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Simple Summary: Gosling plague (GP), an acute, virulent infectious disease caused by goose
parvovirus (GPV), is a serious problem for livestock and poultry breeding. At present, there is
no effective treatment available. The disease is vertically transmitted in geese, and some infected
pregnant females are often recessive carriers of the virus, making it very difficult for farmers to detect
GPV in the clinical setting. Although there are many clinical testing methods for GPV, some of them
still suffered from shortcomings such as being time-consuming and labor-intensive. In this study,
gold nanoparticles were put into a conventional PCR reaction system, and the first nanoPCR reaction
was successfully established to detect infected GPV in the clinic, thus providing a practical method
for the detection of GPV clinical infection.

Abstract: Gosling plague (GP) is an acute and hemorrhagic infectious disease caused by goose
parvovirus (GPV). The goose industry suffers significant economic losses as a result of GP, which
is found to be widespread worldwide, with high rates of morbidity and mortality. Our group
developed a novel technique for detecting GPV nanoparticle-assisted polymerase chain reaction
(nanoPCR) and the characterization of its specificity and sensitivity. It was developed by using the
traditional polymerase chain reaction (PCR) and nanoparticles. The findings of this study revealed
that GPV nanoPCR products were 389 bp in length, and the lower limit of the nanoPCR assay was
4.68 × 102 copies/µL, whereas that of the conventional PCR assay was 4.68 × 104 copies/µL. A total
of 230 geese suspected of GPV were detected using nanoPCR, with a positive rate of 83.0% and a
specificity of 73%, respectively. Overall, we present a hitherto undocumented method for identifying
GPV by using nanoPCR to aid in the evaluation of subclinical illness.
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1. Introduction

Gosling plague (GP) is an infectious disease caused by the goose parvovirus (GPV),
which was first discovered in 1956 by a Chinese scientist, Dingyi Fang, who isolated the
virus in 1962 [1]. In the aftermath, the disease was named Derzsy’s disease and has been
identified worldwide. GPV epidemics were documented around the world between the
1950s and the 1980s. The clinical signs of brain atrophy, weight loss, weakness, and severe
diarrhea occur in geese under ten days of age and muscovy ducks older than two weeks [2].
The infected geese exhibit fibrinous and necrotizing enteritis and small intestinal embolism,
which are formed when the surface of the intestinal mucosa dies and falls off [3].

GPV is mainly transmitted through the secretions and excreta of sick geese [4]. The
pathological features of GPV are characterized by surface layer necrosis and the peeling of
the small intestinal mucosa, and fibrous exudates coagulating into emboli or a pseudomem-
brane wrapping around the intestinal contents [5,6]. It is important to note that GPV can
be transmitted vertically, which makes it possible for recessive adult geese with GPV to
transmit the infection to goslings through the cloaca, complicating disease control [7].
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GPV is a member of the Parvovirus genus within the Parvoviridae family, with a
genome consisting of 5106 nucleotide-long, single-stranded DNA. The coding region is
split into non-structural proteins NS1 and NS2 [8,9], and structural proteins VP1, VP2, and
VP3 [10–12]. NS1 and NS2 are important for early viral replication and gene expression
regulation in GPV. However, GPV’s capsid can adsorb cells, which significantly impacts
the virus’s pathogenicity and virulence. VP3 encodes the primary structural protein and is
the most conservative and stable of the viral capsid proteins [13,14]. Therefore, it is often
used as a target gene in genetic engineering.

