tree are formulated for the first time. Previously used MVR, SVR, and random forest techniques are also tested to get a thorough 
conclusion.  

• Investigation into how a core’s permeability is affected by its water and oil saturations is performed.  
• Laboratory-derived core features are ranked based on their significance in permeability modeling. 

The remainder of the text is divided into the following sections: the fundamentals of several smart computer-based approaches 
employed in this work are critically discussed in Section 2. In Section 3, data collection and preparation are covered, along with a 
synopsis of the instruments and processes employed here. Results and discussions based on important data are presented in Section 4. 
Section 5 offers a synopsis of the findings and recommendations. 

2. Theory 

2.1. Multiple variable regression 

The multiple variable regression (MVR) method is an advanced version of regression analysis that incorporates numerous predictor 
variables to evaluate the extent of linear correlation between the independent and dependent variables. The prediction model can be 
expressed using Equation (1), where X1, X2, …..., Xp stand for independent predictor variables, Y refers to the criterion variable, β1, β2, 
…, βp are regression coefficients, and e denotes residual error [35]. The least-square solution of the coefficient (βi), for which ʹ́eʹ́  

becomes zero, is given by Equation (2). 

Y = β0 + β1X1 + β2X2+....+ βpXp + e (1)  

β
∧

=
(
xTx

)− 1XTY (2)  

2.2. Decision tree 

The decision tree method has undergone extensive research and application across various domains, establishing itself as a 
dependable and effective tool. It works by dividing the input data into feature values and building a tree iteratively, where each leaf 
node represents a class label or regression value, and each core node represents a feature [36]. Splitting keeps going until the dataset is 
all cleaned up. Variance is used by entropy analysis and Gini analysis to assess impurity. The binary splitting approach cannot be used 
to find the smallest sum of squares. Predictive modeling divides the predictor space into a set of high-dimensional boxes of different 
sizes. The average of the values in a given box is used to determine the prediction value for an observation that falls inside of it [37]. 
However, decision tree may not adjust well to new data since they are sensitive to the data that they are trained on. Pruning and 
ensemble approaches are two of the many solutions that have been suggested for these problems [38]. 

2.3. Bagging tree 

Bagging, also known as bootstrap aggregating, is a popular ensemble strategy that seeks to enhance the stability and accuracy of 
prediction models. This method is popular in machine learning and has demonstrated encouraging outcomes in improving the pre
dictive power of models [36]. Specific data points might not be correctly predicted by a regression tree working alone, but they can be 
correctly predicted by an ensemble of regression trees. Using various subsets of the training data, numerous decision tree models are 
created by applying the Bagging technique. The final prediction is then generated by combining these models via voting or averaging. 
Three essential steps make up bagging tree modeling: building B ∈ N bootstrap samples; training the model with the b-th bootstrap 
sample to produce f f̂ ∗b(x); and utilizing Equation (3) to estimate the average of the estimators. 

A. Hussen et al.                                                                                                                                                                                                        
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Suppose we have a model that fits our training data set Z = {(x1, y1), (x2, y2), …, (xN, yN)}, obtaining the prediction f
∧

(x) at input X. 
By using the aggregation or bagging method, we can reduce the variance of our prediction by averaging its variance over multiple 
bootstrap samples. For each bootstrap sample Z*b, where b = 1, 2, ….., B, we are able to fit our model by providing a prediction fˆ*b(x). 

f̂ bag(x)
1
B
∑B

b=1
f̂ ∗b(x) (3) 

The aggregation of predictions from multiple regression trees results in the formation of a bagged tree, which displays significantly 
reduced bias and variance compared to an individual decision tree. As bagging lowers bias and variance, the predictive performance is 
enhanced [39]. 

2.4. Random forest 

The random forest approach is an example of an ensemble methodology that combines multiple decision trees to enhance the 
precision of the model. It usually uses a greater number of trees. The purpose of using a large number of trees is to improve prediction 
stability and reduce the variance of the ensemble. This approach can handle high dimensional data with several characteristics and is 
not prone to overfitting. Bootstrap resampling is employed to mitigate the issue of overfitting [19]. Initially, random forest selects m 
inputs at random from a set of p inputs. The best variable and split point are then chosen from a set of m inputs. It then splits the given 
node into two distinct daughter nodes. The threshold value is selected completely arbitrarily, which lowers the computational cost of 
the model and provides an edge over other bagging ensemble models. It can also rank the input attributes. This method might not work 
when starting with smaller datasets since the bootstrap samples might not accurately represent the entire dataset [40]. 

