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A fine balance in reactive oxygen species (ROS) production and removal is of utmost 
importance for homeostasis of all cells and especially in highly proliferating cells that
encounter increased ROS production due to enhanced metabolism. Consequently,
increased production of these highly reactive molecules requires coupling with increased 
antioxidant defense production within cells. This coupling is observed in cancer cells that 
allocate significant energy reserves to maintain their intracellular redox balance. Glutathione 
(GSH), as a first line of defense, represents the most important, non-enzymatic antioxidant 
component together with the NADPH/NADP+ couple, which ensures the maintenance 
of the pool of reduced GSH. In this review, the central role of amino acids (AAs) in the 
maintenance of redox homeostasis in cancer, through GSH synthesis (cysteine, gluta-
mate, and glycine), and nicotinamide adenine dinucleotide (phosphate) production (serine, 
and glutamine/glutamate) are illustrated. Special emphasis is placed on the importance 
of AA transporters known to be upregulated in cancers (such as system xc-light chain 
and alanine-serine-cysteine transporter 2) in the maintenance of AA homeostasis, and 
thus indirectly, the redox homeostasis of cancer cells. The role of the ROS varies (often 
described as a “two-edged sword”) during the processes of carcinogenesis, metasta-
sis, and cancer treatment. Therefore, the context-dependent role of specific AAs in the 
initiation, progression, and dissemination of cancer, as well as in the redox-dependent 
sensitivity/resistance of the neoplastic cells to chemotherapy are highlighted.
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AAs in Cancer Redox Homeostasis

iNTRODUCTiON

The potential of targeting redox homeostasis for both cancer 
prevention and development of novel anticancer treatments has 
been recognized during past decades. However, despite intensive 
efforts, development of an effective redox-based therapy remains 
challenging. A main reason for this is cancer cell plasticity but 
also our inability to adequately perceive the complexity of redox 
homeostasis. Namely, antioxidant prophylaxis led to the “antioxi-
dant paradox” (1, 2), while use of chemotherapeutics that com-
promise the oxidative status of cancer cells encountered resistance 
(3) and the ability of some cancer cells to upregulate antioxidant 
protective mechanisms (4). Currently, most attention on targeting 
redox homeostasis focuses on the attack and downregulation of 
endogenous antioxidant tumor cell defense mechanisms (5). In 
this review, we approach cancer redox balance from a different 
perspective with the main players involving amino acids (AAs).

Although the idea of AA dependency of cancer antioxidant 
defense (AOD) has received more attention recently, a unified 
review on this subject is lacking. In 2015, Jones and Sies (6) labeled 
the nicotinamide adenine dinucleotide (NAD, NADP) and thiol/
dysulfide [glutathione (GSH)/glutathione oxidized (GSSG) in 
the first place] systems together with thiol redox proteome as 
carriers of the cellular “Redox Code.” According to this principle, 
spatiotemporal organization of these systems is fundamental for 
physiology, while its disruption inevitably leads to pathology. 
Interestingly, accumulating literature indicates that AA availabil-
ity and metabolism are upstream and superior to these systems, 
especially in cancer cells. Our review will address this particular 
aspect of redox regulation in tumors. However, before consider-
ing the involvement of AA homeostasis in cancer redox balance, 
it is necessary to point out some important findings, as well as 
delusions, that exist in the complex cancer redox field.

PARTiALLY ReDUCeD OXYGeN—
“ACTivATeD” OXYGeN

The first steps in understanding oxygen toxicity occurred in the 
mid-twentieth century when Gerschman et  al. (7–9) proposed 
that the damaging effects of oxygen could be attributed to the 
formation of oxygen radicals. At approximately the same time, 
research with [18O2] and mass spectrometry showed that oxygen 
atoms from molecular oxygen [O2] could be introduced into bio-
molecules (10, 11). The susceptibility of biomolecules to oxidation 
gave a biological frame to oxygen toxicity, and together with the 
discovery of superoxide dismutase [SOD; (12)] fueled research 
in the field of oxidative damage in biological systems. The term 
“oxidative stress” was introduced into scientific literature for the 
first time in 1985 (13).

Now it is clear that the oxidative capacity of molecular oxygen 
in vivo is minimal, but that is not the case for its partially reduced 
counterparts known as “reactive oxygen species—ROS.” ROS is 
a term widely used to describe a number of reactive molecules 
and free radicals derived from molecular oxygen. However, we 
feel obliged to emphasize the generic nature of this term. ROS 
includes both radical (superoxide anion radical, [ ]O2

⋅− ; hydroxyl 

radical, [HO⋅]; peroxyl radicals, [ROO⋅]; nitric oxide, [NO⋅]) and 
non-radical (hydrogen peroxide, [H2O2]; hydroxyl anion, [HO−]; 
singlet oxygen, [1O2]; organic hydroperoxides, [ROOH]) species, 
which differ significantly in terms of half-life, water/lipid solubil-
ity and reactivity. For example, the cellular half-life of lipophobic 
[HO⋅] is only ~10−9 s because of its reactivity, compared to ~1 ms 
for [H2O2], which also can diffuse through lipid cellular compart-
ments (14). However, use of the common term ROS is sometimes 
unavoidable (15) due to the complex nature of biological systems, 
an inability to exactly measure the species generated in a spati-
otemporal manner in addition to the so-called theory of “kindling 
radicals” by which a few primary ROS “inflame” a cascade of ROS 
amplification by stimulating the sources of secondary ROS (16).