Nanoparticle-assisted polymerase chain reaction (nanoPCR) incorporates gold nanopar-
ticles with diameters of less than 100 nm into a standard PCR solution to form a “nanoPCR”
reaction solution [15–17]. This technique requires no specialized or sophisticated instru-
ments. In biology, gold nanoparticles are referred to as “colloid gold” [18]. Research has
shown that gold nanoparticles’ high thermal conductivity allows PCR procedures to reach
the necessary reaction temperature more quickly. NanoPCR performed well in distinguish-
ing mismatch primers, and only 1 nm gold nanoparticles were revealed to be effective in
preventing mismatching, facilitating the development of nanoPCR in genetics [19]. Ad-
ditionally, the sensitivity and specificity were 100–1000 times greater than conventional
PCR [20]. Thus far, multiple studies have demonstrated the efficacy of nanoPCR. NanoPCR
has been used to identify preclinical infections such as porcine parvovirus (PPV) [21],
bovine respiratory syncytial virus (BRSV) [22], and human papillomavirus (HPV) [23].
However, to the best of our knowledge, the application of nanoPCR detection in GPV has
not been used.

Laboratory diagnostic approaches, such as enzyme-linked immune sorbent assay
(ELISA) [24], PCR [25], quantitative PCR (qPCR) [26], etc., have been increasingly common
in the clinical identification of GP since its occurrence. In terms of detection, some experi-
mental approaches still had drawbacks, such as being time-consuming, labor-intensive, and
having poor specificity, which made them difficult to use in clinical practice. Therefore, it is
necessary to develop a nanoPCR for the detection of GPV in goslings. This study intends
to establish GPV nanoPCR and determine its clinical detection effect by comparing it with
conventional PCR. This will have significant repercussions for the clinical prevention and
treatment of GP infectious diseases.

2. Materials and Methods
2.1. Viruses and Clinical Samples

The GPV YBYJ strain, goose paramyxovirus (GPMV), duck plague virus (DPV),
and muscovy duck parvovirus (MDPV) were all preserved by our laboratory. In total,
230 clinical samples were collected from non-immune geese suspected of GPV infection in
some goose farms in Jilin Province.

2.2. The Extraction of DNA/RNA from the Samples

Viral genomic DNA/RNA extraction kits (CWBIO, Taizhou, China) were used to
extract GPV, DPV, MDPV, and GPMV, and they were kept at−20 ◦C. A reverse transcription
kit (TaKaRa, Dalian, China) was used to synthesized cDNA (GPMV), and it was kept
at −80 ◦C.

2.3. Primer Design and Plasmid Construction

The whole-genome sequences of GPV, nGPV, and MDPV were downloaded from
GenBank, and the VP3 gene was found and compared in DNASTAR (LaserGene, USA).
The highly conserved region of the GPV-VP3 genome was determined via alignment and
by using the Oligo 6 software (Molecular Biology Insights, USA) to design primer pairs
GPV-VP3-F1/R1, TaqMan real-time primer pairs GPV-VP3-F3/R3, and TaqMan probe
GPV-P (Table 1).
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Table 1. The primers used in this study.

Primers Primer Sequences (5′–3′) Product Size (bp)

GPV-VP3-F1 CCTGGACCAGAGAGTTAGGGCCTAT
386GPV-VP3-R1 TCTGCCAAACCATTCCTGGTAAAGC

GPV-VP3-F2 CTCGAGATGGCAGAGGGAGGAG
1605GPV-VP3-R2 CGGTCGACTTACAGATTTTGAGTTAG

GPV-VP3-F3 CAACCATTGGGGAATCAGAC
121GPV-VP3-R3 TTGAATTGTTGACGTGAGATTGT

GPV-P FAM-TCTGATCCTGCGTTGTGACTTCTTTG-BHQ1

The 1603 bp GPV-VP3 gene was derived from the GPV-YBLJ strain (GenBank accession
no. JN836326.1) and amplified by the GPV-VP3-F2 and GPV-VP3-R2 primers in 20 µL
(TaKaRa, Dalian, China) at 94 ◦C for 5 min using pre-denaturation, followed by 30 cycles at
94 ◦C for 30 s, 53 ◦C for 1 min, 72 ◦C for 2 min, and finally 72 ◦C for 10 min. The reaction
was performed on a PCR machine (Bio-Rad, Hercules, CA, USA). The entire sequence of
the GPV-VP3 gene was cloned into the plasmid vector pMD19-T (TaKaRa, Dalian, China)
and multiplied in DH5α (TransGen, Beijing, China). After purification, a plasmid mini kit
(Omega, USA) was used to extract the recombinant pMD19-T-GPV-VP3 (copy quantity:
4.68 × 1010). PCR products were confirmed by sequencing.

