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A B S T R A C T

We studied the acute toxicity of an imazamox-based herbicide at 12, 24 and 36mg/kg body (bw) weight im-
azamox equivalent dose on the liver and pancreatic tissue in Sprague Dawley rats. Alanine aminotransferase
(ALT) and aspartate aminotransferase (AST) activities, glucose, calcium as well as creatinine, were determined in
blood samples, which were collected after 24, 48 and 72 h exposure. Caspase 3 and anti-insulin expression and
immunopositivity were evaluated using in situ hybridization and immunohistochemistry, respectively. The
imazamox-based herbicide evaluated in this study induced toxic effects even from the lowest dose tested (12 mg/
kg bw). The two highest doses caused a statistically significant cytotoxicity on the Langerhans islet cells.
Necrotic and degenerative changes were detected in hepatocytes at the two highest doses. Imazamox is con-
sidered to be poorly toxic to the liver. Nevertheless, the imazamox-based herbicide formulation tested here
reduced the size of the β-islet cells, induced an elevation in serum glucose and calcium. Our data shows that
commercial formulations of imazamox containing various co-formulants can have hepatic and pancreatic toxic
effects.

1. Introduction

The use of herbicides is steadily increasing due to large-scale
monoculture of crops and the rapid expansion of weed resistance to
most pesticide active ingredients. This problem has been exacerbated in
the last decade by the used of glyphosate-based herbicides on fields of
glyphosate-tolerant genetically modified (GM) crops [1]. New crop
varieties have been introduced to overcome glyphosate-resistant weeds
by combining tolerances to several active ingredients such as 2,4-D,
dicamba or imidazolinones. The exposure to these pesticides is thus
anticipated to increase, which makes the study of their health effects a
public health priority [2].

Imazamox is a member of the imidazolinone class of chemicals in-
cluding imazapic, imazapyr, imazethapyr, imazamethabenz and im-
azaquinine [3], which are part of the Clearfield cropping system

(https://agriculture.basf.com/us/en/Crop-Protection/Clearfield.html).
It is an active ingredient in different herbicide formulations, as this
class of compounds inhibits the enzyme acetohydroxyacid synthase,
which catalyzes key reactions in the biosynthesis of branched-chain
amino acids (valine, isoleucine, leucine) and regulates the end products
of these pathways [4–6] (Fig. 1). Because these branched-chain amino
acid biosynthesis pathways are not used in animals, imidazolinone
herbicides are considered to be safe for non-target species, including
humans [7]. However, the fact that imazamox does not have effects on
amino acid biosynthesis in mammals does not mean that it cannot exert
toxicity through interfering with other biochemical pathways.

Studies on imazamox toxicity are mostly available from studies
submitted to regulatory agencies by companies seeking market ap-
proval. Imazamox is authorized in the EU with an acceptable daily
intake of 3mg/kg body weight/day (mg/kg bw/d), based on a rabbit
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developmental study [9,10]. The liver is the first organ reached by
imazamox, as this compound is highly soluble in water and quickly
accesses this organ following absorption via the portal vein. Liver in-
toxication can be reflected by the appearance of apoptosis and necrosis.