2.5. Extremely randomize tree (extra trees) 

The extra trees method, an extension of the random forest methodology, uses a whole feature set for every tree and selects splitting 
points at random instead of conducting a comprehensive search for the optimal split. The model’s performance is affected differently 
by three parameters: K, nmin, and M. More specifically, K controls the strength of the attribute selection procedure, nmin controls the 
intensity of the output noise averaging, and the parameter M determines the extent of variance reduction achieved by the ensemble 
model aggregation. The parameters can be automatically (e.g., via cross-validation) or manually modified to the particularities of the 
situation. To reduce variance more effectively than weaker randomization methods, extra trees uses ensemble averaging paired with a 
random selection of the cut-point and attribute, which justifies this approach from a bias-variance perspective. Due to their increased 
randomness in feature selection and splitting, they tend to have higher model variance but lower model bias. Randomization effec
tively manages noisy data and mitigates the risk of overfitting. This method has the potential to attain favorable outcomes with fewer 
trees owing to their intrinsic randomness. Despite their significant tendency to overfit noisy data, extra trees might be more adept at 
handling complex patterns in the data. The main advantage of this method is its computational efficiency, which goes hand in hand 
with its precision [41]. Extra trees distinguish themselves from other tree-based methods by their approach to node separation. While 
other tree-based models use random cut-points, extra trees utilize the complete learning sample. By aggregating the outcomes of many 
decision trees and employing either an arithmetic mean (for regression tasks) or a majority vote (for classification tasks), a conclusive 
prediction can be obtained [42]. 

2.6. Support vector regressor (SVR) 

A lot of research has been done on the support vector regressor (SVR) in many different applications, such as regression, anomaly 
detection, and classification. It functions according to three basic principles: minimizing the likelihood of misclassifying test data, 
accounting for unobserved data in the model, and lessening the number of samples drawn from an unspecified probability distribution 
[9]. Boundaries are used by the SVR for both regression and classification. It splits or regresses data points using borders that are 
similar to streets. A hyperplane is a line that runs in the middle of the street at a constant distance from each side. Boundary lines are 
the sides of the street. A street’s width is dependent on its margin. To handle nonlinear problems, the SVR uses several economical and 
computationally efficient kernel transformations. It is possible for SVR’s kernel functions to extract both linear and nonlinear re
lationships from data. Radial basis function (RBF), sigmoid, linear, polynomial, and custom kernels are examples of kernel functions. 
The unique characteristics of the data and the specific task at hand must be taken into consideration while choosing a kernel. A kernel 
transformation is used to convert the data collection into a higher dimensional space in order to accomplish linear separation. Unlike 
classical regression methods that focus on enhancing accuracy and precision by means of the “best fit” of the data, SVR employs a fixed 
error threshold (ϵ). The solution provided in Equation (4) is used in SVR training. 

minimize
1
2
‖ w ‖2 + C

∑n

i=1

(
ξ∗i + ξi

)

subject to yi <w, xi ≻ b ≤∈ +ξ∗i ;< w, xi > +b − yi ≤∈ +ξi (4)  

Where w stands for the weight vector that is learned during training, C stands for the regularization parameter, xi represents the i-th 
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Fig. 1. Litho-Stratigraphic description of Jeanne D’arc Basin (modified from Sinclair & Canada [43]).  
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training event, yi indicates the training label, and ξi denotes the distance between the decision boundary and the predicted values 
outside the boundary. 

3. Materials and methods 

3.1. Experimental data 

A total of 197 core plugs with a diameter of 38.1 mm are collected from a well in the Jeanne d’Arc sedimentary basin and analyzed 
in a laboratory to gather petrophysical characteristics. The well is located in a clastic reservoir dominated by quartz, consisting mainly 
of fine-grained sandstone with a small amount of shale. This reservoir was formed in a marine shoreface depositional environment. The 
litho-stratigraphic information is presented in Fig. 1. During the Late Triassic to Middle Jurassic period, extension processes shaped the 
fill of the Jeanne d’Arc basin, characterized by continental red beds, evaporates, and carbonates. These formations are overlain by 
marine mudstones, shallow marine sandstones, and the diverse lithology of the Rankin Formation. This geological unit encompasses a 
basin with diverse features and contains the prolific Egret Member, which was formed in a low energy-restricted marine environment. 
The second mega sequence, delineated by a sequence boundary, includes river-to-marine deposits from the Kimmeridgian and 
Tithonian periods in the Jeanne d’Arc Formation. These deposits are subsequently overlain by the Fortune Bay and Hibernia 
Formations. 

The Jeanne d’Arc Formation consists of coarse-grained conglomeratic fluvial deposits. These deposits are organized into eight 
phases of sedimentation. The subsequent layer, known as the Fortune Bay Formation, is composed of marine shales and siltstones that 
were deposited in offshore environments. These formations exhibit dynamic stratigraphy, which unveils tectonic events and regional 
regressions. In addition, the Eastern Shoals Formation is composed of shallow to marginal-marine calcareous sandstone and oolitic 
limestone. It is followed by the Avalon Formation, which is characterized by marine and marginal-marine deposits that coarsen up
ward, completing the basin’s sedimentary record. In summary, the sedimentary record in the Jeanne d’Arc basin reflects dynamic 
tectonic events, leading to distinct mega-sequences with varied depositional environments and lithologies [43]. 

In the present study, laboratory-derived porosity (φ), grain density (ρgr), oil saturation (SO), and water saturation (SW) are used as 
input features, whereas permeability (K) is selected as output level. Depth has also been added as an input feature because the physical 
properties of the rocks in some reservoirs are strongly influenced by depth [2]. 