ROS iN CANCeR

The terms “ROS” and “cancer” cover a wide range of molecules 
and diseases, which makes broad generalizations almost impos-
sible. Is it possible, however, to conceptualize some common 
denominators of the cancer redox state? Widespread opinion 
is that virtually all malignant cells are in a pro-oxidative state, 
mostly due to oncogene-driven altered and/or intensified cell 
metabolism [reviewed in Ref. (17–21)]. However, Halliwell 
(20) raised important questions regarding ROS measurement 
in malignant (and other) cells in classical culture conditions 
that include 21% oxygen and media that is usually deficient in 
antioxidants/antioxidant precursors and contains free iron ions. 
These conditions, per se, favor ROS generation, and thus special 
attention should be paid in extrapolating results obtained in vitro 
to the in vivo state. Considering this point in combination with 
current advances in the cancer redox field, a major conclusion 
that can be drawn is that cancer cells indeed experience mild oxi-
dative pressure in comparison to normal cells (Figure 1) that can 
help them to exhibit characteristic cancer hallmarks [for detailed 
review refer to Hornsveld and Dansen (22)].

According to the previous paragraph, it seems that a pro-oxidative 
state could facilitate initiation and progression of tumorigenesis. 
However, when reactive and very short living species such as ROS 
are considered, the situation is not so clear. Accordingly, studies on 
the effects of antioxidant supplements for cancer prevention and 
treatment showed opposed and mainly unpromising results, giving 
rise to confusion and the “antioxidant paradox” (1). Another redox 
consideration for cancer treatment includes increased ROS levels 
in cancer cells that already “walk on the edge of oxidative abyss” 
(23–25). This stand point arises from the very well know concept 
of hormesis that has been recognized since the XVI century by 
Paracelsus’s—“Die Dosis macht das Gift” or “the dose makes the 
poison” (26). The concept of hormesis, which revolutionized mod-
ern toxicology, claims that the dose–response curve is U-shaped, 
generally meaning that a drug/stimulus can have opposite effects 
in small and large doses [for more details refer to Calabrese and 
Baldwin (27) and papers stemming from it]. Indeed, it has been 
shown that a mild oxidative state promotes all hallmarks of cancer 
cells; however, if the threshold is exceeded (reaching the top of the 
arm of the U-shaped curve), influence of the oxidative environ-
ment can easily become anti-carcinogenous, promoting cell-cycle 
arrest, senescence, programmed cell death, or necrosis (Figure 1). 

http://www.frontiersin.org/Oncology/
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FiGURe 1 | Reactive oxygen species (ROS) can (i) promote cancer, (ii) cause growth arrest, and (iii) be cytotoxic. In normal cells, increased (endogenous or 
exogenous) oxidative pressure leads to adequate upregulation of cellular antioxidant defense (AOD), which prevent mutagenic events and initiation of cancer 
formation. However, AOD is not 100% efficient, and thus, these “challenging states” also represent well-known risk factors for cancer development. Once formed, 
cancer progression seems to be further stimulated by a mild pro-oxidative state due to intensified metabolism, ROS-producing foci, etc. Importantly, this state is still 
maintained within “redox homeostatic range” thanks to strongly upregulated AOD of cancer cells. However, due to maximized AOD, cancer cells do not support 
further increase in ROS levels and thus cross the threshold into the state of “oxidative stress.” If ROS level increase further (e.g., due to chemotherapy), the only way 
for cancer cells to prevent further damage is by decreasing ROS production via cell-cycle arrest to repair damage and prevent cell death (cytostatic effects of ROS). 
However, if ROS burst induces irreversible damage and/or there is not enough components required for repair systems (e.g., glutathione), cancer cells experience 
programmed cell death or necrosis (cytotoxic effects of ROS).
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Thus, it has been shown that increased oxidative pressure in the 
blood, if not adequately balanced by internal AOD, may limit the 
efficiency of melanoma cells to form distant tumors (28). These 
results are a textbook example of the antioxidant paradox suggest-
ing how dietary supplementation of antioxidants may promote the 
metastatic potential of the cancer cells.

The anticancer effects of many conventional therapies, includ-
ing irradiation and DNA-damaging chemotherapeutics (cispl-
atin, doxorubicin, gemcitabine, and 5-fluorouracil), rely mostly 
or partially on increased ROS production, due to mitochondria 
damage and dysfunction, as well as activation of NADPH oxidase 
(NOX) enzymes (29–33). However, these treatments encounter 
resistance with initial response being followed by the develop-
ment of protective mechanisms against these oxidative/genotoxic 
insults. The mechanisms of resistance are complex involving drug 
modification, inhibition, degradation, and/or efflux [for further 
readings refer to Housman et al. (3)]. In spite of this complexity, 
the central role that AOD plays in these processes provided the 
rational for developing anticancer therapies targeting this aspect 
of cancer redox balance.

AOD iN CANCeR

As mentioned previously, oncogenic mutations lead to a pro-
oxidative state of cancer cells. However, these cells are still 
required to maintain ROS levels below the threshold that would 

become detrimental (Figure  1). Indeed, antioxidant pathways 
known to respond to increased oxidative pressure in normal cells 
are constitutively activated in some cancers. The best example is 
the nuclear factor (erythroid-derived-2)-like 2 (NRF2)-signaling 
pathway [reviewed elsewhere in great detail (34, 35)]. NRF2 is the 
main transcription factor regulating expression of AOD enzymes. 
Under normal conditions, NRF2 is constantly ubiquitinated by 
Kelch-like ECH-associated protein 1 (KEAP1) and degraded by 
the proteasome. Oxidants/electrophiles inactivate Keap1 and 
stabilize NRF2, which then translocates into the nucleus, binds to 
the antioxidant response element, and activates the transcription 
of many cytoprotective genes that encode detoxifying enzymes 
and antioxidant proteins. Constitutive activation of NRF2, due 
to gain-of-function mutations in NRF2 (36), or loss-of-function 
mutation in its negative regulator KEAP1, was observed in 
different types of cancers (37–41). In addition, several tumor-
suppressor genes act to repress tumor cell proliferation or cause 
cells to enter permanent cell-cycle arrest in response to ROS 
overproduction. These include retinoblastoma, p16INK4A, JNK, 
p38, p53, and forkhead box O. Most of these tumor-suppressor 
proteins sense changes in the cellular oxidative status and respond 
accordingly by inhibiting the cell cycle, and thus allowing cells 
time to recover after oxidative stress, and/or to induce expression 
of AOD enzymes (22).