Apoptosis normally occurs during development and aging phases of
life and helps to maintain homeostasis of cell populations in tissues.
Apoptosis also occurs as a defense mechanism when toxic effects cause
cell damage [11]. Many herbicides increase oxidative stress by causing
excessive production of intracellular reactive oxygen species, which
often cause apoptosis by altering mitochondrial function [12,13]. For
instance, many studies show that synthetic pyrethroid and neonicoti-
noid exposure increased levels of oxidative stress markers and telo-
merase activity was found as well as increased organ inflammations,
especially to the liver, and induced genotoxicity [14–16]. In addition to
liver damage, agricultural chemicals and especially pesticides are sus-
pected to be a significant contributor to the diabetes pandemic. It was
recently shown that organophosphate compounds, which are mainly
esters, amides or thiol derivatives, are widely used in agriculture to
control insect vectors, in commercial buildings or domestic use in
homes and gardens induce damage to pancreas (mitochondria damage
in insulin-positive cells) and are positively associated with diabetes
[17,18]. Evidence of the diabetic effects of herbicides was seen for the
first time in Vietnam War veterans from the 1960s who had used Agent
Orange, which is a herbicide containing dioxin contaminants [19].
Diabetes affects a large percentage of the human global population.
Pancreatic islets of Langerhans play a key role in metabolism. The islets
consist of five cell types and in rodents, the cell distribution is the
following: β-cells (60%–75%), α-cells (20%), δ-cells (3–5%) and PP
cells (F cells; 1–2%) [20–23]. The β-cells constitute the major popula-
tion in pancreas and regulate glucose homeostasis by insulin secretion.
The pancreatic islets are a highly-vascularized micro-organ allowing
them to efficiently exert their endocrine function [20] but also makes
them readily accessible to water-soluble toxins [24–26].

Few studies have investigated the effects of imazamox on liver and

pancreas function. Here we present the first study to investigate the
effects of an imazamox-based herbicide on liver and pancreas function
in a rat model system. Liver and pancreas function was assessed by
measuring biochemical markers in serum (ALT and AST enzymatic
activities, glucose, calcium as well as creatinine), organ histology and
apoptosis status. We found clear evidence of pancreas structure and
functional damage at two of the doses tested, suggesting that im-
azamox-based herbicides can exert toxicity in non-target mammalian
species.

2. Material and methods

2.1. Chemicals and reagents

An Imazamox-based herbicide (Intervix® Pro) was purchased from
BASF company (Turkey) and contained 40 g/L of imazamox (5-(meth-
oxymethyl)-2-(4-methyl-5-oxo-4-propan-2-yl-1H-imidazol-2-yl)pyr-
idine-3-carboxylic acid). This commercial formulation also contained
sorbitan, monododecanoate, poly(oxy-1,2-ethanediyl) derives
(< 40%), ammonium hydroxide (< 1.5%), 1,2-benzisothiazol-3(2 H)-
one and 1,2-benzisothiazolin-3-one (< 0.1%) and propane-1,2-diol
(< 20%) as co-formulants to increase the herbicidal activity of the
formulation. Formaldehyde (37%) and phosphate buffer saline (PBS)
were obtained from Sigma-Aldrich (St. Louis, MO, USA).

2.2. Ethics

This study was approved by the Ataturk University Local Board of
Ethics Committee for Animal Experiments, Erzurum, Turkey (decision
no: 42190979-01—02/2411). The study was in compliance with OECD
principles of good laboratory practice, guidelines for testing of chemi-
cals no. 407 and in accordance with standard operating procedures of
the host institution.

Fig. 1. Branched-chain amino acid (BCAA) biosynthetic pathway. Acetolactate synthase (ALS) catalyzes the first step of biosynthesis of BCAAs. Imazamox blocks the
synthesis of valine, leucine, and isoleucine by inactivating the ALS enzyme [8].

Ç. Sevim et al. Toxicology Reports 6 (2019) 42–50

43



2.3. Animals

A total of 50 male Sprague-Dawley rats (mean weight 300 ± 10 g
SD) were used in this study. Animals were randomly assigned into 10
groups (n=5/group) including control, three low dose groups (12mg/
kg bw; 24 h, 48 h, 72 h), three middle dose groups (24mg/kg bw; 24 h,
48 h, 72 h) and three high dose groups (36mg/kg bw; 24 h, 48 h, 72 h).
All doses were calculated based on the LD50 and from the current/
recent bibliography. Furthermore, we took into account the NOAEL
doses from reports of risk assessment [9]. After a 5-day adaptation
period, the imazamox-based herbicide was mixed with 0.9% isotonic
sodium chloride to allow administration of a 12, 24 and 36mg/kg bw
imazamox equivalent dose. A volume of 1mL was injected in-
traperitoneally. The animals were sacrificed at 24, 48 or 72 h following
injection. Following imazmox administration, blood samples were col-
lected by cardiac puncture into vacuum tubes with no anticoagulant
(Vacutainer, BD-Plymouth, UK). Blood samples were centrifuged at
3000g for 10min at room temperature to isolate serum and stored at
−20 °C until analysis. Rats were decapitated rapidly under deep an-
esthesia (Sevoflurane, USA), livers and pancreases were excised and
fixed in 10% neutral formaldehyde (Sigma, USA).