The statistical information on the investigated data applied in this study is displayed in Table 3. The observed dataset exhibits 
significant variations in magnitudes across individual samples, which can be attributed to the complex structure of the reservoir. The 
degree to which the input variables and target value correlate with each other is tabulated in Table 4. Table 4 illustrates that the input 
variables have a moderate to significant influence on permeability modeling, which justifies the use of these features as inputs. 

A random process has divided the original data into training (80 %) and testing (20 %) data. After the model is trained, it is tested 
using unseen data to evaluate the developed model’s success. The Python programming environment is used for all the programming 
tasks associated with this study. The computation is facilitated by customized computer code. 

3.2. Cross validation 

Cross-validation is a statistical technique utilized in statistical modeling to ensure the precision of prediction and modeling pro
cedures. It can be implemented in different ways: K-fold cross-validation, Leave-one-out cross-validation, Random Subsampling, 
Stratified K-fold cross-validation, etc. 

In K-Fold Cross-Validation, the dataset is divided into approximately equal-sized folds or subsets. The model is trained K times, each 
time with K-1 folds as training data and the remaining folds as validation data. As a result of the various dataset experiments, all data 
points are ultimately utilized for both training and testing, which is an advantage of K-Fold Cross-validation. Fig. 2 represents the 
typical five-fold cross-validation diagram [44]. 

Leave-one-out cross-validation (LOOCV) uses K folds equal to the number of samples. Each iteration validates one data point and 
trains the model on the remaining N-1 data points. These stages are repeated N times, where N is the dataset’s sample count. Random 
subsampling is done by dividing the original dataset into two parts: train and test. The common ratios include 70–30, 80–20, or 

Table 3 
Statistical summary of core data.  

Parameters Depth φ ρgr Sw So K 

count 197 197 197 197 197 197 
mean 2394.992 0.153695 2668.376 0.303915 0.199554 60.33086 
max 2450.1 0.255 2880 0.73 0.389 724 
min 2344 0.017 2640 0.025 0.041 0.01 
25 % 2376.7 0.123 2650 0.209667 0.157 0.54 
50 % 2392.7 0.157 2660 0.287 0.199667 6.34 
75 % 2413 0.199 2680 0.432 0.241 54.4 
STD 28.8948 0.05541 27.20 0.136808 0.062382 130.355 
Skewness 0.17070 − 0.55055 3.62 0.5619 − 0.037836 3.2148 
Kurtosis − 0.71110 − 0.05125 21.70 − 0.062423 0.058507 10.6483  
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depending on the size of the dataset. Random subsampling ensures external prediction and provides confidence in diverse datasets 
with the same parameters [45]. 

3.3. Data transformation 

Regression and machine learning approaches require statistically well-dispersed predictor and criterion variables with low mea
surement and instrument errors. Some machine learning models, such as SVR and MVR, can function efficiently with standardized 
data. Hence, in these instances, the data have been standardized by utilizing the mean as well as the standard deviation. Building the 
best models with the least amount of error, the highest level of accuracy, and the greatest degree of generalizability requires stan
dardized data [46,47]. A standard normal distribution is achieved through Z-score standardization. It scales the data to one standard 
deviation and zero mean by subtracting the mean and dividing it by the standard deviation. This compares variables with different 
units or scales. Outliers and linear relationships can be identified using Z-scores, which represent how many standard deviations a data 
point is from the mean. Statistics and machine learning use z-score standardization to ensure consistency and comparability. Equation 
(5) is used in the data preprocessing stage to standardize all laboratory-derived petrophysical properties. Because of data standard
ization, all inputs have zero means and one standard deviation [47–50]. 

xʹ=
x − x

−

σ (5) 

Table 4 
Pearson correlation matrix for input-output features.   

Depth φ ρgr Sw So K 

Depth 1 - – – – – 
φ 0.265404 1 – – – – 
ρgr − 0.353625 − 0.446268 1 – – – 
Sw − 0.505329 − 0.310288 0.222499 1 – – 
So − 0.129731 0.083848 0.098782 0.094245 1 – 
K 0.386863 0.576862 − 0.22873 − 0.385444 0.256786 1  

Fig. 2. A schematic diagram of five-fold cross-validation.  

Table 5 
Model evaluation metrics.  

Statistical Parameter Mathematical Equation Nomenclature 

Coefficient of determinant 
(R2) R2 = 1 −

∑n
i=1

(
Yi − ŷi

)2

∑n
i=1(Yi − y)2 

Ŷi stands for the predicted output of i-th sample, Yi refers to the corresponding actual value of the i- 
th sample, Ŷ represents the estimated output for the target, and Y indicates the corresponding 
actual output. 
N is the number of observations in the sample, and p is the number of predictors (independent 
variables) in the model. 

Adjusted R2 

Adjusted R2 = 1 −

(
1 − R2)(N − 1)

N − p − 1 
Mean Absolute Error (MAE) MAE =

1
n
∑n

i=1
|Yi − Ŷi |

Mean Squared Error (MSE) MSE =
1
n
∑n

i=1
(Yi − Ŷi )

2 

RMSE ̅̅̅̅̅̅̅̅̅̅
MSE

√

Mean Absolute Percentage 
Error (MAPE) MAPE =

1
n
∑ |Yi − Ŷi |

Yi 
Maximum Error maxE = max (|Yi − Ŷi|)

Minimum Error minE = min (|Yi − Y|)
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where, xʹ refers to the standardized data, x
−

stands for the mean value of dataset, x denotes each value in the dataset, and σ represents 
the standard deviation of the data. 