Antioxidant defense is divided into enzymatic and non- 
enzymatic parts. Enzymatic AOD includes enzymes such as SODs, 

http://www.frontiersin.org/Oncology/
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catalases, gluthatione peroxidases (GSH-Px), and glutathione 
S-transferases, as well as redox proteins such as thioredoxins (TRXs),  
peroxiredoxins, and glutaredoxins. Non-enzymatic AOD com-
ponents are low-molecular weight compounds such as the key 
AOD tripeptide glutathione (GSH), vitamins (vitamins C and 
E), β-carotene, and uric acid. Complementary to these AOD 
components is the reducing equivalent NADPH that maintains 
catalases in active forms, serves as a cofactor for TRX and glu-
tathione reductase [which converts oxidized glutathione (GSSG) 
into its reduced state (GSH)], and acts as a reducing agent for 
regeneration of glutaredoxins.

The concept of the Redox Code proposed recently by Jones and 
Sies (6) secludes GSH and NADH/NADPH as main determinants 
of the dynamic nature of redox signaling and control in multi-
dimensional biological systems. This is even more pronounced 
in cancer cells due to increased and imbalanced metabolism, 
mutation accumulation during tumor progression and activated 
ROS-producing foci (such as defected mitochondria or NOX 
enzymes). The main reason why GSH and nicotinamide adenine 
dinucleotide (phosphate) are in the spotlight is the fact that these 
are the ultimate reducing factors of the cell.

Glutathione
Glutathione, a tripeptide γ-glutamyl-cysteinyl-serine, appears in 
two forms: the predominant reduced form (GSH), which reaches 
millimolar concentrations in the cell, and the minor oxidized 
form (GSSG), which is estimated to be less than 1% of the total 
GSH (42). The bulk of GSH is found in the cytosol (~90%), while 
the rest is localized mainly in mitochondria and the endoplasmic 
reticulum (ER) (43). GSH functions to detoxify electrophilic 
compounds including xenobiotics, which makes it central to 
cellular anticancer drug resistance (44). Owing to the sulfhydryl 
(−SH) group of cysteine, GSH can serve as an electron donor 
for reduction of peroxides (reactions catalyzed by GSH-Px) or 
disulfides. GSH can also directly react with various oxidants in 
a non-enzymatic manner, although these reaction kinetics are 
generally very slow (45). In addition, GSH is important in its 
cysteine-storage function (γ-glutamyl cycle).

Similar to ROS, GSH effects can be pro- or antitumorigenic 
(46). Although it is important in carcinogen detoxification, 
increased GSH levels and GSH-dependent biotransformation 
in many tumors may increase resistance to chemotherapy and 
radiotherapy (47–50). In addition, high GSH levels are associated 
with cancer hallmarks such as genomic instability, suppression of 
apoptosis, invasion, and metastatic activity [for further reading 
refer to Balendiran et al. (46)].

NADPH/NADP+ Couple
Antioxidant defense is completely ineffective without the 
NADPH/NADP+ cofactor, which serves as a main electron donor 
for both antioxidant enzymes and catabolic reactions. NADPH 
supplies reducing equivalents to maintain vital AOD components 
including the maintenance of active catalase and the regenera-
tion of glutathione, TRX, and glutaredoxin. The NADH/NAD+ 
system is also involved in reversible 2-electron transfer catalysis 
and is connected with the NADPH/NADP+ system by activity 
of mitochondrial energy-linked transhydrogenase (NNT) (51). 

However, these two nicotinamide nucleotide systems have some-
what different roles in metabolism. Namely, while NADH/NAD+ 
is involved in catabolism and energy supply, NADPH/NADP+ is 
central for anabolism, defense, and redox homeostasis [reviewed 
in Ref. (6)]. The redox potential of these two systems also dif-
fers significantly in cells. Namely, the cytosolic redox potential 
of NADH/NAD+ is more oxidized (−241  mV) (52, 53) while 
in mitochondria, it operates at a more negative redox potential 
(−318  mV) (54), providing reductive force for ATP synthesis. 
Meanwhile, NADPH/NADP+ operates at more negative redox 
potential than the NAD system both in cytosol (−393 mV) and 
mitochondria (−415 mV) (53).

The energy-linked mitochondrial enzyme NNT that transfers 
electrons from NADH to NADPH thus connecting the two 
systems is of utmost importance in cancers containing mutations 
in the tricarboxylic acid (TCA) cycle (fumarate hydratase or 
succinate dehydrogenase) or the electron transport chain (ETC, 
complex I or III), which have been shown to promote utiliza-
tion of glutamine by reductive carboxylation (55, 56). Namely, 
adequate citrate production in these conditions requires high 
NADPH/NADP+ ratios (57), which are achieved by the activity 
of the NNT (58).

NADPH production occurs via the pentose phosphate path-
way (PPP), folate metabolism, and malic enzymes (MEs). The 
importance of AAs for NADPH-producing pathways, especially 
in cancer cells, is discussed below.