2.4. Optimization of the Reaction Conditions of nanoPCR

pMD19-T-GPV-VP3 was used as a standard for the nanoPCR assay for the detection of
GPV. The GPV-VP3-F1 and GPV-VP3-R1 primers were used for amplification. In order to
optimize the nanoPCR reaction system, the nanoparticle diameter, nanoparticle concen-
tration, annealing temperature, template concentration, and primer concentration were
optimized. NanoPCR was carried out in a 25 µL reaction volume containing nanoparticles
(Jieyi, Shanghai, China) of varying diameters (10, 15, 20, 30, and 40 nm). We progressed
from nanoparticles with a volume of 0.6 µL to nanoparticles with a volume of 3.0 µL
after determining the nanoparticle diameter range. The annealing temperature in the PCR
machine was 50 to 60 ◦C, the plasmid template volume was 0.1 to 1.4 µL, and the primer
volume (10 µM) was 0.1 to 1.0 µL. The PCR amplification scheme was pre-denatured at
94 ◦C for 5 min, followed by 30 cycles of 94 ◦C for 30 s, 50 to 60 ◦C for 30 s, 72 ◦C for 30 s,
and a final extension at 72 ◦C for 5 min. A healthy (non-GPV-infected) gosling was used as
a negative control. The final product was electrophoresed on 1% agarose gels.

2.5. Sensitivity, Specificity, and Reproducibility Tests of nanoPCR

The pMD19-T-GPV-VP3 plasmid was used as a reference, and PCR amplifications were
performed after serial dilutions of 10 times, according to the optimal size, concentration,
and reaction conditions of the nanoPCR assay. Amplification was performed using the GPV-
VP3-F1 and GPV-VP3-R1 primers. We then compared the detection limits of nanoPCR and
conventional PCR. ddH2O was used as a negative control. Three separate experiments were
conducted at different times by different people to allow the experiments to be replicated.

Meanwhile, the specificity of the GPV nanoPCR was tested using genomic DNA from
the GPMV, DPV, and MDPV viruses, as well as ddH2O as a negative control. The product
was analyzed via 1% agarose gel electrophoresis.

2.6. Detection of GPV in Clinical Samples by nanoPCR

NanoPCR, TaqMan real-time PCR, and conventional PCR were used to screen stool
swabs or nasal swabs collected from 230 samples suspected of GPV infection in Yanbian
Korean Autonomous Prefecture from 2019 to 2022. Genomic template extraction was
performed on all samples. The swabs were stored in PBS (1:5) and evenly squeezed on the
wall of the centrifuge tube, freeze–thawed 3 times, centrifuged at 4000 r/min for 30 min,
and stored at −20 ◦C for later use.
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The TaqMan real-time PCR detection was carried out according to the reaction system
optimized in the previous stage of our research group [27]. The positive samples were
subjected to sequencing. A phylogenetic tree was constructed to compare and assess the
published sequences, including nGPV and MDPV, to determine the specificity of nanoPCR
and the current prevalence of GPV in China. Summary statistics for these sequences are
shown in Table S1. The MEGA 6.0 software (Mega Limited, Auckland, New Zealand)
utilized the maximum likelihood method (Poisson model) and 1000 bootstrap repetitions
to perform a phylogenetic analysis.