2.4. Biochemical assays

Serum enzyme activities for alanine aminotransferase (ALT) and
aspartate aminotransferase (AST), glucose, calcium, and creatinine
were determined using commercially available test kits (OSR6121 and
OSR60117) on a biochemistry autoanalyzer (Cobas 6000/Roche
Diagnostics, Germany).

2.5. Histopathological examination

Apoptosis was assessed by monitoring caspase activation.
Procaspase-3 is a central player in apoptosis in different cell types [27].
Procaspase 3 is activated by induction of apoptosis in different forms
and it is designated as cleaved or active caspase 3. We determined the
presence of the cleaved or active forms of caspase 3 using in situ hy-
bridization as a marker of apoptosis in cells / tissues [28,29]. The en-
zyme activation of caspase 3 has been studied by in situ hybridization,
immunohistochemistry and Western blot [30]. Livers fixed in 10%
neutral formaldehyde for 24–48 h were embedded in paraffin blocks.
Paraffin-embedded tissues were processed to give 5 μm thick sections
and were stained with hematoxylin–eosin, followed by microscopic
examination. The histopathological findings in the sections were graded
as 0 (none), 1 (mild), 2 (moderate), and 3 (severe) [31].

2.5.1. Immunohistochemical examination
After deparaffinization with graded alcohol and xylene for im-

munohistochemical staining, the slides were immersed in antigen re-
trieval solution (ab 96674, pH 6.0; Abcam, Cambridge, UK) and were
heated in a microwave oven for 15min to unmask antigens. The sec-
tions were then incubated in 3% H2O2 for 10min. to block endogenous
peroxidases. Liver sections were incubated at room temperature with
polyclonal rabbit active/cleaved caspase 3 antibody (cat no. NB600-
1235, dilution 1/200; Novus Biological, USA) for the detection of
apoptosis. Pancreas sections were incubated at room temperature with
monoclonal anti-insulin antibody clone K36AC10 (cat no. I2018-2ML,
dilution 1/1000; Sigma Aldrich- USA). The antibody reacts specifically
against insulin by RIA and immunocytochemistry (cytoplasmic ex-
pression). It exhibits cross-reactivity with human proinsulin [32–35].
The EXPOSE Mouse and Rabbit Specific HRP/DAB Detection IHC Kit
(ab80436) was used as follows. Sections were incubated with goat anti-
mouse antibody, then with streptavidin peroxidase, and finally with
3,3′ diaminobenzidine chromogen. Slides were counter-stained with
hematoxylin. Immunoreactivity was graded as 0 (none), 1 (mild), 2
(moderate), and 3 (severe) [36].

2.5.2. In situ hybridization
The paraffin sections were placed at 57 °C for 1 h and then passed

through a series of xylol alcohols to perform deparaffinization. For the
retrieval step, sections were incubated in pre-warmed Pepsin-HCl so-
lution for 5min and were washed with PBS. Caspase-3 mRNA was de-
tected using the following biotynylated probe included oligonucleotide
probe: AGATCATCACTGCTTCGTAATT / 3Bio (Exiqon, Product Name:
Caspase 3 probe_1, Dilution rate: 1:50) and 50 μl solution was applied
in each tissue sample and detection of hybridization employed the
Hybridization Detection System for Biotinylated probes according to
the manufacturer’s instructions (Dako, Cat.no: K0601). The sections
were covered with coverslips and were incubated at 90 °C for 45min.
Nuclear fast red was used as a chromogen. The sections passed through
alcohol and xylol baths were examined using a drop of entellan
mounting medium (Merck 107961.0500) under light microscopy.
Positivity for hybridisation was graded as 0 (none), 1 (mild), 2 (mod-
erate), and 3 (severe).