3.4. Comparison of statistical parameters 

The objective of this study is to evaluate and confirm the effectiveness of newly developed bagging tree, decision tree, and extra 
trees models, as well as to effectively examine numerous previously used models such as MVR, SVR, and random forest. The statistical 
performance metrics used to evaluate the performance of the methods studied here include the coefficient of determination (R2), 
mean-squared error (MSE), mean absolute error (MAE), root mean squared error (RMSE), mean absolute percentage error (MAPE), 
maximum-error (maxE), and minimum-error (minE). Table 5 provides a mathematical representation of these popular and often used 
statistical indicators. 

3.5. Permeability prediction using MVR and tree-based approaches 

Based on laboratory-derived core data, permeability is predicted in this study using statistical models like MVR and tree-based 
ensemble techniques, such as decision tree, bagging tree, extra trees, and random forest. Core features such as water saturation 
(SW), grain density (ρgr), oil saturation (SO), depth, and porosity (φ) are used as inputs in regression and machine learning techniques, 
while the reservoir’s permeability (K) is used as an output. 

The GridsearchCV is used to identify the ideal set of parameters from a range of hyperparameter combinations during the training 
phase. For every tree-based model, the optimum hyperparameter values are listed in Table 6. Fig. 3 illustrates a typical tree-based 
modeling procedure. At first, the acquisition of essential data and the subsequent preprocessing operations establish the basis for 
further computing. Subsequently, meticulous selection of inputs and outputs, combined with dataset partitioning, guarantees the 
integrity of the model’s training procedures. The iterative process of selecting models, modifying parameters, and performing cross- 
validation enables the development of a prediction framework, which in turn allows for the evaluation of statistical metrics to assess 
performance. Ultimately, the model is exported to generate predictions for novel instances, enabling its use in real-world scenarios. 

3.6. Permeability prediction using support vector regressor (SVR) 

This study develops SVR models using a variety of kernel transformations, including linear, Gaussian, polynomial, and radial basis 
functions. The optimization of the model is conducted through different runs in both the training and validation stages. In the vali
dation stage, an accurate SVR model is built using a K-value of ten cross-validations and appropriate C, gamma, and kernel values. 
First, it is important to choose the right kernel to determine the optimal values for these parameters. In SVR, “kernel values” refer to the 
results of a specific kernel function applied to pairs of data points. These values represent the relationships or similarities between data 
points in a higher-dimensional space, revealing complex patterns within the data. Common kernels, such as linear, polynomial, and 
Gaussian, transform input data to help identify underlying structures. The SVR algorithm uses these kernel values to build a regression 
model that best fits the data while taking into account the accuracy-smoothness trade-off. 

The values for gamma and C require an adjustment after the selected kernel. The present work uses a grid search technique to find 
the best values for the C, gamma, and kernel parameters. The ideal values of the hyperparameters for C, gamma, and kernel are displayed 
in Table 6. A step-by-step schematic illustrating the SVR modeling is presented in Fig. 4. The approach used in the SVR flowchart is 

Table 6 
The optimum hyperparameter values for SVR and tree-based models.  

Algorithm Hyperparameter Optimized Value 

Random Forest n_estimators 54 
Criterion absolute_error 
max_features 4 
max_depth 5 
max_leaf_nodes 2 
min_weight_fraction_leaf 0 
min_samples_split 2 

Decision Tree max_depth 5 
Bagging n_estimators 100 

max_samples 0.8 
Extra Trees n_estimators 100 

Criterion absolute_error 
max_features None 
max_depth 5 
min_samples_leaf 1 
min_samples_split 2 

SVR C 900  
Kernel rbf  
Gamma auto  
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comparable to that of tree-based modeling. An important difference between SVR and tree-based modeling is that, in the case of SVR, 
the dataset is standardized. While both SVR and tree-based modeling involve gridsearch pipelines, the tuning parameters vary among 
models. 

3.7. Ranking of core features 

Laboratory-derived core features are ranked based on their significance in permeability modeling. Ranking core features helps 
determine which input variables or features most affect permeability prediction. Numerous input features add complexity to a machine 
learning model. Sometimes, some of the input features don’t add any significance to the model. Moreover, it increases training time. 
For this reason, input feature numbers are reduced using different dimensionality reduction techniques such as principal component 
analysis or linear discriminant analysis. Feature ranking helps reduce input feature numbers by carefully discarding low-significant 
features. It plays a critical part in reducing dimensionality in the model. 