3. Results
3.1. Optimization of nanoPCR

For nanoPCR, the diameter and concentration of nanoparticles were optimized. When
the concentration was 0.4 mM, and the diameter was 30 nm, the optimal effect and bands
were obtained (Figure 1).
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Figure 1. Optimization of diameter (a) and concentration (b) of nanoparticles: (a) Lane M, DL 2000
Marker; Lane 1, negative control; Lanes 2–6, 10, 15, 20, 30, and 40 nm; (b) Lane M, DL 2000 Marker;
Lane 1, negative control; Lanes 2–6, 0.1, 0.2, 0.3, 0.4, and 0.5 mM.

The F1 and R1 primers were used to establish the reaction between nanoPCR and
conventional PCR. For the best results, all conditions were standardized. The final product
was 389 bp, the ideal primer concentration was 0.40 µM (0.8 µL), the plasmid was 20 ng
(1.0 µL), and the annealing temperature was 53.7 ◦C, according to the data (Figure 2).
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3.2. Sensitivity of nanoPCR

In order to test the sensitivity of nanoPCR, different quantities of plasmids were
used as positive templates for conventional PCR and nanoPCR reactions. The standard
concentration of the pMD19-T-GPV-VP3 plasmid was 4.68 × 1010 copies/µL, and the
concentration was serially diluted to 4.68 copies/µL. The results showed that the detection
limit of nanoPCR was 1/100 that of the conventional PCR assay (Figure 3). The same results
were obtained by different operators.
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3.3. Specificity of nanoPCR

According to the gel electrophoresis results, nanoPCR could specifically amplify GPV
but not GMPV, DPV, or MDPV (the concentration was 20, 18, 22, and 25 ng/µL), suggesting
that nanoPCR has excellent specificity for the detection of GPV (Figure 4).
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3.4. GPV Detection in Clinical Samples and Phylogenetic Analysis

The swabs from 230 samples suspected of GPV infection were tested using nanoPCR,
TaqMan real-time PCR, and conventional PCR (Figure 5). Among the 230 samples analyzed,
191 samples tested positive using both nanoPCR and TaqMan real-time PCR (83.0%), and
174 samples were positive using conventional PCR (75.6%). Approximately 14 samples
were negative using the conventional PCR assay but positive using nanoPCR, with a
relative specificity of 73% (Table S2). However, no nanoPCR-negative samples were found
to be positive using conventional PCR. For clinical samples, both nanoPCR and TaqMan
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real-time PCR had superior specificity and sensitivity to conventional PCR. Based on the
sequence analysis, it was found that the nanoPCR amplification products and the reference
GPV sequences were identical.
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Phylogenetic trees were constructed using 32 complete VP3 gene sequences of GPV,
MDPV, and nGPV from GenBank (Figure 6). The results showed that the cases collected
from goose farms in Jilin Province were closely related to GPV-YBLJ, GPV-CH/HLJ01/08,
and GPV-GDFsh, suggesting they were from the same cluster. However, there are still
GPV strains isolated in China that do not belong to the same evolutionary branch as the
clinical sample, implying that the GPV strains in China have genetic variations. Some of the
sequences in the clinical trials have been aligned with the sequences of nGPV and MDPV
obtained from GenBank (Figure S1). Nonetheless, there is currently no epidemic nGPV
variant in this region.
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Figure 6. Phylogenetic analysis of GPV with other viruses based on the VP3 nucleotide sequences:
(a) neighbor-Joining (N–J) method; (b) maximum likelihood (M–L) method. The phylogenetic tree
was based on the complete VP3 sequences of GPV, together with GPV, nGPV, and MDPV. Nucleotide
sequences were analyzed using the MEGA 6.0 software with a bootstrap test of 1000 replicates. The
clades were used to differentiate between the different strains. The substitution model was HKY+G.
The diamond-shaped icons (u) were the clinical samples in this study.

4. Discussion

The frequency of GPV reports from mainland China, Chinese Taiwan [28], Turkey [29],
and other Asian countries [30,31] has increased since GP was identified in China four
decades ago. GPV poses a threat to the gosling and geese industries [32]. Despite the
availability of commercial vaccines and high-immune serum [33], there are still fatalities
associated with GPV-related deaths. The difficulty of early clinical diagnosis in the breeding
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sector is further compounded by the fact that the GPV can disguise itself as a concealed virus
carried by geese after an outbreak [34,35]. GPV must be detected quickly and accurately so
that it can be diagnosed and prevented.

