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Abstract: Aneurysmal subarachnoid hemorrhage (aSAH) remains a disease with high mortality
and morbidity. Since treating vasospasm has not inevitably led to an improvement in outcome, the
actual emphasis is on finding neuroprotective therapies in the early phase following aSAH to prevent
secondary brain injury in the later phase of disease. Within the early phase, neuroinflammation,
thromboinflammation, disturbances in brain metabolism and early neuroprotective therapies directed
against delayed cerebral ischemia (DCI) came into focus. Herein, the role of neuroinflammation,
thromboinflammation and metabolism in aSAH is depicted. Potential neuroprotective strategies
regarding neuroinflammation target microglia activation, metalloproteases, autophagy and the
pathway via Toll-like receptor 4 (TLR4), high mobility group box 1 (HMGB1), NF-κB and finally
the release of cytokines like TNFα or IL-1. Following the link to thromboinflammation, potential
neuroprotective therapies try to target microthrombus formation, platelets and platelet receptors as
well as clot clearance and immune cell infiltration. Potential neuroprotective strategies regarding
metabolism try to re-balance the mismatch of energy need and supply following aSAH, for example,
in restoring fuel to the TCA cycle or bypassing distinct energy pathways. Overall, this review
addresses current neuroprotective strategies in aSAH, hopefully leading to future translational
therapy options to prevent secondary brain injury.

Keywords: subarachnoid hemorrhage (SAH); inflammation; thromboinflammation; metabolism;
neuroprotection; therapy

1. Introduction

Aneurysmal subarachnoid hemorrhage (aSAH) is a complex cerebrovascular disease
with profound systemic complications, accounting for about 5% of all strokes. The world-
wide incidence of aSAH is approximately 700,000 person–years with an overall mortality
of about 40% [1,2]. Brain injury following aSAH is multimodal and occurs directly, as early
brain injury, however, also secondarily, as delayed brain injury [3]. Angiographic cerebral
vasospasm (CVS) occurs in approximately 70% of patients during the first 2 weeks after
aSAH, but the incidence of delayed cerebral ischemia (DCI) is only around 30%, with DCI
remaining the major cause of morbidity and mortality among patients who survive the
initial treatment of the ruptured aneurysm [4,5]. Several mechanisms during the acute
phase of SAH contribute to DCI and poor outcome. These include neuroinflammation,
microthrombosis, cortical spreading depolarizations, disrupted integrity of the blood–brain
barrier (BBB), microvascular dysfunction and metabolic derangement [6–9].
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Despite the extensive advances in experimental research, especially in recent years,
translational clinical therapy and data are still lacking, persistently motivating researchers
all over the world to find new strategies for neuroprotective therapy following aSAH. The
main goal of this review was to summarize the role of neuroinflammation, thromboin-
flammation and metabolism following aSAH with a special focus on new neuroprotective
targets in these fields, possibly leading to translational new approaches in clinical neuro-
protective therapy.

2. Role of Neuroinflammation in aSAH
2.1. Activation of the Immune System

The initial global hypoperfusion after aSAH leads to inflammatory processes, which
occur in blood vessels as well as in cerebrospinal fluid (CSF). While talking about inflam-
mation in a non-infected environment, persistent actions of the innate immune system
were predominantly found [10–12].

Peripheral monocytes invade the brain as macrophages. Lymphocytes, as part of the
innate and adapted immunity, are highly activated in contrast to B- and T-cells as products
of the adapted immune system, which are just rarely upregulated [13]. Since macrophages
and neutrophils enter the subarachnoid space, they degranulate, whereby inflammatory
factors are released [14].

An early gain of neutrophils, already 3 days after aSAH, was found to be associated
with a later vasospasm. Therefore, it can be concluded, that the mechanism of neutrophil
signaling ameliorates vasospasm.

Inflammatory cells and associated cytokines as well as their receptors are upregulated
in the subarachnoid space, while entering from within the blood vessels and acting on
vascular walls formed by the increased reactivity of microvessels to post-hemorrhagic
CSF [15].

An increased permeability of the BBB enables cytokines to reach the brain parenchyma
and also circulating immune cells to access the perivascular spaces and reach the brain
interstitium [16,17]. Additionally, an increased cytokine production as a response to injured
brain parenchyma and the increased permeability of the BBB leads to global cerebral edema.

2.2. Acute Events Following aSAH

After the initial aneurysm rupture, blood leaks into the subarachnoid space. The break-
down of red blood cells and degradation over time leads to the deposition of hemoglobin.
As a result of red blood cell breakdown, methemoglobin, heme and hemin can lead to
activation of Toll-like receptor 4 (TLR4), which signals inflammatory cascades that damage
neurons and white matter [18]. Due to the neuroimmunological damage of neurons, a
possible link with metabolic derangement may exist. Via the release of redox-active iron,
Hemin has been linked to alter the balance of oxidants and anti-oxidants. The redox-active
ion produces superoxide and hydroxyl radicals as well as lipid peroxidation while deplet-
ing anti-oxidant stores such as nicotinamide adenine dinucleotide phosphate (NADPH)
and glutathione [18,19].

In addition, immunomodulatory cells, notably microglia, are activated due to leak-
ing blood after aneurysm rupture. These cells trigger the upregulation of numerous cell
adhesion molecules within endothelial cells, which subsequently allows a multitude of
inflammatory cells to bind and enter the subarachnoid space [18,20]. Once these inflam-
matory cells, such as macrophages and neutrophils, enter the subarachnoid space, they
phagocytize the extravasated, degrading blood cells in an effort to clear free hemoglobin
and therefore promote neurostability and recovery. By the binding of hemoglobin to
haptoglobin, a rapid engulfment by immune cells is facilitated [18].

2.3. Subacute/Chronic Events Following aSAH

As described above, peripheral immune cells such as neutrophils and macrophages
are attracted to clear free hemoglobin after aneurysm rupture. Moreover, they might



Int. J. Mol. Sci. 2021, 22, 5442 3 of 25

also become trapped in the subarachnoid space due to alterations in CSF flow and the
restoration of the endothelial tight junction barrier. During degranulation in the subarach-
noid space, macrophages and neutrophils release a multitude of inflammatory factors,
including endothelins and oxidative radicals. Further downstream, these factors can cause
inflammation-induced vasoconstriction, meningitis and cerebritis [21]. It remains unclear
whether neutrophils and macrophages are passing through an intact or disrupted BBB
while being recruited.

2.4. Microglia

The microglia can be understood as the on-site phagocytes of the central nervous
system (CNS), which are able to provoke an upregulation of inflammatory cytokines,
especially of interleukins IL-1ß and IL-6 as well as of tumor necrosis factor alpha (TNFα) as
a response to infection or even hemorrhage due to an accumulation near the vessel rupture
with release into both serum and CSF [22–24].