Fig. 3. Key steps to determine permeability from core data using tree-based modeling.  
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This study employs two distinct ways of ranking: algorithmic and manual. Both strategies make use of the extra trees predictive 
model. One input parameter at a time is eliminated to build the model using the manual approach. To accommodate the differences in 
the distribution of data, the model is run sixteen times using distinct random states. The next step is to rank using the R2 values, 
assigning a rank of 1 to the lowest value, a rank of 2 to the second lowest value, and so on. MSE assigns a quantitative value of 1 to the 
value with the largest magnitude, a value of 2 to the value with the second highest magnitude, and subsequent values are assigned in 
ascending order. MAE, MAPE, and maxE go through the same procedure. All the ranks are added up to determine the cumulative rank, 
with a lower value having a more significant influence. This procedure is repeated to rank all the input variables. 

The algorithmic method is an impurity-based strategy in which bootstrapped samples and randomized feature selection are used by 
extra trees to produce numerous decision trees. The impurity measure, also known as entropy or Gini impurity, assesses each feature’s 
impact on model accuracy. The feature importance is then calculated by adding up the impurity reduction that each feature in the 

Fig. 4. Key steps to determine permeability from core data using SVR modeling.  
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ensemble of trees achieves. Finding the difference between the impurity of the parent node and the weighted sum of the impurities in 
the child nodes is the way of computing the impurity decrease of a feature. 

4. Results and discussion 

4.1. Results 

4.1.1. Permeability prediction using MVR model 
Pearson correlation evaluates the degree and direction of a linear relationship between two continuous variables. Table 4 depicts 

the matrix argument values for each pair of variables’ correlation, which vary from − 1 to 1. A positive correlation coefficient rep
resents a positive association between two variables. If the correlation coefficient is negative, the variables are negatively correlated. 

Porosity (φ), depth, and oil saturation (SO) are positively correlated with permeability while water saturation (SW) and grain 
density (ρ) have negative correlation coefficient with permeability (Table 4). These findings are supported by the scatter plots of 
predictor variables versus the criterion variable (Fig. 5). As a result, it can be said that the following factors are important input 
variables for permeability prediction: depth, φ, ρ gr, SW, and SO. 

Equation (6), which is the best-correlated MVR equation, is obtained by the stepwise procedure. Table 7 provides a summary of the 
MVR model’s predicted performance parameters for equation (6). The coefficient of the determinant (R2) for the MVR model is 0.63, 
suggesting that the predictive ability of the MVR is not significant. The R2 value for the MVR model is significantly lower than that of all 
the other models examined. Additionally, the remaining statistical parameters (error metrics) for MVR are exceptionally high, indi
cating that MVR is not a reliable model for predicting permeability based on core data. In some cases, the model predicted a negative 
value of permeability, which is unacceptable in reservoir characterization. 

K= 54.65 − 20.70 × Sw + 56.35 × φ + 24.17 × depth + 26.86 × So + 4.70ρgr (6)  

4.1.2. Permeability prediction using decision tree (DT), bagging tree (BT), random forest (RF), extra trees (ET), and support vector regressor 
(SVR) 

The R2 values for the testing datasets of SVR and all tree-based models (DT, BT, RF, and ET) are significantly closer to 0.95 (Table 7 
and Fig. 6). These models also have very low R2 variances. While MAPE and minE exhibit substantial fluctuations, other performance 
metrics like MSE, RMSE, MAE, and maxE display a moderate degree of variance, indicating a hierarchy of these models. The RMSE, 
MAE, and maxE results are higher for the DT and RF. Nevertheless, BT and SVR have lower RMSE and MAE values than ET, DT, and RF 

Fig. 5. Laboratory-derived core properties plotted against corresponding permeabilities. (a) K vs Depth. (b) K vs ρgr . (c) K vs Sw. (d) K vs φ. (e) K 
vs So. 
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but have higher MAPE values. ET, BT, and RF outperform other models on all statistical measures. The order of accuracy (higher to 
lower) of the SVR and tree-based models is described as follows based on the MSE, MAE, MAPE, maxE, and minE scores: ET, BT, RF, DT, 
and SVR. 

4.1.3. Investigation of K-fold cross validation 
The performance of the Extra Trees model was assessed using the K-fold cross-validation technique, employing various numbers of 

folds (K) including 3-fold, 5-fold, 7-fold, 9-fold, and 10-fold. The R2 testing value indicates that the majority of values are approxi
mately 0.97. The most effective configuration is the ten-fold cross-validation, with a remarkable R2 of 0.976, whereas 9-fold witnessed 
the lowest value among all folds (Table 8). 

The maximum and minimum absolute errors verify the model’s consistency across multiple folds. The findings reveal that the 
model has good predictive power and ability to be generalized across diverse subsets of data. The order of accuracy (higher to lower) of 
the different k-fold based on the R2, adjusted R2, MSE, MAE, MAPE, maxE, and minE scores: 10-fold, 5-fold, 3-fold, 7-fold, and 9-fold. 

4.1.4. Input features ranking 
The results of the manual ranking method are listed in Table 9, while Fig. 7 displays the results of the algorithmic ranking. For 

permeability prediction, manual and algorithmic ranking suggest that the most important features are φ and SW, whereas the least 
important variables are ρgr, SO, and depth. Feature ranking can help to determine the permeability quickly and accurately using a few 
core features, reducing the need for labor-intensive, costly, and time-consuming laboratory work. 

Table 7 
Statistical index of prediction efficiency for MVR, Tree-based models, and SVR.  