The traditional laboratory diagnosis of GPV infection uses serological, pathological,
and molecular methods. In previous studies, Kisary employed goose and muscovy embryos
to isolate and identify GPV [36]. Despite this, early clinical diagnosis is impossible due to
the inconvenience of the experimental setting and the complexity of the procedure. To detect
GPV, She et al. developed an agar diffusion method [37]. Due to its low sensitivity and
specificity, it was not suitable for mixed infection samples. Gene amplification technology
is a popular method for the early detection of GP. To detect GPV, LAMP, SYBR Green I,
LC Green, and TaqMan probes are commonly employed [38–40]. Due to these limitations,
it is difficult to promote the aquaculture clinical diagnosis with these approaches, which
often involve complicated primer designs and expensive equipment and are susceptible
to template contamination. For the early detection of the disease in animals, conventional
PCR can be employed [41–43], although its sensitivity and specificity are significantly lower
than real-time PCR. Traditional PCR has not been widely used due to poor specificity and
sensitivity. In this study, gold nanoparticles were added to the PCR system as a means of
developing a very sensitive and specific nanoPCR method for the detection of GPV.

The nanoPCR method has been used to detect parvoviruses such as PPV [21], mink
enteritis virus (MEV) [44], and canine parvovirus (CPV) [45]. NanoPCR has been widely
used and supported by farmers. However, a GPV nanoPCR assay has yet to be developed.
Using a conventional plasmid and 10-fold dilution, nanoPCR amplification was used
to amplify the highly conserved portion of the GPV-VP3 gene. When compared with
immunochromatography combined with colloidal gold particles, the detection performance
of nanoPCR was greater because it could distinguish between viral infections of various
types [46]. NanoPCR, for example, is 100 times more sensitive than conventional PCR, so
it might be useful for detecting early infections. It was shown in this experiment that the
detection limits of nanoPCR were 100 times more sensitive than those of conventional PCR
in terms of detection. However, it was discovered throughout the clinical experiment that
the TaqMan real-time PCR technology had high sample requirements and that even a small
amount of pollution might cause errors in the detection of the samples [47]. Therefore, this
approach is not suitable for clinical testing.

In Jilin Province, an agricultural region in northeast China, chicken products are
in high demand. Poultry farming is also a significant source of income in this region.
The adoption of nanoPCR is critical for preventing GPV prevalence and infection. This
experiment was carried out on 230 samples from different goose farms in Yanbian Korean
Autonomous Prefecture, Jilin Province, suspected of being infected with GPV. A total of
191 positive samples were found, with an 83.0% GPV detection rate. The conventional PCR
assay yielded a 75.6% positive result rate for GPV. Based on gene sequencing, sequence
alignments, and phylogenetic trees, we found that the detection success rate of nanoPCR
was quite high. As evidenced by these findings, nanoPCR can be used in clinical settings.

In the current study, we developed GPV-VP3 specific primers for nanoPCR detection
by comparing the GPV genomic sequences in GenBank and screening its conservative
sequence region, which is 100 times more sensitive than conventional PCR. The ideal
nanoparticle volume was 2.4 µL, with a diameter of 30 nm. Most importantly, this is the
first report on nanoPCR technology for GPV detection. In this study, we explored how
nanoPCR was introduced as a technique that can be used in virology.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/vetsci9090460/s1, Figure S1: Nucleotide sequence alignment of
clinical samples, nGPV, and MDPV sequences; Table S1: The GPV-VP3 sequences and the GenBank
accession numbers were used in this investigation; Table S2: Statistics on GPV infection in Yanbian
Korean Autonomous Prefecture from 2019 to 2022.
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