2.6. Statistical analysis

All statistical analyses were carried out by using the SPSS statistical
software (SPSS for windows, version 20.0). All data were presented in
mean (± ) standard deviation (S.D.). For biochemical analysis, differ-
ences were assessed using one-way analysis of variance (one-way
ANOVA). For immunohistochemical analysis, differences in measured
parameters between the groups were analyzed with a nonparametric
test (Kruskal–Wallis). Dual comparisons between groups exhibiting
significant values were evaluated with the Mann–Whitney U test
(P<0.05).

3. Results

The aim of this study was to evaluate liver and pancreas toxicity of
an imazamox-based herbicide. We assessed liver damage by evaluation
of serum levels of ALT, AST, and creatinine (Table 1). Creatinine levels
in some treatment groups (36mg/kg for 24 h, 12mg/kg for 48 h,
24mg/kg for 48 h, 36mg/kg for 48 h) were lower compared to the
control group.

ALT was increased in the 12mg/kg, 24mg/kg, 36mg/kg dose
groups (following 48 h and 72 h post exposure) compared to the control
group (P < 0.05, Table 1). The difference between the three doses
investigated was not significant. AST serum levels did not show a cor-
relation with ALT levels. AST levels decreased significantly following
administration of 24mg/kg for 24 h, but increased significantly fol-
lowing administration 36mg/kg for 24 h (P < 0.05, Table 1). How-
ever, there was no significant difference in AST levels between the
control group and some test groups (12mg/kg for 24 h, 12mg/kg for
48 h, 12mg/kg for 72 h, 24mg/kg for 48 h, 24mg/kg for 72 h, 36mg/
kg for 48 h, and 36mg/kg for 72 h).

Following 24 h of exposure, serum glucose increased in all test
groups, compared to the control (P < 0.05). At 48 h of exposure, serum
glucose remained stable in the 12 mg/kg group and slightly increased in
the 24 mg/kg group, but exhibited a further increase in the 36 mg/kg
group, compared to the control (P < 0.05). Serum glucose levels fol-
lowing 72 h of exposure remained stable in the 12 mg/kg group, but
further increased in the 24 mg/kg and 36 mg/kg groups, with a more
pronounced increase in the latter (Fig. 2). When treatment groups
compared with each other, following 48 h and 72 h of exposure the
12mg/kg and 36mg/kg groups were statistically significantly different
between each other. However, there was no significance in the 24mg/
kg groups. Exposure for 24 h resulted in a slight but not significant
increase in serum calcium levels in test groups compared to the control.
However, following 48 h of exposure serum calcium was significantly
increased in all test groups (P < 0.05). At 72 h of following exposure,
serum calcium was slightly decreased in the 12 mg/kg group
(P < 0.05) but remained stable in the 24 mg/kg and 36 mg/kg groups
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(P< 0.05, Fig. 3). When treatment groups were compared with each
other following 24 h,48 h and 72 h of exposure, there were no statistical
difference between them.

The signs of liver damage indicated by serum biochemical analysis
(Table 1), were further investigated by immunohistochemistry and in
situ hybridization. The liver of control rats had a normal histological
appearance (Fig. 4a), whereas necrotic and degenerative lesions were
detected in the 36mg/kg in the 48 h (Fig. 4b) and 72 h (Fig. 4c)
treatment groups. Immunohistochemistry analysis revealed a very
modest level of cleaved caspase 3 positive apoptotic liver cells in the