This increased production causes the destabilization of the blood–brain barrier by
a wave of intraparenchymal inflammation, which causes neuronal injury where it has
typical pro-inflammatory cytokines, even if aSAH is primary a bleeding outside the brain
parenchyma. The breakdown of red blood cell products and its release of inflammatory
cytokeratins could be understood as a trigger of vasospasm and tissue injury [14].

During the early phase after aSAH, as already mentioned above, the breakdown
and degradation of red blood cells leads to a hemoglobin detachment. Subsequently,
methemoglobin, heme and hemin facilitate a neuroinflammatory reaction as they are able
to activate TLR4, which are expressed in microglia [25,26]. TLR4 generates among others an
inflammatory response by interacting with the nuclear factor kappa-light-chain-enhancer
of activated B cells (NF-kB), which results in damaging nerve tissue [27]. In summary,
different pathways linked to TLR4 activation were found. Therefore, new strategies for
immunotherapy that target microglia and TLR4 signaling should be investigated [28].

Microglia accumulation plays a significant role in the cerebral spreading of inflamma-
tion [29] as it can be a significant target for treatment strategies. The amount of neuronal
cell death can be reduced by microglia depletion. The intracerebral accumulation of in-
flammatory cells occurs between day 4 and 28 after aSAH, contributing to delayed brain
injury [30].

2.5. Endocannabinoids

Endocannabinoids (eCBs) are lipid-soluble molecules and the endogenous analogs
of the psychoactive constituents of cannabis plants. They are produced on demand in
response to increased intracellular calcium levels. Arachidonoylethanolamine, also known
as anandamide (AEA), and 2-arachidonoyl-glycerol (2-AG) are the main representatives
of eCBs. The endocannabinoid system (ECS) is described as a complex lipid network
consisting of cannabinoid receptors (CBRs), endogenous ligands and the enzymes involved
in endocannabinoid degradation and synthesis [31,32]. The ECS has been implicated as an
important regulatory component by the regulation of the local CBF and by the maintenance
of the BBB and related transport proteins [32].

All major cell types involved in cerebrovascular control pathways (i.e., smooth muscle,
endothelium, neurons, astrocytes, pericytes, microglia and leukocytes) are capable of
synthesizing eCBs and/or the expression of their target proteins like the cannabinoid type
1 receptor (CB1R) and cannabinoid type 2 receptor (CB2R).

This leads to the hypothesis, that the ECS may importantly modulate the regulation of
cerebral circulation in physiological and pathophysiological conditions. Experimental data
suggest that the direct effect of cannabinoids on cerebral vessels is vasodilatation, at least
partially mediated by CB1R. It was shown that, for certain cerebrovascular pathologies
like SAH and traumatic as well as ischemic brain injury, the activation of CB2R (and to
date unidentified non-CB1R/non-CB2R) receptors may improve brain blood perfusion by
attenuating vascular inflammation [32].
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Microglia in the homeostatic “resting” state synthesize 2-AG and AEA and express
the cannabinoid receptors CB1R and CB2R at low levels. When activated, microglia
significantly increase their synthesis of eCBs and upregulate their expression of CB2R,
making them produce more neuroprotective and less pro-inflammatory factors [33].

Both synthetic cannabinoids and eCBs were shown to inhibit TNFα release and the
release of other cytokines like IL-1α, IL-1β and IL-6 [32].

2.6. Metalloproteinases

Metalloproteinases (MMPs) are a family of proteases consisting of multiple subtypes.
MMP-9 is the most widely investigated metalloproteinase and has been shown to be
responsible for the degradation of tight junction proteins, which are substantial in the
maintenance of BBB integrity. Clinical studies of aSAH have reported an elevation of
MMP-9 levels in brain tissue, serum and CSF as well as in the vessel wall [34]. Therefore,
MMP-9 might be a possible target for neuroprotective therapies by restoring BBB integrity
or even prevent BBB disruption in the first place.

2.7. High Mobility Group Box 1

The high mobility group box 1 (HMGB1) protein is a pro-inflammatory-like cytokine
with an initiator role in neuroinflammation, that has been implicated in traumatic brain
injury (TBI) as well as in early brain injury (EBI) after aSAH. An extracellular overexpression
of HMGB1 following aSAH has been described. Once reaching the extracellular milieu,
HMGB1 serves as a damage-associated molecular pattern (DAMP) protein and exerts an
inflammatory response, engaging several inflammatory mediators. After being released
from neurons and astrocytes, HMGB1 begins the production of several inflammatory
markers, including TNFα, IL-6 and IL-1β [35]. Extracellular HMGB1 interacts with TLR4
and the receptor for advanced glycation end products (RAGE) to initiate cell migration and
the production of cytokines [35,36].

HMB1 acts as an inflammatory mediator due to the activation of neuroinflammatory
cascades and rupture of the BBB [37,38]. The increased HMGB1 leads to an aggravated
inflammation and upregulation of inflammatory mediators via TLRs/NF-kB signaling
cascades [39]. An early increase following aSAH with its maximum peak after one day and
its proinflammatory role was demonstrated in experimental aSAH by the verification of
increased TLR4, IL-1ß as well as NF-kB after the administration of recombinant HMGB1 [40].
By activating Janus-Kinase (JAK2)/signal transducer and activator of transcription (STAT3),
it contributes to EBI. Therefore, the JAK2/STAT3 inhibitor AG490 decreased the HMGB1
expression as well as its nuclear to cytosol translocation, which leads to ameliorated EBI in
experimental aSAH [41].

The experimental administration of a HGMB1 antibody demonstrated an attenuated
progression of CVS due to a reduced upregulation of inflammatory molecules such as
TNFα, TLR4 and IL-6 [38]. Accordingly, glycyrrhizin (a HGMB1 inhibiting molecule)
reduced CVS by the downregulation of proinflammatory cytokines (IL1-ß, IL-6 as well as
TNFα) [42].

Even though no clinical data have been provided to date, targeting the HMGB1
pathways may be a promising therapeutic approach [39]. Elevated serum HMGB1 levels
in aSAH-patients from day 1 remained elevated until day 13 in patients developing CVS,
reflecting a biomarker potential of HMGB1 [43].

2.8. Autophagy and NF-κB-Mediated Inflammation

SAH following aneurysm rupture is related to an affected function of the autophagy
lysosomal system. Autophagy implies “self-eating” and can be understood as a process
of lysosomal degradation of no longer usable cellular components. Therefore, it sets an
important element of cellular metabolism [44].

