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Abstract

heterogeneous catalysts for more challenging molecules.

The process of encapsulating cobalt nanoparticles using a graphene layer is mainly direct pyrolysis. The encapsula-
tion structure of hybrids prepared in this way improves the catalyst stability, which greatly reduces the leaching

of non-metals and prevents metal nanoparticles from growing beyond a certain size. In this study, cobalt particles
surrounded by graphene layers were formed by increasing the temperature in a transmission electron microscope,
and they were analyzed using scanning transmission electron microscopy (STEM). Synthesized cobalt hydroxide
nanosheets were used to obtain cobalt particles using an in-situ heating holder inside a TEM column. The cobalt
nanoparticles are surrounded by layers of graphene, and the number of layers increases as the temperature increases.
The interlayer spacing of the graphene layers was also investigated using atomic imaging. The success achieved in the
encapsulation of metallic nanoparticles in graphene layers paves the way for the design of highly active and reusable
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Introduction

Metallic catalysts play a dominant role in industrial appli-
cations and the development of catalysts using base met-
als (Jagadeesh et al. 2013a; Meffere et al. 2015; Jagadeesh
et al. 2013b; Czaplik et al. 2007; Zhang et al. 2013) is
prevalent because of their distinct electronic structures
(Friedfeld et al. 2013) and magnetic properties. In addi-
tion, a series of novel heterogeneous catalyst systems
using noble metal catalysts (Rahi et al. 2012; Le et al.
2013; Ren et al. 2012; Yan et al. 2013; Ge et al. 2013) have
been developed, but noble metals have major drawbacks
such as lack of selectivity and low resistance to functional
groups (Corma et al. 2008).

In recent years, multi-metal catalysts made by bonding
different transition metals have come into prominence
(Sammis et al. 2004; Toyofuku et al. 2008; Hashmi et al.
2009; Chinchilla et al. 2007). The driving force behind
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these efforts is the discovery of more efficient approaches
for the synthesis of complex molecules with superior
chemical and stereoselectivity that are not accessible
through the use of monospecific catalyst systems. The
development of these catalysts maximized compatibility
while exploiting the benefits of catalysis. Furthermore,
transition metals are predominantly applied to find more
valuable chemical transformations. This growing interest
has led to advances in the field focusing on how the reac-
tivity of transition metal catalysts can be tuned. In addi-
tion to this, a strategy has been derived to create metal
nanoparticles encapsulated in polymorphic carbon shells
(Yao et al. 2014; Galakhov et al. 2010; Liu et al. 2011). The
main advantage of encapsulated structures is the ability to
tune the electronic structure of metal nanoparticles and
tightly control the aggregation of nanoparticles (Chen
et al. 2014; Tian et al. 2015). In addition, encapsulation of
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metal nanoparticles within a porous carbon shell allows
for easy access to the catalytically active sites and greatly
inhibits mass transfer restrictions (Wu et al. 2014).
Recently, Co encapsulated in a carbon matrix has
been developed for various reactions such as catalytic
hydrogenation and ORR (Wei et al. 2016; Liu et al.
2015; Yang et al. 2018; Wei et al. 2015). Hybrid Co
particles specifically designed to be encapsulated in
a carbon material serve as an efficient, selective, and
potent catalyst. The interface between the encapsu-
lated Co particles and the graphene layer determines
the structural and chemical properties. For metal/
graphene systems, interfaces have also been focused
on applying graphene to electronic devices where gra-
phene is in contact with metal electrodes and wires
(Rosei et al. 1984; Nagashima et al. 1994; Gamo et al.
1997; Abild-Pedersen et al. 2006; Wang et al. 2007;
Gruneis et al. 2008). Because these Co/graphene inter-
faces are two-dimensional internal structures, trans-
mission electron microscopy (TEM) is the most useful
method to investigate them. Herein, we report the for-
mation of Co particles encapsulated by graphene lay-
ers, which were induced using an in-situ TEM heating
holder in a TEM column. We used synthesized Co
(OH), nanosheets and converted them into Co parti-
cles. The carbon matrix, which remained amorphous,
was transformed into graphene layers surrounding
the Co particles at high temperatures (over 800°C).
Interestingly, the number of graphene layers increases
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when heated to above 1000 °C. The whole process was
analyzed using high-resolution STEM.

Results and discussion
Figure la shows a encapsulation process of co particle
when we have experiment using Co (OH), nanosheets.
We deal with a detailed explanation of the process
sequentially. Cobalt hydroxide can be synthesized as
nanosheets as shown in Fig. 1b. Their chemical bond-
ing states were confirmed using x-ray photoelectron
spectroscopy (XPS) to consist of mainly cobalt hydrox-
ide with some cobalt oxides (Fig. 1c). The peak of Ols at
531.1eV indicates that the Co atoms are bonded with the
OH"™ group. The deconvolution of O 1s exhibits two clear
peaks located at binding energy at 529.6eV and 530.5¢€V,
which is attributed to oxygen in the C-O of CoO crystal
and Co40, crystal, respectively (Petitto et al. 2004; Wang
et al. 2019). We transferred the specimen onto a heat-
ing chip to induce a heating pulse into the specimen.
The morphology and structure of the nanosheets were
investigated using high-resolution scanning transmis-
sion electron microscopy (HR-STEM). Figure 1c shows
a high-resolution image of the synthesized nanosheet,
which is visualized as an amorphous phase (Fig. 1d).
When the heating pulse is applied to them, the amor-
phous nanosheets transform into crystalline cobalt parti-
cles above 500°C (Fig. 1e).