control group (Fig. 5a) and some treatment groups (12mg/kg for 24 h,
12mg/kg for 48 h, 12mg/kg for 72 h, 24mg/kg for 24 h, 24mg/kg for
48 h, 24mg/kg for 72 h and 36mg/kg for 24 h) (Table 2). However, an
approximately 6-fold increase in Cleaved Caspase 3 expression was
observed in the 36mg/kg for 48 h (Fig. 5b) and for 72 h (Fig. 5c)
treatment groups and this increase was statistically significant (Table 2;
P<0.05). Similarly, Cleaved Caspase 3 expression was very low in the
liver of control rats (Fig. 6a) and the 12mg/kg for 24 h, 12mg/kg for
48 h, 12mg/kg for 72 h, 24mg/kg for 24 h, 24mg/kg for 48 h, 24mg/
kg for 72 h and 36mg/kg for 24 h treatment groups (Table 3). In con-
trast, cleaved caspase 3 expression as determined by in situ hy-
bridization, was clearly evident in the 36mg/kg for 48 h (Fig. 6b) and
for 72 h (Fig. 6c) groups. There was no statistically significant differ-
ence in Cleaved Caspase 3 levels, with either of the methods used,
between the control group and the 12mg/kg 24 h, 12mg/kg 48 h,
12mg/kg 72 h, 24mg/kg 24 h, 24mg/kg 48 h, 24mg/kg 72 h and
36mg/kg 24 h treatment groups (Table 2). However, a significant dif-
ference was observed between the control group and the 36mg/kg 48 h
and 72 h groups (Table 2; P < 0.05).

The results of the immunohistochemical examination of the pan-
creatic tissues are presented in Fig. 7 and Table 3. Our data show a
statistically significant difference only between the control group and
the groups that received the dose of 36mg/kg for 48 and 72 h (Fig. 7i
and j, Table 3; P < 0.05). In the other test groups, the pancreatic tis-
sues had a normal histological appearance. Necrotic lesions and regions
of degeneration were observed in insulin positive β-cells in the groups
that received the 36 mg/kg dose for 48 and 72 h. According to our
results, in those two groups the size of the insulin producing islets de-
creased by 36–38%, when compared to the control group. This finding
is in accordance with the serum glucose levels and indicates a decreased
insulin secretion (decrease in the β-islet cell population).

4. Discussion

Xenobiotics such as pharmaceuticals, pesticides (herbicides, in-
secticides, fungicides, etc), and personal care products have caused
harmful effects on the environment and public health [37–39]. Ex-
posure of laboratory animals is used to predict these effects, which can
include porphyria, liver damage, lipid mobilization, hypothyroidism, or
testicular atrophy, among other adverse effects investigated in toxicity
tests [39–43]. Imazamox is an imidazolinone herbicide ensuring control
of numerous terrestrial and aquatic weeds. Despite adverse effects of
Imazamox on plants, it does not have detectable signs of toxicity in
mammals, even at very high doses, and its mechanism of action does
not provide meaningful information for animal and human health risk
assessment [3]. However, it is possible that exposure to imazamox at
low doses, via contaminated water, over a prolonged period of time

Table 1
Measurement of creatinine and liver enzyme (ALT and AST) activity in serum of Sprague-Dawley rats intraperitoneally administred with imazamox-based herbicide
formulation at the following doses: 12, 24, and 36mg/kg bw compared to an untreated (control group).

Time (hours) Dose groups Time (hours) No. of animals ALT (IU/L) AST (IU/L) CREATİNİNE (IU/L)

24 h Control 24 5 52.2 ± 6.49 128.8 ± 13.88 0.53 ± 0.06
12mg/kg 24 5 57.4 ± 6.65 140.2 ± 15.02 0.47 ± 0.02
24mg/kg 24 5 63 ± 7.31 107.2 ± 11.34* 0.49 ± 0.03
36mg/kg 24 5 55.6 ± 4.97 137 ± 14.17** 0.45 ± 0.05*

48 h Control 48 5 52.2 ± 6.76 140.8 ± 17.79 0.53 ± 0.01
12mg/kg 48 5 70.4 ± 8.01* 120.2 ± 15.61 0.46 ± 0.02*
24mg/kg 48 5 52.6 ± 4.15** 124 ± 16.38 0.45 ± 0.03*
36mg/kg 48 5 51.4 ± 4.66** 115.2 ± 17.68 0.44 ± 0.05*

72 h Control 72 5 50.2 ± 4.81 140.8 ± 15.18 0.53 ± 0.02
12mg/kg 72 5 58.8 ± 5.01* 116.8 ± 10.25 0.52 ± 0.07
24mg/kg 72 5 54 ± 2.91* 101.2 ± 16.45 0.54 ± 0.02
36mg/kg 72 5 52.4 ± 3.64* 124.4 ± 13.61 0.46 ± 0.03

*,**
P < 0.05 as compared to control.