Among the most serious consequences of intracranial aneurysm rupture are EBI,
delayed brain injury and CVS, all associated with an impaired function of the autophagy-



Int. J. Mol. Sci. 2021, 22, 5442 5 of 25

lysosomal system [44]. Aneurysm walls are usually characterized by an active inflamma-
tory response, and NF-κB has been identified as the main transcription factor regulating the
induction of inflammation-related genes in intracranial aneurysm lesions [45]. Moreover,
NF-κB, which is a pivotal factor controlling inflammation, is regulated by autophagy-
related proteins, and autophagy is regulated by NF-κB signaling. NF-κB denotes a family
of transcription factors playing an important role in many cellular activities including
proliferation, response to stress, immune response, apoptosis and inflammation [46]. Un-
der stress conditions, NF-κB translocates to the nucleus, where it stimulates or represses
the transcription of many genes. The activation of NF-κB in basal (normal) conditions
can be promoted by two separate signaling pathways, the canonical and non-canonical
pathway. The basal pathway can be stimulated by various factors, but in general the
canonical pathway is activated by TNFα and IL-1β, as well as other cytokines via binding
to their specific receptors [47]. The non-canonical pathway gets activated by a limited set of
ligands, including those belonging to the TNF family and TNF-related factors. NF-κB, in an
elevated activated form, generates the expression of several pro-inflammatory proteins, in-
cluding cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE-2) and molecules that facilitate
the recruitment and adhesion of macrophages [45,48]. Once they have entered the vessel
wall through new vasa vasorum, macrophages release other pro-inflammatory molecules,
including TNFα, IL-1β, MMPs as well as other proteases, which finally results in the re-
modeling of the structure of the vessel wall in combination with other molecules [45,47,48].
An antiapoptotic effect was demonstrated due to the activation of autophagy with the
immunosuppressive agent rapamycin (also named sirolimus), which is known as an in-
ducer of autophagy undergoing several clinical trials in vascular diseases. In experimental
aSAH, the activation of autophagy leads to decreased degree of CVS [49]. In contrast, an
autophagy inhibition resulted in the deterioration of neurological deficits [50]. Therefore,
autophagy and the NF-κB-mediated pathway might be other potential targets for neuropro-
tective therapies following aSAH, with special regard to the balance between physiologic
and pathologic mechanisms of autophagy.

2.9. Meningeal Lymphatics

Caused by aSAH, blood, and accordingly red blood cell degradation products, rapidly
enter the subarachnoid space and therefore the paravascular pathway, resulting in distinctly
perivascular neuroinflammation [51]. A brain-wide pathway connecting perivascular
spaces with CSF is the recently rediscovered system of lymphatic vessels, known as the
glymphatic system, which is the utmost important in the clearance of metabolic waste
products [52]. In addition to clots, lysis and phagocytosis by macrophages and neutrophils,
meningeal lymphatic vessels drain CSF macromolecules and immune cells to cervical
lymph nodes [53,54].

As mentioned earlier, after aSAH microglia is activated by the upregulation of inflam-
matory cytokines including TNFα, IL-1ß and IL-6, these are aggravated by the ablation
of meningeal lymphatics, which leads to exacerbated neuroinflammation and neurologi-
cal deficits. Therefore, the lymphatic system provides another promising opportunity in
the development of therapeutic strategies regarding the treatment of brain injury after
aSAH [55].

2.10. Novel Therapies Targeting Neuroinflammation

Inflammatory events that happen in the subarachnoid space can be divided into (1)
cellular inflammation and (2) molecular inflammation. In addition, inflammatory processes
take place in the three compartments (1) subarachnoid space, (2) vascular lumen and (3)
cerebral parenchyma [3]. On the one hand, cellular components leave the blood vessels
and enter the subarachnoid space. On the other hand, cellular and molecular factors act on
the vascular walls. These findings raise the question of whether inflammation in the CSF is
an outside–in or an inside–out reaction [3].



Int. J. Mol. Sci. 2021, 22, 5442 6 of 25

Considering an inflammatory response due to aSAH, a neuroprotective effect of early
treatment with anti-inflammatory drugs as corticosteroids showed a diminished brain
damage and a reduced mortality in a rat model [56]. Even a non-significant trend to
improved neurological recovery could be demonstrated. However, several clinical studies
could not confirm a beneficial effect of treatment with corticosteroids after aSAH in regard
to CVS [57,58].

Another promising agent is human albumin, as it is known for anti-inflammatory
properties [59,60]. The ALISAH study demonstrated neuroprotective effects due to a lower
incidence of CVS and a trend of better neurological outcome [61].

A neuroprotective effect and reduced inflammation were recently demonstrated by
the application of an IL-1 receptor antagonist (IL-1Ra) [62,63]. IL-6 was reduced in plasma
and CSF, as IL-1Ra was able to cross the BBB. Therefore, IL-1Ra could be a safe neuropro-
tective agent.

Regarding useful potential biomarkers in the treatment of SAH patients as well as
for prediction of outcome and post-SAH infections, serum IL-10 might be an additional
useful parameter. SAH patients, who developed any kind of infection, CVS or chronic
hydrocephalus, had significantly higher serum IL-10 levels compared to controls. In
addition, discharged SAH patients with poor clinical outcome (modified ranking scale
3–6 or Glasgow outcome scale 1–3) revealed significantly higher serum IL-10 levels [64].
Another promising predictive biomarker correlating with clinical neurological outcome
might be chemokine C-C motif ligand 5 (CCL5). Systemic and CSF CCL5 levels in aSAH
patients on day 1 and day 7 could be independently associated with the clinical outcome at
discharge. Therefore, CCL5 might also be another target for neuroprotective strategies in
aSAH [65].

A potential neuroprotective agent regarding endocannabinoids might be the selective
CB2R agonist JWH133. The application of JWH133 after experimental SAH achieved a
protection of the BBB, shown in reduced brain edema and the attenuation of neurological
outcome by suppressed leukocyte infiltration through TGF-1β upregulation and reduced
neuronal apoptosis [66,67]. The same agent (JWH133) was also able to attenuate acute
neurogenic pulmonary edema by preventing neutrophil migration after experimental SAH
in rats [68]. In addition, the production of TNFα has been suppressed by cannabinoids
leading to reduced CVS and brain ischemia after SAH [32]. In conflict with these results,
a retrospective analysis showed a poor clinical outcome in SAH patients with verified
cannabis consumption by the increased onset of delayed cerebral ischemia [69].

The challenge with regard to modulating inflammation is the fact that inflammation is
often observed to be biphasic in nature, with elements that are both protective as well as
deleterious. Identifying this temporal relationship and when to target involved pathways
for therapeutic benefit remains a substantial challenge. Advanced neuroimaging may offer
a viable option to detect biphasic peaks in the neuroinflammatory cascade. Finally, utilizing
our current knowledge of SAH pathophysiology offers clear advantages therapeutically.