AAs SeNSiNG FROM A ReDOX 
PeRSPeCTive

Glucose, AAs, and fatty acids are the crucial building blocks of 
cellular biomolecules. Tight regulatory mechanisms have evolved 
to maintain the level of each within homeostatic range. The two 
main protein kinases involved in sensing and regulation of AA 
homeostasis are the mechanistic target of rapamycin complex 1 
(mTORC1) and general control non-derepressable 2 (GCN2) [for 
an extensive reviews refer to Bar-Peled and Sabatini (59), Efeyan 
et al. (60), and Broer and Broer (61)]. Briefly, mTORC1 is a major 
sensor of specific AAs (Leu, Arg, and Lys), which also receives 
integrated, growth factors, hormonal, environmental and stress 
signals regulating growth, and proliferation. Although mecha-
nisms of mTORC1 activation have progressed considerably in the 
past 20 years, the precise effects of individual AAs on mTORC1 
activation have remained elusive. Sabatini’s group has illuminated 
AA sensing by demonstrating that mTORC1 translocation to 
lysosomes, is critical for its activation (59). Interestingly, recent 
studies revealed that this lysosomal localization allows mTORC1 
sensing of AA levels (Arg and Gln), not only in cytoplasm but 
also in lysosomal compartement via the lysosomal membrane-
resident transport protein SLC38A9 that constitutes a physical 
and functional part of the AA-sensing machinery (62, 63). 
Conversely, GCN2-kinase senses AA-uncharged tRNA, result-
ing in a general suppression of protein translation, paralleled by 
induction of the mechanisms to increase the cellular AA pool. 
Data regarding redox dependency of these pathways are still 
scarce and mechanically unclear.

http://www.frontiersin.org/Oncology/
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Earlier studies showed that UV radiation activates mTORC1 
signaling through MAP kinase activation by promoting phospho-
rylation of its downstream target p70S6k in an [H2O2] concentra-
tion and time-dependent manner (64, 65). mTORC1 activation 
was also observed when cells were treated with oxidizing agents, 
and surprisingly, even in AA-depleted conditions (66, 67). By 
contrast, subcellular localization of the mTORC1-interacting 
protein complex tuberous sclerosis complex at the peroxisome 
is responsible for mTORC1 repression and autophagy induction 
in response to ROS (68). Also, the tumor-suppressor ataxia tel-
angiectasia mutated gene, appears to regulate autophagy through 
repression of mTORC1 in response to oxidative stress (69, 70). 
Thus, it seems that net effects of ROS on mTORC1 activity 
are context, time, and dose dependent. However, it should be 
emphasized that although the AAs leucine, arginine, and lysine 
are identified as key stimuli for mTORC1 activation, recent work 
on hepatoma HepG2 cells revealed significant sensitivity of both 
mTORC1 and GCN2 kinases to cysteine depletion (71). Prompt 
(within 60 min) inhibition of mTORC1 upon cysteine removal 
was observed. Considering that the Cys proteome coevolved with 
advanced [O2] sensing and [H2O2] signaling systems (72–74), this 
effect of cysteine on mTORC1 from a redox perspective may be of 
higher importance than the effects of ROS, per se.

The main downstream target of activated GCN2 is the 
eukaryotic initiation factor 2α (eIF2α), whose phosphorylation 
results in a general reduction of translation initiation, while 
specific mRNAs containing upstream open-reading frames (e.g., 
ATF4) are actively translated. However, it has been recognized 
that GCN2 can be activated by a number of different stresses 
[osmotic, UV, oxidative (such as [H2O2]), and ER] independently 
of AA depletion/imbalance (75–77). Interestingly, although the 
mechanisms are not yet known, it is recognized that the response 
of GCN2 to stressors such as [H2O2] or UV radiation are very fast 
in comparison to the gradual accumulation of uncharged tRNAs.

In turn, the AA-sensing pathways also influence cellular 
redox balance. Namely, ATF4, an effector molecule of the 
GCN2-pathway, also serves as a dimerization partner of the cap 
“n” collar transcription factor NRF2 (78, 79) promoting resist-
ance to oxidative stress (79, 80). Consistently, it has been shown 
that mouse fibroblasts lacking Atf4 depend on supplemental 
reducing substances, such as glutathione, N-acetyl cysteine, or 
β-mercaptoethanol in their growth media (81). Recent work on 
HT1080 and A549 tumor cells showed the phosphorylation of 
eIF2 by protein kinase RNA-like endoplasmic reticulum kinase 
increases the ability of these cells to cope with increased oxida-
tive pressure in an ATF4-independent manner by activating Akt 
(82). The importance of the GCN2 kinase in maintaining redox 
balance was also proved in vivo. Mice lacking GCN2 exhibited 
an increase in protein carbonylation in response to a leucine-
imbalanced diet (83).

As for the effect of mTOR on redox homeostasis, a recent study 
showed that mTORC1 controls ATF4 activity by regulating the 
translation and stability of its mRNA (84). These results indicate 
that mTORC1, besides promoting anabolism and consequently 
increased ROS production, may also contribute to maintenance 
of the cellular redox equilibrium through “antioxidant proper-
ties” of ATF4.

The results listed earlier favor the hypothesis that redox and 
AA balance are tightly intertwined. How AAs specifically influ-
ence the cellular “Redox Code” (GSH and NADPH levels) will be 
discussed below with special attention placed on the pathways 
that might represent “vulnerability points” for design of novel 
anticancer therapeutics.

CYSTeiNe LeveLS DeTeRMiNeS GSH 
LeveLS

Two cytosolic ATP-dependent enzymes are involved in GSH 
synthesis: glutamate–cysteine ligase (GCL), which catalyzes 
formation of a particular gamma-peptidic bond between Glu 
and Cys, and glutathione synthetase. The rate-limiting step in 
GSH synthesis is the reaction catalyzed by GCL (85). Genetic 
deletion of the GCL catalytic subunit was lethal in the mouse 
embryo, while knockout mice for the modifier subunit of the 
enzyme, although viable and fertile, show a significant decrease 
of tissue GSH levels (9–16% of wt) (86). The Km of mouse GCL 
for cysteine is estimated at ~0.2 mM (87), which is near the upper 
limit of typical cellular cysteine concentrations, while the Km for 
glutamate is at or below the cellular glutamate concentration for 
Drosophila, mouse, or human GCLholo enzymes (88–90). Hence, 
it is not surprising that cysteine is the main regulator of GCL 
activity, and thus GSH synthesis (Figure 2).