Fig. 2. Measurement of serum glucose of Sprague-Dawley rats intraperitoneally
administred with imazamox-based herbicide formulation at the different doses
of 12, 24, and 36mg/kg bw compared to untreated animals (control group). *
P < 0.05 as compared to control, δ P<0.05 as compared to intergroups.

Fig. 3. Measurement of serum calcium of Sprague-Dawley rats intraperitoneally
administred by imazamox-based herbicide formulation at 12, 24, and 36mg/kg
bw, compared to untreated an control group. * P < 0.05 as compared to
control.
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may cause a change in cellular structure and function, even if it is not
toxic at high doses. It has been shown that there are no gross patho-
logical or histopathological changes in short-term toxicity studies in
rats, only a reduction in body weight, which is not considered tox-
icologically significant [44]. Furthermore, it has been reported that
there are no macroscopic or microscopic events of toxicological sig-
nificance in rats, at any treatment level with technical-grade imazamox,
in long-term toxicity studies [45]. Although an increase in liver weight
was observed, this was not considered treatment related. However, in

these studies, imazamox was not tested as a pesticide formulation, but
as a single technical-grade chemical. Our study reveals that co-for-
mulants present in an imazamox-based herbicide formulation, can
change the toxicity profile of this pesticide.

Other endpoints investigated in regulatory studies suggest that im-
azamox presents low toxicity. There was no evidence of neurotoxic
effects related to imazamox observed in acute, sub-chronic, develop-
mental, reproduction or chronic studies [46]. It has been reported that
imazamox has no adverse effect on immune function [3]. The effects on
organs associated with endocrine function are not reported in standard
toxicity studies on this chemical, although it is known that the battery
of tests currently applied can be inadequate to reveal endocrine dis-
rupting effects. Furthermore, only a few studies have compared the
toxicity of imazamox and its commercial formulations. Among these
studies, one reported that both technical-grade imazamox [47] as well
as an 11.83% formulation of this herbicide [48] caused a slight er-
ythema on the skin.

In this study, we cannot definitely conclude if the toxic effects ob-
served are attributed to imazamox itself or the different co-formulants
present in the pesticide, or a combination of the two. The co-formulants
1,2-benzisothiazol-3(2 H)-one (BIT) and 1,2-benzisothiazolin-3-one
have been shown to induce toxic effects [49–52]. It is however crucial
to test the commercial formulations of pesticides because they are the
mixtures to which farmers and the general population are exposed [53].

It has been reported that imazamox and its major metabolites pre-
sent low toxicity and no significant bioaccumulation. However, it has
been observed that this herbicide can cause cell death, even though it
does not bioaccumulate in tissues in sufficient amounts when taken at

Fig. 4. Effect of imazamox-based herbicide formulation on rat liver tissue compared to control animals. a) Normal histologic appearance of liver in the control group
b) Hydropic degeneration and necrosis of hepatocytes in the 36mg/kg/day 48 h group (arrowhead) c) Necrosis of hepatocytes in the 36mg/kg/day 72 h group
(arrowhead). H&E x 20μ.

Fig. 5. Immunohistochemical detection of cleaved caspase 3 in liver. a) Section from a control rat showing lack of immunostaining for cleaved caspase 3 staining. b)
Section from rats treated by intraperitoneal injection with imazamox-based herbicide at an imazamox equivalent dose of 36mg/kg bw for 48 h showing moderate
positive immunoreactivity for cleaved caspase 3 (arrowhead). c) Section from rats intraperitoneally injected with imazamox at a dose of 36mg/kg bw for 72 h
showing intense positive immunoreactivity for cleaved caspase 3 (arrowhead). IHC x 20μ.