Table 1 summarizes new potential neuroprotective therapies in aSAH targeting neu-
roinflammation performed over the last 5 years. Despite the immense increase in the
number of experimental, translational clinical data, some are still missing. A comple-
mentary collection of clinical neuroprotective therapies targeting neuroinflammation was
nicely summarized by de Oliveira and Macdonald in 2018 [70]. Studies on neuroprotective
therapies targeting neuroinflammation in aSAH older than 5 years have been collected and
described by Lucke-Wold et al. in 2016 [14].
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Table 1. Potential neuroprotective therapies targeting neuroinflammation.

Therapeutic Agent Target Model Outcome Measures/Findings Reference

LPS, PLX3397 Microglia Experimental aSAH in mice Reduction in neuronal cell death Heinz, R. et al., 2021 [29]

Interleukin-2 (IL-2) Regulatory T-cells Experimental aSAH in rats
Reduction in neuronal injury and
proinflammatory factors, increase

in neuronal functions
Dong et al., 2021 [71]

Mesenchymal stem
cell-derived extracellular

vesicles
Microglial M2 polarization Experimental aSAH in rats

Reduction in inflammatory
cytokines and inflammation,
increase in neuroprotective

effects

Han et al., 2021 [72]

Adenosine A3 receptor
agonist Microglial polarization Experimental aSAH in rats Increase in anti-inflammatory

and neuroprotective effects Li et al., 2020 [73]

Milk fat globule-epidural
growth factor (MFG-EP) Microglial polarization Experimental aSAH in mice

Reduction in brain edema and
proinflammatory factors, increase

in neurological factors
Gao et al., 2021 [74]

Mixture of gas containing
argon

Microglial inflammatory
response Experimental aSAH in rats Reduction in early hippocampal

neuronal damage Kremer et al., 2020 [75]

EPZ6438 (specific EZH2
inhibitor)

EZH2 (enhancer of zeste
homolog 2) Experimental aSAH in rats Reduction in attenuated

neuroinflammatory brain injury Luo et al., 2020 [76]

Oxyhemoglobin (OxyHb) RNF26 (regulating TLRs) Experimental aSAH in rats
Silence: reduction in neuronal

injury and neurological
dysfunction

Chen et al., 2020 [77]

LP-17 TREM-1 myeloid cells Experimental aSAH in mice Amelioration of microglial
pyroptosis Xu et al., 2020 [78]

Resolvin D1

Lipoxin A4
receptor/formyl peptide

receptor 2 (ALX/FPR2) in
microglia

Experimental aSAH in rats

Inhibiting H6 promoted
microglial pro-inflammatory

polarization, neuronal oxidant
damage and death

Liu et al., 2020 [79]

Hydrogen sulfide (H2S) TLR4/NF-κB pathway in
microglia Experimental aSAH in rats

Reduction in cognitive
impairment and amelioration of
neuroinflammation in microglia

Duan et al., 2020 [80]

Oxyhemoglobin (OxyHb) CC chemokine ligand 20
(CCL20) Experimental aSAH in mice Reduction in apoptotic neurons Liao et al., 2020 [81]

Translocator protein (TSPO)
and TSPO ligand Ro5–4864

Microglia/macrophages
polarization Experimental aSAH in mice

Improvement of neurological
function, increase in expression

of anti-inflammatory factors
Zhou et al., 2020 [82]

Oxyhemoglobin (OxyHb) CCM3 overexpression and
NF-κB signaling pathway Experimental aSAH in rats

Reduction in cellular
degeneration, neurocognitive
impairment and inflammatory

factors (TNF-a and IL-1β)

Peng et al., 2020 [83]

Modified exosomes
(miR-193b-3p) HDAC3, NF-κB

1. aSAH patients and healthy
controls to define profile

2. experimental aSAH in mice

Reduction in homological
behavioral impairment, brain

edema and BBB injury
Lai et al., 2020 [84]

Curcumin
M2 polarization through
TLR4/MyD88/NF-κB

signaling pathway

Experimental aSAH in tlr4−/−

mice and wild type (WT)

Alleviation of
neuroinflammation response,
microglia phenotype shift and

release of proinflammatory
mediators

Gao et al., 2019 [85]

Dehydroepiandrosterone
(DHEA) Microglial activation Experimental aSAH in

C57BL/6 mice

Increase in neuroprotective
effects, suppression of

inflammation
Tao et al., 2019 [86]

Apelin-13

Apelin receptor
(APJ)/endoplasmic

reticulum stress associated
inflammation

Experimental aSAH in rats Reduction in oxidative stress and
neuroinflammation Xu et al., 2019 [87]

BMS-470539 Melanocortin 1 receptor
(MC1R) Experimental aSAH in rats

Suppression of microglial
activation and neutrophil

infiltration
Xu et al., 2020 [88]

TAK 242 (TLR4 antagonist) Toll-like 4 receptor (TLR4) Experimental aSAH in mice Suppression of brain edema Okada et al., 2020 [89]

Bexarotene Retinoid X receptor Experimental aSAH in rats
Decrease in neuroinflammation,

improvement of neurological
deficits

Zuo et al., 2019 [90]

RP 001 hydrochloride S1P/S1PR pathway Experimental aSAH in mice
Decrease in neuroinflammation,

alleviation of neurological
damage

Li et al., 2019 [91]
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Table 1. Cont.

Therapeutic Agent Target Model Outcome Measures/Findings Reference

Bone marrow
mesenchymal stem cells Notch 1 signaling pathway Experimental aSAH in rats Amelioration of neurobehavioral

impairments and BBB disruption Liu et al., 2019 [92]

Fluoxetine TLR4/MYD88/NF-κB
pathway Experimental aSAH in rats

Decrease in BBB disruption and
brain edema, improvement of

neurological function
Liu et al., 2018 [93]

Apolipoprotein E Jak2/STAT3 signaling
pathway Experimental aSAH in mice Decrease in oxidative stress and

inflammation Pang et al., 2018 [94]

TSG-6
Microglial phenotype
shift/SOCS3/STAT3

pathway
Experimental aSAH in rats

Amelioration of brain injury,
decrease in proinflammatory

mediators
Li et al., 2018 [95]

TAT-Pep5P
Resident microglia, p75
neurotrophin receptor

(p75NTR)

Experimental aSAH in
transgenic mice

Reduction in microglial
activation, neuroinflammation

and EBI
Xu et al., 2019 [96]

MST1 inhibitor XMU-MP-1 MST1, NF-κB/MMP-9
pathway Experimental aSAH in mice

Alleviation of neurological
deficits, BBB, brain edema,

neuroinflammation and white
matter injury

Qu et al., 2018 [97]

rh-Aggf1 PI3K/Akt/NF-κB pathway Experimental aSAH in rats

Decrease in neuroinflammation
and BBB disruption,

improvement of neurological
deficits

Zhu et al., 2018 [98]