Models R2 Adjusted R2 MAE MSE RMSE MAPE maxE minE 

MVR 0.613 0.549 59.017 8421.679 91.77 341.81 578.247 1.132 
DT 0.942 0.941 24.773 1721.222 41.488 0.602 120 0 
BT 0.964 0.96 10.647 407.953 20.198 20.937 81.792 0.006 
RF 0.961 0.957 16.988 1026.627 32.041 3.981 125.136 0.027 
ET 0.976 0.974 9.186 253.527 15.923 2.625 50.506 0.028 
SVR 0.951 0.942 15.724 625.647 25.013 17.215 85.734 0.037  

Fig. 6. Graphical presentation of R2 for testing data (a: MVR, b: DT, c: BT, d: RF, e: ET, f: SVR).  
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4.2. Discussions 

4.2.1. Models’ proficiency and shortcomings 
In order to enhance the estimation accuracy, the current work formulates machine learning models—bagging tree, decision tree, 

and extra trees—for the first time in the permeability modeling of petroleum reservoirs based on core analysis. Another scientific 
novelty of this work is the examination of the effects of water and oil saturations on a core’s permeability. This research also ranks core 
features according to their importance in permeability modeling. 

Each model’s prediction performance is assessed using the statistical indices that are compiled in Table 5. A list of these indices for 
the models under study is tabulated in Tables 7 and 8. A comprehensive comparison of the models is illustrated in Fig. 8. It has been 
noted that MVR performs incompetently. While the R2 displays similar trends, the RMSE, MAE, and maxE exhibit considerable var
iations in DT, BT, RF, ET, and SVR. The MAPE is one of the most important indicators in statistical analysis. The higher value of MAPE 
experienced by BT and SVR indicates that these are less accurate models. The RF and ET demonstrate a moderate degree of minE, 
however the SVR has a noticeably higher minE. The DT and BT approaches result in a minimal minE. 

A total of 197 data points plotted in terms of depth in Fig. 9 comprehensively demonstrates the comparison of the actual and 
predicted permeability values for studied statistical and machine learning models. All models except MVR correctly predicted the 
permeability value. 

The prediction performance of MVR is relatively poor, and MVR also predicted negative permeability value in several instances. 
Permeability is almost precisely predicted by DT, BT, and RF. The overall accuracy ratings of tree-based modeling approaches indicate 
that these models could be viable candidates for precisely characterizing a reservoir. 

Table 8 
Performance metrics of Extra Trees with different K-fold cross validation.  

K R2 Adjusted R2 MAE MSE MAPE RMSE maxE minE 

03 0.974 0.973 13.270 553.674 3.789 23.530 94.159 9.7E-17 
05 0.975 0.974 12.541 530.556 4.327 23.034 83.000 9.7E-17 
07 0.970 0.969 13.591 629.199 4.774 25.084 87.288 9.7E-17 
09 0.968 0.966 13.455 685.000 5.055 26.172 113.818 9.7E-17 
10 0.976 0.976 9.186 253.527 2.625 15.923 50.507 2.8E-02  

Table 9 
Core features ranking using manual approach.  

Excluded parameter Performance metrics Ranking Total Rank 

R2 MAE MSE MAPE EV maxE MinE R2 MAE MSE MAPE MaxE 

φ 0.58 39.53 6989.93 89.67 0.59 374.02 0.13 1 1 1 1 1 4 
Sw 0.79 22.81 3624.42 4.86 0.80 296.23 0.01 2 2 2 4 2 10 
ρgr 0.82 22.00 3264.10 6.59 0.82 271.35 0.01 3 5 3 3 3 14 
So 0.82 22.05 3143.60 7.70 0.83 256.61 0.00 4 4 4 2 4 14 
Depth 0.85 22.54 2614.84 3.66 0.85 229.33 0.00 5 3 5 5 5 18  

Fig. 7. Core features ranking using algorithmic approach.  

A. Hussen et al.                                                                                                                                                                                                        



Heliyon 10 (2024) e32666

15

4.2.2. Feature importance and cross-validation 
In order to forecast permeability, engineers and operators can save time and effort by using the variable ranking to help them 

choose a few features instead of doing a whole core analysis. The input parameters ranking indicates that the variables ρgr, SO, and 
depth are the least relevant for permeability prediction, whereas φ and SW are the most significant inputs. Cross-validation investi
gation suggests that the value of K in k-fold cross-validation is chosen based on different information such as the size of the dataset, 
computing efficiency of k-fold cross-validation, etc. 

4.2.3. Significance of this study 
The developed DT, BT, and RF can help researchers effectively characterize heterogeneous petroleum reservoirs. Furthermore, with 

a few laboratory-derived core features, the proposed method can help researchers determine the permeability quickly and accurately, 
reducing the amount of work in the lab and the overall cost of the experiment. This work will probably pave the way for the use of 

Fig. 8. Statistical indices of Decision Tree, Bagging Tree, Random Forest, Extra Trees, and SVR (a: R2, b: RMSE, c: MAE, d: MAPE, e: maxE, f: minE).  