In physiological conditions, cysteine is not an essential AA as 
it can be synthetized through trans-sulfuration pathways (TSP) 
from methionine, mainly in the liver. Approximately 50% of the 
cysteine in hepatic GSH is derived from methionine via TSP 
(91). However, high demand for cysteine in cancer cells, make 
TSP insufficient (Figure  2). Furthermore, some tumors have 
shown significantly lower expression of TSP enzymes mostly 
due to transcriptional silencing (92, 93). Consequently, Cramer 
and coworkers (94) showed that depletion of cyst(e)ine with 
pharmacologically optimized cyst(e)inase enzymes induced cell-
cycle arrest and cancer cell death due to GSH depletion and ROS 
accumulation, both in vitro and in vivo.

xc-Transport System
Multiple tissue-specific transporters are responsible for the 
import of cystine (CySSCy), the oxidized and predominant form 
of the AA in circulation (40–50  µM), and/or cysteine, which 
is present at substantially lower concentrations (8–10  µM) 
(95–97). However, increasing data in the literature points 
toward the xc-system as being crucial for CySSCy import in can-
cer cells (Figure 2). The system xc- acts as a Na+-independent 
and Cl−-dependent antiporter of the anionic forms of cystine 
and glutamate and is composed of the transporter light-chain 
(xCT, encoded by SLC7A11 gene) and a chaperone heavy-chain 
(CD98hc aka 4F2hc, encoded by SLC3A2 gene) subunit [for a 
comprehensive review, see Lewerenz et al. (98)]. Interestingly, 
although the system xc- seems to be a ubiquitous marker of 
almost all cells cultured in  vitro, its in  vivo distribution in 
humans appears restricted mainly to the CNS, pancreas, fibro-
blasts, and immune cells (99–105). According to Bannai et al. 
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FiGURe 2 | Cystine import is the rate-limiting step in glutathione biosynthesis. Cysteine can be synthesized within the cell through the trans-sulfuration pathway. 
However, this pathway is often insufficient in cancer cells and therefore cysteine must be imported. Different transporters are involved in the import of the reduced, 
cysteine (CySH), and oxidized, cystine (CySSCy) form of this semi-essential AA. The heavy-chain transporter subunit of system xc-light chain (xCT) seems to play a 
pivotal role in the import of CySSCy, the predominant form of cysteine in circulation. After import, CySSCy is reduced by cystine reductase and used for different 
purposes including GSH biosynthesis. Import of cysteine can occur via ASCT (alanine/serine/cysteine transporter) and other transporters (x).
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(106), this induction of the system xc- in culture conditions is 
caused by the high partial pressure of oxygen. Consistent with 
this hypothesis, prolonged cultivation of fibroblasts in reduced 
oxygen partial pressure caused a significant decrease in the 
system xc-activity (106).

Considering that AA transporters are necessary for tumor 
cell proliferation, it is not surprising that xCT is upregulated in 
many patient samples and tumor cell lines including hepatoma, 
lymphoma, glioma, colon, breast, prostate, and pancreatic  
(95, 101, 107–113). Expression of the xCT subunit seems to be 
under direct control of oncogenes including NRF2 and Ets-1 
(114–116). In addition, the promoter region of the SLC7A11 gene 
contains an AA response element, which allows the transcription 
factor ATF4 to enhance expression of xCT in response to AA 
depletion and/or oxidative stress (115, 117).

System xc-light chain mediates import of cystine into cells thus 
regulating GSH levels (118, 119). Since GSH is the most abundant 
non-enzymatic antioxidant within the cell, upregulation of xCT 
satisfies the highly proliferative phenotype of cancer cells. This 
is supported by complete growth inhibition of lymphoma cells 
and certain glioma, breast, prostate, lung, and pancreatic cancer 
cells upon pharmacological inhibition of xCT by sulfasalazine 
or by the cyclic glutamate analog (109, 111). Besides its role in 
tumor growth, knockdown or pharmacological inhibition of xCT 
increased adhesion and inhibited tumor cell invasion in vitro and 
decreased metastases in vivo (120). In addition, xCT was shown to 
associate with CD44v, a major adhesion molecule for the extracel-
lular matrix, which is involved in tumor invasion and metastasis 
in lethal gastrointestinal tumors (121) along with the metabolic 
interplay between tumors and host tissue (122). Furthermore, 
xCT plays a pivotal role in the chemoresistance of tumor cells 
(123–125), particularly to anticancer drugs that produce high 
amounts of ROS, such as geldanamycin and celastrol (126, 127).

The importance of the cystine/glutamate antiporter in redox 
regulation was further implicated in the newly described type 
of cell death—ferroptosis (128, 129). Ferroptosis is described as 
an iron-dependent, programmed form of cell death driven by 
loss of activity of the lipid repair enzyme glutathione peroxidase 
4 and subsequent accumulation of membrane lipid peroxides 
(130). The first described inducer of ferroptosis in Ras-mutated 
human foreskin fibroblasts was the xCT inhibitor erastin (131). 
Depletion of intracellular GSH levels due to inhibition of xCT 
and subsequent increase of ROS levels seems to be sufficient 
to trigger erastin-dependent cell death. The same results were 
observed with sulfasalazine, which is another inhibitor of xCT 
(109, 132). Interestingly, it has been shown that a loss of cysteinyl-
tRNA synthetase might prevent erastin-induced cell death by 
inducing the TSP (133), suggesting that trans-sulfuration can 
contribute to resistance to inhibition of xCT and ferroptosis 
induction.