When the temperature increases to 1100°C, the
nanosheets progressively transform as shown in Fig. 2a

Fig. 1 a Simple schematic of the whole process. b and ¢ SEM image and XPS spectra of the synthesized Co (OH), nanosheets. d and e ADF-STEM
images showing the nanosheet and Co particles formed using a heating holder
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Fig. 2 a-c Successive HAADF-STEM images showing the transformation d and e BF-STEM images showing the Co particles with thin carbon film at
500°C and 800°C at the same position, respectively. f Low-scale HAADF-STEM images showing the Co particles with graphene layers

to ¢, which are successive high angle annular dark filed
(HAADF)-STEM images showing the overall transfor-
mation behavior of the sheet in the same region. The
transformation initiation is not implemented in only a
specific area, but occurs in the entire sheet area to which
temperature is applied, and Co atoms constituting Co
(OH), are aggregated to form a large amount of Co par-
ticles. When heated to 500°C, Co particles are formed
as shown in Fig. 1, and the hydrocarbons remaining on
the surface of the Co (OH), nanosheet form a thin film
as shown in Fig. 2c. Figure 2d shows the bright filed (BF)-
STEM image of the Co particles with a thin carbon film
at 500°C. Above 800°C, the carbon film begins to crys-
tallize gradually, and carbon layers (graphene layers) are
formed at the edge of the Co particle (Fig. 2e). The Co
particles encapsulated by graphene layers are visualized
in Fig. 2f.

We observed an encapsulated Co particle using STEM
mode, which allows us to collect various images using
bright field (BF), annular dark field (ADF: DF2, DF4),
and HAADF detectors simultaneously. Even if the mate-
rial is composed of the same element, the degree of visu-
alization differs depending on the type of detector used
in STEM mode. This is because the detection degree of
the scattered electron beam varies according to the scat-
tering angle of the electron beam as it scatters through
the material. Therefore, we obtained BF, DF2, DF4, and
HAADF images in STEM mode to investigate the mor-
phology and structure of a Co particle encapsulated by
graphene layers as shown in Fig. 3. The distance between
the graphene interlayers is measured to be 0.142nm,
which is consistent with the graphene interplanar
spacing.

The graphene layer forms to surround the Co par-
ticles, and even if the Co particles partially move, the
graphene layer maintains its shape. As shown in Fig. 4a,
four graphene layers surround the Co particles, and
they maintain their morphology while the Co particles
move in the direction of the light blue arrow (Fig. 4b
and c). This result suggests that the graphene layers
surrounding the Co particles were not formed tempo-
rarily but were formed in a stacked form while main-
taining the interlayer spacing with crystallinity. After
EDS mapping confirmed the graphene layers remained
after the movement of the Co particles, the graphene
layers visualized in Fig. 4d and e were also included in
the entire supported carbon film region, confirming the
overall C mapping in the field of view.

The graphene layer surrounds the Co particles with-
out a gap between the interface of the Co particles and
the graphene layer. The number of graphene layers,
which are observed prominently at 800°C or higher,
increases when a heating pulse of 1000°C or higher
is applied. Fig. 5 shows BF-STEM images of the gra-
phene layers identified encapsulating the Co particle at
1050°C. The number of graphene layers at the top of the
Co particle was 9 (Fig. 5a), but when the results of con-
tinuous image acquisition were confirmed, the number
of layers increased to 12 (Fig. 5b). In addition, the num-
ber of graphene layers surrounding the lower left part
of the Co particle increased from 7 layers to 11 layers
(Fig. 5¢). This is because, as in the case of synthesizing
graphene using a metal catalyst, Co particles act as a
catalyst, and the remaining amorphous carbon source
expands the number of graphene layers at 1000°C or
more and is smoothly crystallized into graphene. At
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Fig. 3 Co particle encapsulated by graphene layers, which collected by (a) BF, (b) and (c) ADF and (d) HAADF detectors, respectively

Gr layers

/

d Gr layers

| Co

Fig. 4 a-c Successive BF-STEM images showing formation of graphene layers surrounding Co particle. d-e BF and HAADF-STEM images of Co
particle and remaining graphene layers. f-h EDS mapping of Co, C, and O elements at the same region as (d) and (e)

another position, the growth process is also observed as
shown in Fig. 5d-g.

Conclusions

We summarize that the behavior of Co particles encap-
sulated by graphene layers formed by high temperature
and electron beam irradiation. The amorphous carbon
remaining in the synthesized Co (OH), nanosheet exists

in the form of a thin film, which crystallizes when a tem-
perature of 800°C or higher is applied. The crystallized
carbon grows into a graphene layer surrounding the Co
particles, and the number of graphene layers gradually
increases due to the catalytic activation of Co at temper-
atures above 1000°C. All these behaviors were observed
through STEM imaging, and the graphene layer com-
posed of low elements was observed using BF and ADF
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Fig. 5 a-c Successive BF-STEM images showing the growth of graphene layers at 1050°C. d-g Successive BF-STEM images showing a initial states
on the growth of graphene layers at another position

images in STEM mode, which has the advantage of
using various detectors at the same time. The results of
this work show a versatile and scalable technique that
can be used to fabricate structured graphene materials.

Methods

Synthesis

Co (OH), nanosheets were synthesized using the aque-
ous nutrient solution containing 2mM cobalt nitrate hex-
ahydrate and 2mM hexamethylenetetramine (HMTA).
Depending on the opening area of a container, a calcu-
lated amount of chloroform solution of sodium hexade-
cyl sulfate (SHS) was added to the water-air interface.
After about 30minutes, the container was capped and
placed in a convection oven at 70°C for typically 180 min-
utes. The synthesized Co (OH), sheets were scooped
using an TEM grid for imaging.

Transmission Electron microscopy

STEM images were acquired using an aberration-cor-
rected FEI Titan Cubed TEM (FEI Titan3 G2 60-300),
which was operated at a 200kV acceleration voltage with
a monochromator. Dose rate was 72.5 A/m?.
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