IAXO-102 (TLR4
antagonist) TLR4 Experimental aSAH in

C57BL/6 mice

Reduction in neurological
impairments, brain edema, BBB
disruption, increase in survival

rates

Okada et al., 2019 [99]

Bexarotene PPARγ Experimental aSAH in
C57BL/6 mice

Increase in neurological function,
reduction in neuronal cell death

and microglial activation
Tu et al., 2018 [100]

FTY720 (PP2A agonist)
Tristetraprolin (TTP),

protein phosphatase 2A
(PP2A)

Experimental aSAH in rats

Reduction in apoptosis,
neuroinflammation and brain

edema, increase in neurological
function

Yin et al., 2018 [101]

Rolipram (specific
phosphodiesterase-4

inhibitor)
SIRT1/NF-κB pathway Experimental aSAH in rats

Reduction in brain edema,
neurological dysfunction and

neuronal cell death
Peng et al., 2018 [102]

Human Netrin-1
(rh-NTN-1)

UNC5B (receptor of
NTN-1) Experimental aSAH in rats

Increase in neurobehavioral
function, reduction in brain

edema and microglia activation
Xie et al., 2018 [103]

Fluoxetine,
AC-YVAD-CMK

(caspase-inhibitor)

NLRP3 inflammasome,
caspase-1 Experimental aSAH in rats

Increase in neurological function,
reduction in brain edema and

autophagy activation
Li et al., 2017 [104]

Methylene blue Akt/GSK-3β/MEF2D
pathway Experimental aSAH in rats Reduction in neurological

dysfunction and brain edema Xu et al., 2017 [105]

IL-1 receptor antagonist
(IL-1Ra, anakinra) Interleukin-1 (IL-1) Randomized, open-label,

clinical study in aSAH-patients

Difference in plasma IL-6, plasma
pharmacokinetics for IL-1Ra,
clinical outcome at 6 months

Galea et al., 2018 [63]

AE1–329 (EP4 selective
agonist) Prostanoid 4 receptor (EP4) Experimental aSAH in rats

Reduction in neurological
dysfunction, BBB damage, brain
edema, reactivation of microglia,

proinflammatory cytokines

Xu et al., 2017 [106]

Rutin
RAGE- NF-κB

inflammatory signaling
pathway

Experimental aSAH in rats

Increase in neurological function,
reduction in BBB permeability,

brain water content and neuronal
cell death

Hao et al., 2016 [107]

Exogenous LXA4 (lipoxin
A4)

Formyl peptide receptor 2
(FPR2), p38 MAPK Experimental aSAH in rats

Increase in neurological
functions, reduction in

neutrophil infiltration and brain
water content

Guo et al., 2016 [108]

3. Role of Thromboinflammation in aSAH
3.1. Microthrombus Formation

Within the first few days after aSAH, delayed ischemia in cerebral microcirculation
contributes to early brain injury and mortality [109–112]. Evidence for an early platelet
activation after aSAH has been reported in both experimental and clinical aSAH [112,113].
Intravital microscopy of cerebral microcirculation could directly demonstrate the formation
of platelet microthrombi in a mouse model of aSAH and showed that thrombus forma-
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tion in cerebral microcirculation contributes to blood flow deficits [114,115]. Increased
endothelial expression of P-selectin and platelet deposits could also be documented by
immunohistochemical and electron microscopic studies [116]. Moreover, early microclot
formation in cerebral microcirculation has been reported in a rabbit model of aSAH [117].
In addition, microemboli in small cerebral arteries in patients dying within 2 days after
aSAH have also been documented in autopsies [118].

3.2. The von Willebrand Factor (vWF) and ADAMTS-13

Increased activity of vWF is associated with cerebrovascular thrombosis [119]. Con-
comitantly, the activity of the vWF-cleaving protease ADAMTS-13 (a disintegrin and metal-
loproteinase with a thrombospondin type 1 motif, member 13) decreases [119]. ADAMTS-
13 has been described as a key protein in linking thrombosis with inflammation in injured
brain [119–121]. Recombinant human ADAMTS-13 reduced microvascular thrombus for-
mation and brain injury, when administered minutes after aSAH in both wildtype and
ADAMTS−/− mice [122–124]. Interestingly, neuroinflammation, as monitored by the
numbers of IBA-1 positive microglia in brain tissue, was reduced by recombinant human
ADAMTS-13 and in vWF-deficient mice, whereas it was increased in ADAMTS-13 gene-
deficient mice [119,123]. Plasma levels of ADAMTS-13 were reduced in the early phase
after aSAH in patients with delayed cerebral ischemia [125]. In stroke patients treated with
intravenous thrombolysis, low ADAMTS-13 plasma levels were associated with a worse
outcome and high levels of inflammatory cytokines [126]. Thus, ADAMTS-13 has been
identified as a potential biomarker for delayed cerebral ischemia after aSAH [127,128].

3.3. The Contact-Kinin System and Activated FXII

The contact-kinin pathway has been shown to play a role in the pathology of ischemic
stroke and traumatic brain injury, not only by fostering vascular permeability and inflam-
mation via kinins such as bradykinin, but also by promoting thrombus formation through
the activation of the intrinsic pathway (also known as the contact pathway) [129,130]. Acti-
vated FXII (FXIIa) triggers the intrinsic coagulation cascade via the activation of FXI and
induces a cascade of events by the cleavage of plasma kallikrein leading to the release of the
inflammatory mediator bradykinin [129,130]. In experimental models of cerebral ischemia
and traumatic brain injury, the genetic deletion of FXII or a pharmacological inhibition
of FXIIa prevents microvascular thrombosis and neuroinflammation leading to reduced
neuronal cell loss and improved functional neurological recovery [131–136]. Interestingly,
the deficiency or pharmacologic blockade of FXII was reported to reduce neuroinflamma-
tion and render mice less susceptible to experimental autoimmune encephalomyelitis [137].
Remarkably, these beneficial effects are not accompanied by an increased risk of bleed-
ing in experimental stroke or traumatic brain injury [131,132,135,138]. FXII deficiency
actually reduced bleeding induced by tissue plasminogen activator (tPA) in experimental
stroke [139]. Even if the effects of FXIIa inhibition in experimental models of aSAH have
not been studied yet, therapies targeting FXIIa may also have translational potential in
clinical aSAH.