SeRiNe/FOLATe PATHwAY AND NADPH 
PRODUCTiON

Textbooks have stated for years that the main cellular NADPH-
producing system is the PPP. Surprisingly, a recent comprehensive 
study (134) showed that serine-driven one-carbon metabolism 
(folate cycle) gives almost the same contribution in the NADPH 
production as the PPP and MEs in proliferating cells. It is also 
interesting to note that enzymes of both PPP and the serine 
synthesis pathway (SSP, from which the folate cycle streams out) 
are induced by NRF2 (135, 136). The function of the folate cycle 
is ascribed to the collection of one-carbon units from AAs, and 
subsequent incorporation of these moieties into biomolecules 
in biosynthetic or methylation reactions. One of the major 
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FiGURe 3 | The folate cycle is fueled by the serine synthesis pathway (SSP) and extracellular serine. SSP diverges from glycolysis at the level of 
3-phosphoglycerate, which is converted into 3-phospho-hydroxipyruvate by the action of the enzyme phosphoglycerate dehydrogenase (PHDGH) and ultimately to 
serine following further enzymatic steps. This pathway is of great importance in cancers with mutated or overexpressed PHDGH, while serine import plays a pivotal 
role in maintenance of the serine cellular balance in cells with unaltered PHDGH activity. The folate cycle in the vast majority of the cells starts in mitochondria by the 
action of serine hydroxymethyl transferase 2 (SHMT2) which generates glycine and 5,10-methylene-tetrahydrofolate (5,10-methylene-THF). The next reaction can 
produce NADH or NADPH depending if methenyltetrahydrofolate dehydrogenase 2 (MTHD2) or MTHD2-like (MTHD2L) is used to convert 5,10-methylene-THF into 
5,10-methenyl-THF. The same enzyme than generate one-carbon unit—10-formyl-THF, which can be used for ATP production by the enzyme (MTHD1L) or NADPH 
generation in the reaction catalyzed by 10-formyTHF dehydrogenase (ALDH1L2). If ATP is generated, 10-formylTHF is converted into a format that is transported 
into the cytosol and used by trifunctional MTHFD1 enzyme to regenerate 10-formylTHF for purine synthesis, 5,10-methylene-THF for thymidylate synthesis and 
homocysteine remethylation in the methionine cycle. The unidirectionality of the folate cycle seems to be provided by more oxidative mitochondrial redox state that 
favors use of NAD(P)+ by mitochondrial MTHD2(L).
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branching points of the folate cycle is 10-formyl-tetrahydrofolate 
(10-formyl-THF), which in mitochondria may be used for 
ATP regeneration [methylene tetrahydrofolate dehydrogenase 
(MTHFD) reaction], formylation of the mitochondrial initiator 
N-formylmethionine-tRNA or metabolized to [CO2], generat-
ing NADPH (10-formyl-THF dehydrogenase reaction). On the 
other side, in cytosol, 10-formyl-THF can be used for purine or 
NADPH synthesis, while its counterpart 5,10-methylene-THF is 
used for thymidylate synthesis and homocysteine remethylation 
in the methionine cycle. In cancer, mitochondrial 10-formyl-THF 
is mainly used for NADPH production due to overexpression of 
corresponding enzyme, while in citosol, this reaction is prevented 
so one-carbon unit, required for purine synthesis, would not be 
wasted (137, 138). Default mitochondria-to-cytosol directional-
ity of the folate cycle is achived by different expression of enzymes 

in these compartments, as well as more reductive, i.e., oxidative 
environment in cytosol and mitochondria respectively (139).

Two mitochondrial reactions of the folate cycle contribute to 
NADPH production; one is catalyzed by MTHFD, and the other 
is catalyzed by 10-formyl-THF dehydrogenase (ALDH1L2) 
(Figure  3). Fan et  al. showed that depletion of either of these 
enzymes decreased NADPH/NADP+ and consequently GSH/
GSSG ratios and impaired cellular resistance to imposed oxida-
tive stress (134). Similarly, Piskounova et al. showed that redox 
balancing effects of these enzymes is fundamental for metastatic 
potential of melanoma cells in  vivo (28). Namely, this study 
showed that knockdown of either MTHFD or ALDH1L2 pre-
vents distant metastasis of melanoma cells that encounter high-
oxidative pressure in the blood and visceral organs. Besides, it was 
reported that the first mitochondrial enzyme of the folate cycle, 
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FiGURe 4 | Crossroads of NADPH-producing pathways (marked dark blue) and the pathways from which they diverge or to which they converge (marked light 
blue). Amino acids involved in these pathways are marked in red.
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termed serine hydroxymethyl transferase 2 (SHMT2) is essential 
for maintaining mitochondrial NADPH and GSH level during 
hypoxia in neuroblastoma cell lines. This study detected a cor-
relation between high expression of SHMT2 and poor prognosis 
in neuroblastoma patients (140). Expression of SHMT2 in neuro-
blastoma cells seems to be controlled by the collaborative action 
of c-Myc and HIF1α. However, numerous oncogenes are reported 
to affect enzymes of the folate cycle. For example, it is shown that 
common KRAS mutation associates with increased expression of 
MTHFD2 in non-small cell lung cancer cell lines (141), while 
mTORC1-dependent induction of MTHFD2 is reported in both 
normal and cancer cells (142).

Besides production of NADPH, the folate cycle contributes 
to production of GSH by intersecting with the methionine cycle 
(Figure 4). Considering the role of methionine and homocyst-
eine in the TSP (cysteine synthesis), as well as that glycine is 
product of serine metabolism (folate cycle), it is not surprising 
that serine depletion results in reduced level of glutathione 
(143), while activation of serine synthesis is now well identified 
as a bypass of glycolysis flux contributing to GSH synthesis 
(136, 144).

Serine, just like cysteine, can be transported into the cell 
by different transporters [such as the sodium-dependent 
transport system ASC that will be mentioned later in the text, 
and transporter system A, as well as sodium-independent 
system asc (145, 146)], or synthesized de novo from glycolytic 
intermediate 3-phosphoglycerate through the SSP. Highly 
proliferating cancer cells both in culture conditions and in vivo 
consume significant amount of exogenous serine (143, 147).  