Table 2
Differences between groups in terms of im-
munohistochemical staining and in situ hybridization for
the detection of cleaved caspase 3 in liver.

Groups Caspase 3

Control 0.20 ± 0.002a

12mg/kg 24 h 0.40 ± 0.024a

12mg/kg 48 h 0.60 ± 0.04a

12mg/kg 72 h 0.20 ± 0.008a

24mg/kg 24 h 0.40 ± 0.014a

24mg/kg 48 h 0.60 ± 0.029a

24mg/kg 72 h 0.40 ± 0.011a

36mg/kg 24 h 0.40 ± 0.024a

36mg/kg 48 h 2.40 ± 0.13b

36mg/kg 72 h 2.60 ± 0.25b

Means with the same letter, per each column, are not
significantly different according to Mann-Whitney U test,
p≤ 0.05, n= 5.
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high doses, either acutely or chronically, by humans and animals [54].
Numerous pharmacological or chemical substances such as acet-

aminophen, CCl4, d-galactosamine, and dimethylnitrosamine have been
shown to cause hepatic damage. When the liver is exposed to hepato-
toxins at an excessive dose, these may induce acute liver injury char-
acterized by necrosis, degeneration, or apoptosis of hepatocytes
[55–58]. In the present study, moderate necrotic and degenerative
changes were detected in the liver of rats exposed to 24 and 36mg/kg
bw/d imazamox equivalent dose of a commercial formulation. Fur-
thermore, the pancreas showed necrotic and degenerative changes in
the groups that received 36mg/kg bw/d for 48 and 72 h. The size of
pancreatic islets in these groups was the smallest, when compared to
other groups. Since degeneration and necrosis occur in the liver and
insulin producing islets depending on the dose of imazamox formula-
tion administered, our results suggest that this herbicide, commonly
used in agriculture, may cause toxic effects in animals.

Caspase-3 (also known as CPP-32, Apoptain, Yama, SCA-1) has a
key role in apoptosis, since it is either partially or totally responsible for
the proteolytic cleavage of many key proteins, such as the nuclear en-
zyme poly (ADP-ribose) polymerase (PARP) [59]. Activation of caspase-
3 requires proteolytic processing of its inactive zymogen into activated
p17 and p12 fragments. Cleavage of caspase-3 requires aspartic acid at
the P1 position [60,61]. Activated caspase-3 can induce a self-amplifi-
cation cascade, which may directly roll-up cytoskeletal proteins in the
cytosol, or directly activate nuclear DNAase and cause DNA breakage
and apoptosis. Thus, caspase-3 plays an important role in the induction
of apoptosis [62]. Activation of caspase-3 regulates inflammation and

apoptosis signaling networks would eventually trigger hepatocyte
apoptosis [63,64]. The results we present here showed that the im-
munopositivity of cleaved caspase-3 in liver tissue was higher in the
group exposed to the highest dose of the imazamox-based herbicide.
However, more studies are needed to determine the specific mechan-
isms of imazamox herbicide-induced apoptosis. In addition to apoptotic
changes in the liver, we also observed necrotic and degenerative
changes in pancreatic islets, which can play an important role in the
pathogenesis of diabetes [65,66]. Many of the changes in pancreatic
islet structure and function associated with diabetes are attributable to
hyperglycemia [67]. Hyperglycemia may induce alterations in islet
endothelium, potentially contributing to the progressive reduction of β-
cell function [68]. It has been shown that the number of insulin positive
cells is reduced in diabetes [69]. A report of pancreatic β-cell apoptosis
in cases of diabetes type 1 also described that the CD8+ cytotoxic-T
cells attack β-cells in this condition and consequently reduce the cell
population [70]. Our findings showed that the size of pancreatic islets
(with necrotic and degenerative changes) in the 36mg/kg bw group
was the smallest when compared to the other groups and that the in-
sulin positive cell population decreased dramatically following ex-
posure to the imazamox-based herbicide.