3.4. Platelet Receptors

Apart from the FXIIa-mediated platelet activation, other platelet proteins contribute to
inflammation after brain injuries [121,140]. Here, the platelet glycoprotein (GP)Ib-mediated
platelet activation seems to be crucial for the interaction with immune cells. In experimental
models of stroke, the activation of T-cell subsets contributes to brain damage in part by
a platelet-dependent mechanism [141–143]. GPIb as a part of the GPIb-IX-V complex
mediates the initial binding of platelets to the subendothelial matrix as a first step of
thrombus formation. Inhibition of GPIb by neutralizing Fab fragments has anti-thrombotic
and anti-inflammatory effects in mouse models of stroke [141–143]. Again, the beneficial
effect was not associated with an increased risk of bleeding. Recent studies in mouse
models of stroke have provided further evidence for T-cell interactions with platelets [144].
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3.5. Potential Neuroprotective Approaches

The selective inhibition of the aforementioned pathophysiological events has been
tested in experimental models of stroke, traumatic brain injury and aSAH as well as treat-
ments targeting platelets [145–149], clot clearance [150], brain inflammation and immune
cell infiltration [111,151–154]. These potential neuroprotective approaches are summarized
in Table 2.

Table 2. Potential neuroprotective pharmacotherapies targeting thromboinflammation.

Therapeutic Agent Target Model Reference

Thromboxane
antagonists,

COX1-inhibitors, PAF
antagonists

Platelet aggregation Experimental and clinical aSAH
Lagier et al. [149], Suzuki et al.

[145], Tokiyoshi et al. [146],
Hirashima et al. [147,148]

intraventricular
thrombolysis (rh tPA) Clot clearance Experimental and clinical aSAH Shi et al. [150]

rh-ADAMTS13 vWF-induced thrombosis
and inflammation Experimental and clinical aSAH

Muroi et al. [122], Vergouwen
et al. [123,125], Wan et al. [124],

Chauhan et al. [120]

FXIIa inhibitors (C1
inhibitor, rh infestin-4)

Contact kinin system
(platelet aggregation and

neuroinflammation)
Experimental stroke and TBI

Kleinschnitz et al. [131],
Hagedorn et al. [132],

Heydenreich et al. [133], Hopp
et al. [135,136],

Albert-Weissenberger et al. [134]

Anti-platelet receptor
antibodies

Thrombosis,
neuroinflammation,

immune cells
Experimental stroke and TBI

Kleinschnitz et al. [141],
Schuhmann et al. [143],

Albert-Weissenberger et al. [140],
Stoll and Nieswandt [121]

Fractionated heparin,
glibenclamide, statins,
anti-proinflammatory

cytokine agents

Neuroinflammation Experimental and clinical aSAH James et al. [153], McBride et al.
[111], Vergouwen et al. [151]

Fasudil (ROCK2
inhibitor) Neuroinflammation Experimental intracerebral

hemorrhage (ICH) and clinical aSAH
McBride et al. [111], Li et al.

[154], Zhao et al. [152]

Nimodipine Vasospasms, thrombosis,
leukocyte infiltration Experimental and clinical aSAH McBride et al. [111]

4. Role of Metabolism in aSAH

Similarly to the previously mentioned pathophysiological mechanisms and therapy
targets, cerebral metabolism, which is already known for important pathological changes in
various brain injuries such as TBI or stroke, came to the fore when a closer look was taken
at aSAH pathophysiology [155]. Energy dysfunction arises in the early phase of aSAH and
remains for a prolonged period of time after the event of bleeding. Therefore, research
regarding the changes in post-aSAH energy metabolism inside the brain could help to
understand the underlying pathophysiology of cerebral energy dysregulation in aSAH,
investigating its impact on outcome and improve therapy management in clinical practice.

4.1. Metabolism with Regard to Early Brain Injury

A sudden bleeding in the subarachnoid space, commonly caused by an aneurysmal
rupture, leads to a rapid increase in intracranial pressure (ICP), instantly followed by a
reduction in cerebral perfusion pressure (CPP) and cerebral blood flow (CBF) [156]. While
CPP recovers fast by a compensatory raise of mean artery blood pressure (MABP), CBF
further decreases and stays below its normal levels for a prolonged period of time [8]. In
addition to the decrease in CPP other mechanisms like ongoing acute artery vasoconstric-
tion seem to cause cerebral hypoperfusion—a so-called low-flow-status of the brain. This



Int. J. Mol. Sci. 2021, 22, 5442 11 of 25

sudden cerebral perfusion deficit ends up in multiple metabolic disturbances, one of a
multitude of factors, which can lead to ischemic brain injury [156]. To maintain their normal
function, neurons strictly depend on continuous supply with oxygen and glucose, the latter
being the main source of energy for the brain. Via oxidative phosphorylation within the
mitochondria, adequate amounts of adenosine triphosphate (ATP) were generated. In the
case of acute cerebral ischemia, oxygen supply is disrupted and oxidative phosphorylation
has to switch to insufficient anaerobic glycolysis in neurons and other brain-resident cells,
leading to the accumulation of lactate in the form of an acidosis [157]. In combination with
the reduced generation of ATP, this results in ion channel dysfunction, the disruption of
normal cell membrane potential, production of reactive oxygen species and finally brain
tissue damage by neuronal cell apoptosis [158].

Both preclinical and clinical trials repeatedly showed an increase in lactate, gluta-
mate and lactate to the pyruvate ratio (LPR) in the interstitial brain tissue after aSAH,
measured via cerebral microdialysis (CMD), as an indicator of brain metabolism derange-
ment [8,159–161]. Nevertheless, the cellular level of metabolism disruption in neurons is
still unknown and remains the subject of current investigations. Carpenter et al. found
a significant reduction in global cerebral metabolic rate for oxygen (CMRO2) in 11 pa-
tients within the first few days after aSAH, measured via positron emission tomogra-
phy (PET), independent of vasospasm-induced ischemia, hydrocephalus or intracerebral
hematoma [162]. Further examinations of the course of hemodynamic parameters, CBF
and tissue oxygenation (ptiO2) in an aSAH-animal model by Westermaier et al. detected an
excess of tissue oxygenation several hours after aSAH, with any knowledge of prolonged
increase in lactate, glutamate and LPR as metabolites of anaerobic metabolism pathways
suggesting a disturbed cellular oxygen utilization and cerebral metabolic depression [163].
The basic idea is, that the affected cells are not able to use oxygen by oxidative glucose
reduction via the metabolites pyruvate and acetyl-CoA, followed by the citric acid cycle
and finally the respiratory chain. One or more steps of this energy metabolism pathway
seem to be disturbed. In this context, Lilla et al. demonstrated for the first time a reduction
in pyruvate dehydrogenase (PDH) activity following aSAH, independent of the supply
of substrates [9]. As PDH is the key enzyme of the citric acid cycle, its activity reduction
could be an independent factor contributing to a derangement of oxidative metabolism, a
failure of oxygen utilization and secondary brain damage.