Fig. 9. Comparison of the actual and predicted permeability of MVR, DT, BT, ET, RF, and SVR (a: MVR, b: DT, c: BT, d: ET, e: RF, f: SVR).  
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computer-based machine-learning techniques in petroleum engineering research. Rather than relying solely on tried-and-true 
empirical algorithms and laboratory-intensive works, novel machine learning models will be applied in evaluating a reservoir’s 
rock-fluid properties and quality, doing an economic analysis, and deciding on drilling operations, field development, and reservoir 
management. 

5. Conclusion 

Six machine learning algorithms, including MVR, decision tree, bagging tree, random forest, extra trees, and SVR, are used in this 
work to predict permeability from core data. Among these, in core data-based permeability modeling, decision tree, bagging tree, and 
extra trees are developed for the first time. Examining how oil and water saturations affect a core’s permeability and prioritizing core 
features in permeability modeling are two more scientific novelties. The following are the investigation’s main findings.  

1. The MVR cannot be used to forecast core data-based permeability since it is too unreliable. Every model-extra trees, bagging tree, 
random forest, SVR, and decision tree-developed in this study outperformed the MVR.  

2. The random forest, bagging tree, and extra trees methods accurately predict permeability. With an R2 of 0.976, extra trees exhibits 
the highest prediction accuracy, whereas random forest and bagging tree demonstrate slightly lower R2 values of 0.961 and 0.964, 
respectively. Based on performance criteria, the investigated approaches are ranked as follows: extra trees, bagging tree, random 
forest, SVR, decision tree, and MVR.  

3. The performance of the 10-fold cross-validation is superior to that of the 3-fold, 5-fold, 7-fold, and 9-fold cross-validations when 
extra trees are used. This reveals that employing a higher number of folds for validation might be advantageous in this scenario.  

4. Based on the ranking of the input parameters, it is evident that the most significant inputs for permeability prediction are φ and Sw. 
On the other hand, the variables ρgr, SO, and depth have the least significant importance. 

The results indicate that the optimized random forest, bagging tree, and extra trees algorithms are good choices for permeability 
prediction. Regretfully, there are no set standards for choosing the right model. To find the best machine-learning model for this task, 
more investigation is required. Potential future strategies could involve adding advanced deep learning models and integrating core 
data from different locations. 
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Abbreviations, variables, parameters, symbols and Greek letters 

Ŷi the predicted value of i-th sample 
Yi corresponding true value of the i-th sample 
Y Mean value of Yi 
ξi Distance between the boundary line and predicted values beyond the street 
ξ∗i Slack variable 
ANFIS Adaptive neuro fuzzy inference system 
ANN Artificial neural network 
CNN Convolutional neural network 
BT Bagging Tree 
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DT Decision Tree 
DT transit time 
ET Extra Trees 
FDT Fuzzy decision tree 
FIS Fuzzy interface system 
GA Genetic algorithm 
MAE Mean absolute error 
MAPE Mean absolute percentage Error 
FZI Flow Zone Indicator 
GR Gamma ray 
GRNN General regression Neural Network 
K Permeability 
LLD Latero-resistivity log deep 
LLS Latero-resistivity log shallow 
maxE Maximum Error 
minE Minimum Error 
MSFL micro-spherical focused resistivity log 
MVR Multiple Variable Regression 
N number of variables 
NPHI neutron porosity 
R2 Coefficient of determinant 
Relu Rectified linear unit 
RF Random Forest 
RHOB Bulk density 
RMSE Root Mean Squared Error 
MSE Mean squared error 
MVR Multiple Variable Regression 
SVM Support Vector machine 
SVR Support Vector Regressor 
LM Levenberg–Marquardt 
So Oil Saturation 
SP Spontaneous Potential 
STD Standard Deviation 
Sw Water Saturation 
Swc Connate Water Saturation 
ρgr Grain density 
σ Standard Deviation 
φ Porosity 
φN Neutron Porosity 
Ω Regularization function 
η Learning rate 
e Residual error 
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[32] T. Topór, Application of machine learning algorithms to predict permeability in tight sandstone formations, Nafta Gaz. 77 (5) (2021) 283–292. 
[33] M. Mahdaviara, A. Larestani, M. Nait Amar, A. Hemmati-Sarapardeh, On the evaluation of permeability of heterogeneous carbonate reservoirs using rigorous 

data-driven techniques, J. Petrol. Sci. Eng. 208 (2022) 109685. 
[34] E. Mohammadian, M. Kheirollahi, B. Liu, M. Ostadhassan, M. Sabet, A case study of petrophysical rock typing and permeability prediction using machine 

learning in a heterogenous carbonate reservoir in Iran, Sci. Rep. 12 (1) (2022) 4505. 
[35] B. Balan, S. Mohaghegh, S. Ameri, State-of-the-art in permeability determination from well log data: Part 1- A comparative study, model development, Paper 

presented at the SPE Eastern Regional Meeting, Morgantown, West Virginia (September 1995), https://doi.org/10.2118/30978-MS. 
[36] G. James, D. Witten, T. Hastie, R. Tibshirani, J. Taylor, Tree-based methods, in: An Introduction to Statistical Learning: with Applications in Python, Springer 