Consequently, serine depletion both in  vitro and in  vivo 
decreases proliferation and induces metabolic remodeling, 
commencing with SSP induction, to replenish cellular serine 
pool (143).

Serine Synthesis Pathway
The importance of serine for cancer physiology came from 
earlier studies that showed increased flux through the SSP in 
cancer cells (148). However, this was somewhere neglected 
until the recent discovery that the first enzyme of SSP, phos-
phoglycerate dehydrogenase (PHGDH), is genetically amplified 
in breast cancer and melanoma (149, 150), and overexpression 
of the SSP components are correlated with poorer prognosis 
in breast cancer patients (151). Consistently, suppression of 
PHGDH in cell lines characterized with elevated expression of 
this enzyme decreases cell proliferation and serine synthesis. 
What is even more interesting is that in non-tumorigenic breast 
cancer cells, overexpression of PHGDH alone lead to disrup-
tion of the acinar cellular morphology and predisposed them 
to neoplastic transformation (149, 152), making the PHGDH a 
bona fide oncogene (153).

Amplification of PHGDH de-sensitizes tumors to exogenous 
serine levels but also represents a vulnerability point for poten-
tial cancer treatment. Namely, PHGDH knockdown strongly 
decreased proliferation and some of the SSP outputs [such as 
α-ketoglutarate (α-KG)] only in cells with amplified PHGDH 
expression (150). Interestingly, PHGDH also prevents conver-
sion of glycine to serine suggesting that the folate cycle relies 
exclusively on serine synthesis in PHGDH overexpressing 
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FiGURe 5 | Glutamine/glutamate fates in cancer cells. Different transporters are proposed to fuel the “Glutamine addiction” of cancer cells including alanine-serine-
cysteine transporter 2 (ASCT2), SNAT1/2, and L-type amino acid transporter 1 (LAT1). Once inside the cell, Gln can be use for uptake of essential AAs by LAT1. 
However, the vast majority of Gln is promtly deaminated to glutamate by the action of cytoplasmic or mitochondrial glutaminase (GLS1 and GLS2, respectively). If 
deaminated in cytosol, Glu is transferred into mitochondria, and there it is further converted into α-ketoglutarate (α-KG) to replenish the tricarboxylic acid (TCA). 
However, the fate of α-KG can be dual. It can follow normal TCA flow until oxaloacetate (OAA), which is then converted into asparate by aspartate dehydrogenase 
(GOT2) and translocated into cytoplasm or used for synthesis of asparagine and arginine (protein synthesis). However, if the α-KG is carboxylated to isocitrate and 
then converted into citrate, citrate is exported into the cytosol where it is used for lipid synthesis in the form of acetyl-CoA. Glutamate-derived aspartate can also be 
converted into OAA by cytoplasmic GOT1, commonly induced in KRAS-mutated tumors. OAA is then converted first into malate by malate dehydrogenase 1 
(MDH1) and then into pyruvate by malic enzyme (ME), generating reducing power in the form of NADPH. Besides involvement in anaplerosis and NADPH 
production, Glu has an important role as a component of GSH, as well as a substrate for system xc-light chain (xCT) in allowing entrance of cystine into the cell.
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tumors (154). This was demonstrated by PHGDH knockdown 
decreasing cell proliferation even when exogenous serine was 
present (154).

Several other oncogenes also induce expression of the SSP 
enzymes, such as c-Myc and HER2 (155, 156). Also, in line with 
its involvement in maintaining redox balance, the SSP enzyme 
expression is induced by NRF2 in an ATF4-dependent manner in 
NSCLC cells (136). Interestingly, Maddocks and coworkers (143) 
showed that serine can be a vulnerable point of cancer metabolism 
even in tumors that do not have multiplication of the PHGDH 
gene, but lack p53. Namely, they showed that the p53–p21 axis is 
fundamental for metabolic adaptation upon serine deprivation, 
while loss of p53 in the conditions of serine depletion leads to 
impaired glycolysis and elevated ROS levels.

Interestingly, pharmacological inhibition of the SSP could 
also influence flux through the PPP. Namely, inhibition of the 
SSP would increase intracellular levels of 3-phosphoglycer-
ate, which has been shown to inhibit 6-phosphogluconate 
dehydrogenase that catalyzes the second step in the oxidative 
PPP (157).

GLUTAMATe AND NADPH PRODUCTiON

In addition to the PPP and folate cycle, MEs are known to regu-
late NADPH/NADP+ balance, which is seemingly dependent of 
glutamine metabolism in cancer. One of the main metabolic 
characteristics of many cancers, besides the Warburg effect 
(158, 159), is increased consumption of glutamine to the extent 
where exogenous level of this AA limit tumor cell survival. 
This “glutamine addiction” has been recognized for more than 
50 years (160, 161); however, diverse contributions of glutamine 
to intermediary metabolism, cell signaling, and gene expression 
are still not fully understood (162).

The vast majority of glutamine in the cell is converted into 
glutamate either by cytoplasmic glutaminase (GLS1) or by the 
mitochondrial isoform of this enzyme (GLS2). Glutamate is then 
converted to α-KG by the enzyme glutamate dehydrogenase. α-
KG can then have one of two fates (Figure 5). (1) Canonically, 
produced α-KG enters the TCA and replenishes it, or (2) it is 
carboxylated to isocitrate, pushing the TCA in the opposite direc-
tion (163).
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When glutamine-derived α-KG follows the canonical path-
way, the TCA works normally (clockwise) until oxaloacetate 
(OAA), which is usually converted into aspartate by aspartate 
transaminase (GOT2) and exported into the cytosol, or alterna-
tively, it can be converted into asparagine and arginine and fuel 
protein synthesis. Interestingly, a recent study on KRAS-mutated 
pancreatic ductal adenocarcinoma (PDAC) showed that GOT2 
regulates glutamine flux by producing α-KG and aspartate from 
glutamate and OAA (164). Aspartate is then shuttled into the 
cytosol where it is converted back into OAA by cytoplasmic 
GOT1. The OAA produced is converted first to malate and then 
to pyruvate and NADPH by the action of cytoplasmic malic 
enzyme 1 (ME1). Considering that KRAS-mutated PDACs 
have decreased flux through the PPP (165), glutamine-fueled 
ME1 in these cells may be seen as a major contributor to the 
NADPH homeostasis. Indeed, ME1 suppression increased ROS 
accumulation and decreased tumor cell growth both in vitro and 
in vivo, while suppressing glutamine utilization and sensitizing 
cells to oxidative damage (164). Conversely, it remains to be 
determined if inhibitors of glutamine import or its conversion 
to glutamate would have the same effects on oxidative status 
and cell growth.