Blood serum changes are also important in the evaluation of toxicity
and prognosis. Studies have demonstrated that paracetamol toxicity
increases ALT and AST levels and that elevated ALT levels in the liver
can be considered as a marker of fibrosis [71,72]. In our study, ALT
levels increased in the 12mg/kg treatment groups, at all time-points
evaluated following administration. A decline in hepatic functional
capacity results in decreased creatine production and lower serum le-
vels of this compound. A study by Hu and colleagues showed that
pesticide exposure adversely affects blood cells, liver and the peripheral
nervous system, and has been shown to reduce creatinine levels,
especially when leukocyte ratios are increased in participants [73].

Insulin-secreting pancreatic β-cells play a major role in glucose
homeostasis [74]. Tizhe et al. reported that glyphosate-based herbicide
Bushfire® exposure may change blood glucose homeostasis and effect
insulin secretion in rats by damaging pancreatic islet and acinar cells
[75]. In the present study, animals that received imazamox formulation
for 24, 48 and 72 h in all treatment groups presented an increase of
serum glucose, compared to the control group. Furthermore, serum
calcium levels increased in 48 and 72 h in all treatment groups pre-
sented an increase of serum calcium, compared to the control group.
Although little is known about how imazamox can induce hypergly-
cemia, it is suggested that the degeneration of β-cells in the pancreatic
islet may lead to decrease insulin positive cells and it may cause in-
creasing serum glucose levels. Decreased insulin levels may lead to

Fig. 6. Detection of cleaved caspase 3 mRNA in liver tissue. Liver sections from untreated control and imazamox intraperitoneally injected rats were analysed for
cleaved caspase 3 mRNA by in situ hybridization with a biotinylated oligonucleotide probe. a) Control group with negative staining for cleaved caspase 3 expression
in hepatocytes. b) Moderate staining of cleaved caspase 3 expression in hepatocytes around the vena centralis in the 36mg/kg bw imazamox treatment group at 48 h
post-injection (arrowhead) c) Greater intensity of cleaved caspase 3 expression in the cytoplasm of hepatocytes around the vena centralis in the 36mg/kg bw injected
group at 72 h (arrowhead). ISH x 20μ.

Table 3
Insulin positive islet size in different groups a) no significant
difference compared to the control group, b) significant
difference compared to the control group (P < 0.05).

Groups Size of islets

Control group 36.40 ± 1.20a

12mg/kg for 24 h 36.20 ± 0.87a

12mg/kg for 48 h 36.80 ± 1.11a

12mg/kg for 72 h 35.40 ± 0.67a

24mg/kg for 24 h 37.20 ± 0.58a

24mg/kg for 48 h 36.20 ± 0.58a

24mg/kg for 72 h 35.60 ± 0.40a

36mg/kg for 24 h 35.20 ± 1.39a

36mg/kg for 48 h 27.00 ± 0.54b

36mg/kg for 72 h 26.40 ± 0.50b

Means with the same letter, per each column, are not sig-
nificantly different according to One way ANOVA test,
p≤ 0.05, n=5.
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increase serum calcium levels, because calcium is important for insulin
mediated intracellular processes in insulin responsive tissues [76].

The current study evaluated the effect of imazamox alone in rats
and its design presents the limitation that it does not simulate real-life
human exposure (long-term, low-dose exposure to chemical mixtures).
For this reason, these preliminary data should be reinforced with a
study designed in a different way in order to mimic real-life conditions
[77–79]. More studies are needed to determine the specific mechanisms
of imazamox herbicide-induced toxicity in the vitals.

5. Conclusion

The current study presents new insights into the mechanism of
imazamox-induced apoptosis and its toxicity in liver and pancreas.
Furthermore, this is the first study on the apoptotic events related to
imazamox and the cell changes induced in liver and pancreas. The
present evidence shows an increase in hepatic caspase-3 activity, an
apoptotic factor, and a decrease of the insulin islets in the pancreas.
Thus, our study has demonstrated toxic effects of an imazamox herbi-
cide formulation, which is widely used in agriculture and suggest that
this pesticide should be used with caution.
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