International Publishing, Cham, 2023, pp. 303–335. 
[37] L. Rokach, O. Maimon, Decision Trees. Data Mining and Knowledge Discovery Handbook, 2005, pp. 165–192. 
[38] M. Bramer, Avoiding Overfitting of Decision Trees. Principles Of Data Mining, 2007, pp. 121–136. 
[39] L.N. Jahan, T.A. Munshi, S.S. Sutradhor, M. Hashan, A comparative study of empirical, statistical, and soft computing methods coupled with feature ranking for 

the prediction of water saturation in a heterogeneous oil reservoir, Acta Geophys. 69 (5) (2021) 1697–1715. 
[40] L. Breiman, Random forests, Mach. Learn. 45 (1) (2001) 5–32. 
[41] P. Geurts, D. Ernst, L. Wehenkel, Extremely randomized trees, Mach. Learn. 63 (1) (2006) 3–42. 
[42] E.E. Okoro, T. Obomanu, S.E. Sanni, D.I. Olatunji, P. Igbinedion, Application of artificial intelligence in predicting the dynamics of bottom hole pressure for 

under-balanced drilling: extra tree compared with feed forward neural network model, Petroleum 8 (2) (2022) 227–236. 
[43] I.K. Sinclair, Petroleum resources of the Jeanne d’Arc basin and environs. Grand Banks, Newfoundland (No. 8), Geological Survey of Canada, 1992. 
[44] M. Rahimi, M.A. Riahi, Reservoir facies classification based on random forest and geostatistics methods in an offshore oilfield, J. Appl. Geophys. 201 (2022) 

104640. 
[45] W.J. Al-Mudhafar, Incorporation of bootstrapping and cross-validation for efficient multivariate facies and petrophysical modeling, in: SPE Rocky Mountain 

Petroleum Technology Conference/Low-Permeability Reservoirs Symposium, 2016, May, pp. SPE–180277. SPE. 
[46] V. Patel, A.J. Flisher, S. Hetrick, P. McGorry, Mental health of young people: a global public-health challenge, Lancet 369 (9569) (2007) 1302–1313. 
[47] S. Mesroghli, E. Jorjani, Estimation of gross calorific value based on coal analysis using regression and artificial neural networks, Int. J. Coal Geol. 79 (2009). 
[48] B. Demuth Howard, M.H. Beale, Neural Network Toolbox: for Use with MATLAB®, MathWorks, 2000. 
[49] B. Wang, X. Wang, Z. Chen, A hybrid framework for reservoir characterization using fuzzy ranking and an artificial neural network, Comput. Geosci. 57 (2013) 

1–10. 
[50] R. Ashena, G. Thonhauser, Application of artificial neural networks in geoscience and petroleum industry, Artificial intelligent approaches in petroleum 

geosciences (2015) 127–166. 

A. Hussen et al.                                                                                                                                                                                                        

http://refhub.elsevier.com/S2405-8440(24)08697-3/sref24
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref24
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref26
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref26
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref25
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref25
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref27
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref27
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref28
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref28
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref6
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref6
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref29
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref29
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref30
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref30
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref9
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref9
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref16
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref16
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref17
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref17
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref31
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref31
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref32
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref32
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref33
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref33
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref34
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref34
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref35
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref35
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref7
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref7
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref14
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref14
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref15
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref15
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref10
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref18
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref18
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref19
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref19
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref20
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref22
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref22
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref21
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref21
https://doi.org/10.2118/30978-MS
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref37
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref37
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref38
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref39
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref40
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref40
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref41
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref43
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref44
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref44
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref50
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref42
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref42
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref8
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref8
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref45
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref46
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref47
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref48
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref48
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref49
http://refhub.elsevier.com/S2405-8440(24)08697-3/sref49

	Advanced machine learning approaches for predicting permeability in reservoir pay zones based on core analyses
	1 Introduction
	2 Theory
	2.1 Multiple variable regression
	2.2 Decision tree
	2.3 Bagging tree
	2.4 Random forest
	2.5 Extremely randomize tree (extra trees)
	2.6 Support vector regressor (SVR)

	3 Materials and methods
	3.1 Experimental data
	3.2 Cross validation
	3.3 Data transformation
	3.4 Comparison of statistical parameters
	3.5 Permeability prediction using MVR and tree-based approaches
	3.6 Permeability prediction using support vector regressor (SVR)
	3.7 Ranking of core features

	4 Results and discussion
	4.1 Results
	4.1.1 Permeability prediction using MVR model
	4.1.2 Permeability prediction using decision tree (DT), bagging tree (BT), random forest (RF), extra trees (ET), and suppor ...
	4.1.3 Investigation of K-fold cross validation
	4.1.4 Input features ranking

	4.2 Discussions
	4.2.1 Models’ proficiency and shortcomings
	4.2.2 Feature importance and cross-validation
	4.2.3 Significance of this study


	5 Conclusion
	Data availability statement
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgement
	Abbreviations, variables, parameters, symbols and Greek letters
	References