Oppositely to KRAS, p53 has a negative impact on this 
NADPH-producing pathway. This was demonstrated by a strong 
upregulation of MEs (ME1/2) in the absence of functional p53 
(166), which were crucial for maintenance of adequate NADPH 
levels. Here is important to recall the importance of the p53–p21 
axis to serine starvation (143) and to anticipate potential resist-
ance mechanisms for serine starvation, in the absence of p53, via 
upregulation of the ME1/2.

Alanine-Serine-Cysteine Transporter 2 
(ASCT2)
Alanine-serine-cysteine transporter 2 (SLC1A5) is a Na+-depen-
dent transporter carrying small neutral AAs such as alanine, serine, 
cysteine, glutamine, and asparagine (Km ~20 μM) in addition to 
long-chain AAs such as threonine, valine, and methionine with 
lower affinity (Km ~300–500 μM). ASCT2 is proposed to play a 
central role in sustaining cancer cell glutamine homeostasis based 
on work from Myc-driven cancers, which are particularly addicted 
to glutamine, and fuel their “glutamine addiction” by promoting 
high ASCT2 expression (167–169). Also, ASCT2 together with 
xCT and L-type amino acid transporter 1 (LAT1), comprise the 
“minimal set” of transporters required for cancer AA homeostasis 
and the group known to be highly upregulated in cancer (170, 171).  
Consequently the glutamine import activity of ASCT2 has 
been proposed to be fundamental for the activity of other AA 
transporters upregulated in cancer, such as xCT and LAT1 
(leucine-for-glutamine exchanger) (171–173). However, recent 
findings demonstrated that ASCT2 inhibition can be overcame in 
certain cancer cell types partly by expressing the Na+-dependent 
glutamine transporters system A amino acid transporter 1–2, 
questioning the functional redundancy for certain AA transport-
ers in tumor growth (174). Regardless, glutamine import (via 
ASCT2 or other transporters) is indeed of great importance for 
normal functioning of LAT1 and xCT. Recent studies showed that 

cancer cell glutamine addiction might be a direct consequence 
of xCT activity, which consumes large amounts of glutamate 
derived from extracellular glutamine thereby restricting nutrient 
flexibility of the cell (175, 176).

The importance of glutamine in cancer cells often dominates 
ASCT2 experimental interpretations. However, it is important to 
remember ASCT2’s ability to transport other AAs such as serine. 
As mentioned, some cancer cells remain highly dependent on the 
uptake of exogenous serine (143). Since ASCT2 display a strong 
affinity for serine, it would be interesting to investigate the role 
of this transporter in serine metabolism and redox homeostasis 
in general. Furthermore, the name of ASCT2: alanine–serine–
cysteine transporter may be misleading. Namely, ASCT2 is 
structurally related to the glutamate transporter and neutral AA 
transporter ASCT1 and when expressed in Xenopus laevis oocyte 
ASCT2 indeed exhibits Na+-dependent uptake of AA similar to 
ASCT1 (177). However, the same study of Utsunomiya-Tate and 
collaborators revealed that ASCT2 exhibits different tissue distri-
bution, as well as substrate selectivity and functional properties 
when compared to ASCT1. Thus, for example, glutamate uptake 
by ASCT1 is electrogenic, while in the case of ASCT2 lowering pH 
enhances uptake, which suggests electroneutral uptake. Also, it 
seems that cysteine is not a substrate for ASCT2, but an allosteric 
inhibitor of its activity. In accordance to this are recent findings 
that mark cysteine as a potent competitive inhibitor of ASCT2 
that binds to the site different from the one for substrate and 
induces efflux of glutamine both in the case of proteoliposomes 
and in intact cells (178).

Considering that the “minimal set” of transporters required 
for cancer AA homeostasis comprises ASCT2, while its activity/
specificity is still rather debatable, it is of utmost importance 
to continue research on the biology of this very intriguing AA 
transporter.

CONCLUDiNG ReMARKS

For a long time, the mild pro-oxidative redox state of cancer 
cells has been recognized as a vulnerable point of these highly 
metabolically active cells. However, in the context of chemo-
therapy, we are still struggling to find the adequate approach to 
the vast majority of ROS-producing therapeutics that encounter 
cellular resistance and frequent disease relapse. During the past 
decade, an approach involving suppression of the internal AOD 
of cancer has attracted more attention. Within highly complex 
and intertwined AOD system, GSH and NADPH play the most 
universal and important role in determining the characteristic 
redox cellular profile. Considering that AA import and metabo-
lism seems to be upstream of these AOD systems, we have 
emphasized here the specific molecules and pathways that show 
great, but still insufficiently examined, potential for anticancer 
therapy from a redox standpoint. In conclusion, the transport 
and internal synthesis pathways for cysteine, serine, glutamine, 
and to some extent glycine appear to be the most interesting 
targets for the development of novel redox-based therapeutics. 
Targeting AA transport systems (xCT, ASCT2, and SNAT) 
is promising considering that import of these semi-essential 
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AAs are not required in normal cells, while they are absolutely 
required for cancer cell survival.
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