Furthermore, it is known that ischemic brain injury leads to the depolarization of
the mitochondrial membrane potential, also causing a decrease in ATP production and
the apoptosis of neuronal cells in the end [164]. Interestingly, Hayakawa et al. showed a
release of functional mitochondria from astrocytes in the extracellular space after an experi-
mental stroke in mice, finally entering neurons and triggering cell surviving signals [165].
Conversely, derangements in this mitochondria release pathway led to worse neurological
outcome. According to that, further studies proved extracellular mitochondria in CSF
both in rats and humans after aSAH, showing a significantly decreased mitochondrial
membrane potential in the early after the aSAH phase [166]. Similar results were found in
aSAH-patients with DCI [167]. Within the aSAH cohort, patients with higher mitochondrial
membrane potential were even correlated with better neurological recovery 3 months after
ictus [166]. In summary, these studies suggest that the extracellular mitochondria are a
potential biomarker for the occurrence and recovery of brain injury. Due to lacking fur-
ther studies, it remains unclear whether these endogenous neuroprotective mitochondrial
transfer mechanisms may be exogenous therapeutical targets.

4.2. Metabolism with Regard to Delayed Brain Injury

One of the best studied mechanisms of delayed brain injury after aSAH is DCI, which
commonly occurs 3–14 days after the bleeding event and represents a main cause for poor
functional outcome after aSAH besides EBI. Until recently, the major cause of DCI has been
thought to be CVS [168]. As vasospasm-targeted therapies in many clinical trials did not im-
prove post-aSAH outcome, and that there were some indications that vasospasm and DCI
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occur separately in different locations, studies successfully looked for other DCI-underlying
mechanisms [169,170]. As already mentioned, these mechanisms include, among others,
cerebral vascular dysfunction, microthrombosis and neuroinflammation [171].

With this intention, experimental and clinical trials were performed to investigate
the interdependency between cerebral energy metabolism and DCI. In comparison with
the early phase after aSAH, similar results were received by using CMD: elevation of
lactate, LPR and glutamate, while glucose and pyruvate levels were reduced in the post-
aSAH long-term phase [172]. Interestingly, several studies detected significantly increased
LPR and decreased glucose levels 12–16 h before DCI onset in aSAH patients, proposing
these metabolites as indicators for DCI and potential help for preventing severe compli-
cations in the delayed phase of aSAH [173–175]. However, further studies are needed to
investigate the possible treatment effects on energy metabolism and DCI as convincing
results have barely existed until now. The limitations of the mentioned studies above,
all using CMD as diagnostic tool, are restricted sensitivity due to the local measurement
(ischemia distant to the monitoring catheter may not be detected) and restricted specificity
because of the impossible differentiation between ischemic and non-ischemic metabolism
derangements [172].

4.3. Potential Neuroprotective Approaches Targeting Metabolism

In the search for novel neuroprotective therapy options in aSAH, due to the illustrated
mechanisms it seems that deranged cerebral metabolism could be a potential therapy target.
Ca2+-channel blockers, like nimodipine, which are common part of therapy management
in aSAH all over the world, were found to provide an advantage in terms of metabolic
disruption, histological damage and clinical outcome after cerebral ischemia [176]. While
the underlying mechanism is not cleared up yet, it may be worth having a closer look at
the cellular level of metabolic disturbances. As Lilla et al. suggested, the inactivation of
PDH could play a critical role in EBI after aSAH, so that preventing this inactivity may act
as a neuroprotective factor [9]. Dichloroacetate (DCA) is a small molecule that crosses the
BBB and stimulates PDH activity by the inhibition of PDH kinase [177]. Over the years,
trials with different animal models inducing stroke or traumatic brain injury showed the
neuroprotective potential of DCA, which became apparent in limiting lactate acidosis, the
restoration of ATP, and improving the neurological outcome after hypoperfusion [178,179].
Kho et al. even found evidence that oxidative stress, the activation of microglia, BBB
disturbance and even neuronal cell death in hypoglycemia-induced ischemia are decreased
by DCA [180]. As the synopsis of all these findings, one may draw the conclusion that DCA
supports metabolic recovery and therefore raises the ischemic limit of brain cells at risk of
neuronal death. As DCA has not been investigated in aSAH models to date, a transfer to
this disease as novel neuroprotective therapy option could be revealing.

As it is capable of the restoration of the oxidative cell metabolism, a neuroprotective
effect of acetyl-L-carnitine (ALCAR) was also proven in multiple both experimental and
clinical studies [181–184]. The acetylcarnitine-CoA transferase helps ALCAR entering
the citric acid cycle, corresponding to a “bypass” of the PDH reaction. Therefore, the
application of ALCAR could significantly lower the brain lactate level, restore ATP and
even improve the neurological outcome [182,185].

In addition, mitochondrial dysfunction after aSAH is shown to activate the autophagy
of neuronal cells, again one of a multitude of factors leading to EBI and DCI [44]. Therefore,
targeting the autophagy–lysosomal system could be a conceivable therapy approach. This
system seems to prevent cell surviving mechanisms, as long as its function is appropri-
ate. From the moment that lysosomal-triggered autophagy gets out of control, i.e., after
aSAH, an increase in the rate of cell death can be detected [186]. On this occasion worth
mentioning, Chen et al. investigated the effect of epigallocatechin-3-gallate (EGCG) by an
experimental study, coming to the conclusion that this active metabolite of tea catechin
has the potential to lessen mitochondrial membrane potential depolarization, autophagy



Int. J. Mol. Sci. 2021, 22, 5442 13 of 25

dysfunction and ultimately even neurological deficits [187]. Again, concerning this matter,
further studies are urgently needed.

5. Role of Cerebral Vasospasm in aSAH
5.1. Pathophysiology of Cerebral Vasospasm

The exact pathophysiology of CVS occurrence is still not completely understood,
while many different suggested mechanisms such as prolonged smooth muscle contraction,
endothelial damage or increased endothlin-1 production exist [188].

Nevertheless, CVS demonstrates the response to damaged blood vessels due to the
degradation products of red blood cells and secondary inflammation-induced vasoconstric-
tion as the activation of the neutrophils and production of cytokines, as mentioned earlier.
Moreover, different phases of CVS, including an early and a delayed response, also seem
to exist [28].

In contrast to macrovascular factors, furthermore, changes in microcirculation espe-
cially seem to play a significant role in the development of delayed cerebral ischemia [189].

Endothelin 1 is known for its vasoconstrictive properties and the fact that it is over-
produced in aSAH. Thus, it initially appeared to be a promising target for the treatment
of CVS. Subsequently, several trials were initiated to investigate the effect of endothelin
receptor antagonists. The probably most popular agent is clazosentan [190]. The phase II
CONSCIOUS-1 trial demonstrated a dose-dependent reduction in CVS under medication
with clazosentan [191]. The following phase III trial (CONSCIOUS-2) failed to show an
improvement of the clinical outcome while the downstreamed CONSCIOUS-3 trial had
to be stopped previously due to concerning side effects under therapy with clazosen-
tan [192,193]. In summary, despite a role in reducing CVS, no clinical benefit was verified
under medication with endothelin receptor antagonists.

5.2. Potential Neuroprotective Approaches Targeting Cerebral Vasospasm and Hypoperfusion
5.2.1. Magnesium Sulfate

Due to a loss of ATP and ischemic depolarization, a cellular calcium influx results
after aSAH. Therefore, calcium antagonists became an interesting target in the prevention
of CVS.

A deficit of serum magnesium results in increased secondary cerebral ischemia. Mag-
nesium ameliorates rheological function and dilates blood vessels as it works as a natural
calcium blocker. Hypomagnesemia in aSAH patients was found to be correlated with the
amount of blood in the subarachnoid space and neurological status. When developing
during medical treatment, hypomagnesemia correlates with ischemic infarctions [194].

Oral intake does not increase the serum concentrations significantly.
Several clinical studies examined the effects of magnesium treatment after aSAH

with partially conflicting results [195]. One of the reservations refers to insufficiently
crossing the blood–brain barrier. While several studies demonstrated a reduction in
delayed cerebral ischemia and an ameliorated neurological outcome [196–199], two large
trials failed to show a reduction in secondary ischemia as well as the improvement of
clinical outcome [200,201], most likely dependent on the co-medication with nimodipine
which works as a competitive antagonist.

Even though just one trial could show neuroprotective results, treatment with ni-
modipine [202], a dihydropyridine calcium antagonist, is still established worldwide.

Recent results of two clinical trials with the intracisternal application of magnesium
sulfate demonstrated significantly less CVS or delayed cerebral ischemia while establishing
a better functional outcome in contrast to the control groups. The additional administration
of intravenous hydrogen could further show supplementary effects by finding reduced
liquor levels of neuron-specific enolase, as a marker of neuronal injury, as well as reduced
malondialdehyde, which is an indicator of oxidative stress [203,204].
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5.2.2. Hypercapnia

After aSAH, the period of expected CVS has its maximum between day 4 and 14 due to
suspended autoregulation. Under physiological conditions, the self-regulating mechanism
is able to adapt to changes of arterial blood pressure for keeping the CBF constant, inter
alia, by arterial partial pressure of carbon dioxide (PaCO2). Subsequently, a therapeutic
use of changes in PaCO2 to increase the CBF was investigated in the clinical studies of our
group [205,206]. It could be shown that within a clinical study including 12 patients with
poor grad aSAH, CBF reproducibly increased during controlled phases of hypercapnia and
remained raised within the first hour after downgrading to baseline without generating
rebound effects resulting in a low incidence of secondary infarctions and a relatively
good neurological outcome. The side effect of a mild increase in the intracranial pressure
due to enhanced CBF was buffered by CSF drainage and failed to reach a pathological
level according to the investigation by Petridis et al. studying the effect of permissive
hypercapnia in aSAH patients [207].

The promising results of this non-pharmacological treatment will be further evaluated
in a randomized multicenter trial.

In a dose optimization study of our group, temporary hypercapnia of 45 min was
verified to be the optimum duration for therapeutic use (unpublished own data, manuscript
submitted).

5.2.3. Hypothermia

A neuroprotective effect due to mild hypothermia was shown in a few experimental
trials [208–210]. ICP was significantly lowered and CBF ameliorated. Even a reduced rate
of injured neurons was shown, though it remains unclear whether hypothermia causes an
attenuating effect or only delays brain injury. In patients with severe aSAH, therapeutic
hypothermia achieved a reduction in arterial flow velocity [211]. Neuroprotective targets,
potential agents and therapeutic strategies in different compartments following aSAH are
summarized in Figure 1.
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6. Conclusions

Aneurysmal subarachnoid hemorrhage continues to be a difficult complex cerebrovas-
cular disease with a consistent limitation of pharmacological treatment options. Morbidity
and mortality remain high despite the implementation of promising therapies such as
nimodipine for treating cerebral vasospasm, new mechanisms of pathophysiology of
aSAH occurred-like inflammatory processes or metabolic derangements. Having a closer
look at these mechanisms, it is clear that several dysregulations take place in different
compartments—vessel wall, subarachnoid space, brain parenchyma and cellular level—at
different points in time—EBI/DBI, early and delayed vasospasm. Thus, several brain injury
pathways must be influenced at the right place and preferably the right time to optimize
therapeutic efficacy in general. While therapeutical strategies at the metabolic level are only
in their early phase, no standard of care could be established yet with anti-inflammatory
strategies. The non-pharmacological opportunities are promising, especially targeting
vasospasm and reducing DCI for a better functional outcome. Translational clinical data
should notably be in focus of future research. As beyond our scope, this review does
not point out every pathophysiological aspect that is or has been under investigation in
aSAH research.

Since no therapeutical breakthrough in aSAH has been made to date, and as expected
further research is needed, it is vital to develop an idea of its consequences in terms of its
outcome and developing potential therapies efficiently targeting brain injury.
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Abbreviations

aSAH Aneurysmal subarachnoid hemorrhage
CVS Cerebral vasospasm
DCI Delayed cerebral ischemia
BBB Blood-brainbarrier
CSF Cerebrospinal fluid
TLR4 Toll-like receptor 4
NADPH Nicotinamide adenine dinucleotide phosphate
CNS Central nervous system
IL Interleukin
TNFα Tumor necrosis factor alpha
NF-kB Nuclear factor kappa-light-chain-enhancer of activated B cells
eCBs Endocannabinoids
AEA Anandamide
2-AG 2-arachidonoyl-glycerol
ECS Endocannabinoid system
CBRs Cannabinoid receptors
CB1R Cannabinoid type 1 receptor
CB2R Cannabinoid type 2 receptor
MMPs Metalloproteinases
HMGB1 High mobility group box 1
TBI Traumatic brain injury
EBI Early brain injury
DAMP Damage-associated molecular pattern
RAGE Receptor for advanced glycation end products
JAK2 Janus-Kinase 2
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STAT3 Signal transducer and activator of transcription 3
COX-2 Cyclooxygenase-2
PGE-2 Prostaglandin E2
IL-1Ra IL-1 receptor antagonist
vWF von Willebrand Factor
ADAMTS-13 A disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13
tPA Tissue plasminogen activator+
GP Platelet glycoprotein
ICH Intracerebral hemorrhage
ICP Intracranial pressure
CPP Cerebral perfusion pressure
CBF Cerebral blood flow
MABP Mean artery blood pressure
ATP Adenosine triphosphate
LPR Lactate-to-pyruvate ratio
CMD Cerebral microdialysis
CMRO2 Cerebral metabolic rate for oxygen
PET Positron emission tomography
ptiO2 Tissue oxygenation
PDH Pyruvate dehydrogenase
DCA Dichloroacetate
ALCAR Acetyl-L-carnitine
EGCG Epigallocatechin-3-gallate
PaCO2 Arterial partial pressure of carbon dioxide
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