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Abstract

Objective: To validate deep learning models’ ability to predict post-transplantation major adverse 

cardiovascular events (MACE) in patients undergoing liver transplantation (LT).

Patients and Methods: We used data from Optum’s de-identified Clinformatics Data Mart 

Database to identify liver transplant recipients between January 2007 and March 2020. To predict 

post-transplantation MACE risk, we considered patients’ demographics characteristics, diagnoses, 

medications, and procedural data recorded back to 3 years before the LT procedure date (index 

date). MACE is predicted using the bidirectional gated recurrent units (BiGRU) deep learning 

model in different prediction interval lengths up to 5 years after the index date. In total, 18,304 

liver transplant recipients (mean age, 57.4 years [SD, 12.76]; 7158 [39.1%] women) were used to 

develop and test the deep learning model’s performance against other baseline machine learning 

models. Models were optimized using 5-fold cross-validation on 80% of the cohort, and model 

performance was evaluated on the remaining 20% using the area under the receiver operating 

characteristic curve (AUC-ROC) and the area under the precision-recall curve (AUC-PR).
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Results: Using different prediction intervals after the index date, the top-performing model was 

the deep learning model, BiGRU, and achieved an AUC-ROC of 0.841 (95% CI, 0.822–0.862) and 

AUC-PR of 0.578 (95% CI, 0.537–0.621) for a 30-day prediction interval after LT.

Conclusion: Using longitudinal claims data, deep learning models can efficiently predict MACE 

after LT, assisting clinicians in identifying high-risk candidates for further risk stratification 

or other management strategies to improve transplant outcomes based on important features 

identified by the model.

GRAPHICAL ABSTRACT

Cardiovascular disease has become the primary cause of early mortality after liver 

transplantation (LT) in the United States, overtaking infections and graft failures.1–8 

Nowadays, liver transplant candidates tend to be older and present more cardiovascular 

comorbidities, mainly owing to the increasing prevalence of metabolic dysfunction-

associated steatohepatitis (MASH) as the top indication for LT.1,9 Accurate assessment 

of cardiovascular risks after LT is essential for optimal resource allocation and improved 

clinical outcomes. Current noninvasive tests, such as dobutamine stress echocardiography 

and nuclear medicine cardiac perfusion tests, demonstrate low sensitivity and specificity 

in diagnosing subclinical coronary and myocardial disease in cirrhotic patients.3–5 Altered 

hemodynamics during LT can reveal hidden cardiovascular diseases either intraoperatively 

or immediately postoperatively.4 Despite comprehensive preoperative evaluation, early 

cardiovascular death rates post-LT are 4 times higher than those in other high-risk 

noncardiac operations.10

Major adverse cardiovascular events (MACE), such as myocardial infarction, atrial 

fibrillation, pulmonary embolism, heart failure, cardiac arrest, and stroke, substantially 

contribute to morbidity and mortality after LT.1,9,11 Several risk factors for unfavorable 

cardiovascular outcomes post-LT have been identified, including age, left ventricular 

hypertrophy, high blood pressure, dyslipidemia, tobacco use, a family history of coronary 

artery disease (CAD), MASH, and diabetes.1–6,12 Risk stratification using these factors can 

help pinpoint high-risk patients for post-transplant cardiovascular complications, subjecting 

them to more invasive tests such as cardiac catheterization.3,12 Moreover, identifying and 

risk-stratifying the patients susceptible to these life-threatening cardiovascular complications 

would help physicians plan preventive care and therapy, maximizing quality of life post-

transplantation.1,3 The wealth of patient information before transplantation provided by 

large-scale electronic health records, such as claim data, can greatly benefit the prediction of 

post-LT complications.
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In this study, we aimed to develop and validate the predictive capabilities of machine 

learning algorithms, particularly deep learning models, for identifying individuals at risk 

of MACE after LT. This enables physicians to take preventive measures to reduce the 

likelihood of such complications occurring.

METHODS

Patients and Study Design

This study used Optum’s deidentified Clinformatics Data Mart Database,13 being derived 

from a large, adjudicated claim data warehouse. We conducted a retrospective analysis 

using insurance claims for 22,522 liver transplant recipients between January 2007 

and March 2020. The Clinformatics Data Mart was queried for information including 

diagnoses, procedures, medications, and demographic characteristics, before and after the 

LT index date, defined as the day a patient underwent LT. The search criteria to retrieve 

the patient cohort can be found in Supplemental Table 1 (available online at https://

www.mcpdigitalhealth.org/). In total, 1106 patients were excluded to ensure that all patients 

in this study were adults (18 years or older) at the time of the index date. Eight more patients 

were also excluded owing to missing gender information. Of the 21,416 patients deemed 

eligible for the study, 3112 patients were later removed owing to a lack of claim records 

before the LT index date. As a result, the final study cohort consisted of 18,304 patients 

(Figure 1A).

In the final patient cohort, we marked the date of the first diagnosis of any of the 6 

MACE—heart failure, atrial fibrillation, stroke, pulmonary embolism, myocardial infarction, 

or cardiac arrest—for each patient, as the event date if occurred within 5 years after 

the index date. The definition of these major adverse cardiovascular complications 

using both the International Classification of Diseases, ninth revision (ICD-9) and tenth 

revision (ICD-10) codes can be found in Supplemental Table 2 (available online at https://

www.mcpdigitalhealth.org/). The number of patients who experienced each of the 6 MACE 

in the cohort during these 5 years is depicted in the bar plot in Supplemental Figure 1 

(available online at https://www.mcpdigitalhealth.org/). It should be noted that some patients 

experienced 1 or more of the 6 MACE after the LT on the same or different dates. The event 

date of interest in this study was the date of the first MACE.

Primary Study Outcome

The primary outcome of the study was the prediction of whether patients will develop any of 

the MACE within 4 different time intervals (30 days and 1, 3, and 5 years) after receiving an 

LT.

Deep Learning Models and Prediction Performance Evaluation

To leverage the power of deep learning sequence models and capture clinically relevant 

scenarios, we aggregated the occurrence of any medical concept over a predetermined time 

interval (eg, 15 days, 1 month, or 3 months) across a 3-year observation window before the 

LT index date as shown in the study design diagram (Figure 1B). This was done because 

insurance claims for these medical concepts can be filed at any time during the observation 
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window and are not always coexisting. The figure also shows the index date, which is 

marked as day 0. MACE was modeled in our study using several prediction window sizes, 

all starting at the index date. The prediction windows used to test our models in different 

scenarios are 0–30 days, 0–1 year, 0–3 years, and 0–5 years.

Model Architecture

The deep learning model used in this study was the bidirectional gated recurrent unit 

(BiGRU) model, a type of sequence-processing models.14 BiGRUs are well suited for 

learning meaningful representations from sequence data during training because they 

consider the temporal dependence between the current input data at a particular time 

and its previous and subsequent counterparts. For our MACE prediction task, we 

compared BiGRU’s performance against 3 traditional machine learning algorithms: logistic 

regression, random forest, and light gradient-boosting machine. Further information on 

the data preparation and implementation details for the BiGRU model and the machine 

learning models can be found in Supplemental Table 3 (available online at https://

www.mcpdigitalhealth.org/).

Data Selection and Training

The dataset was randomly divided into a training set consisting of 80% of the patient cohort 

and a test set consisting of 20% of the patient cohort for each of the 4 prediction scenarios. 

Within each subset, the balance between the positive (MACE) and negative (NO_MACE) 

classes was maintained. This test set was held out for final validation and comparison of 

all models’ performance. Hyperparameter tuning of the models was done using a stratified 

5-fold cross-validation procedure on the training set. The best-performing model was then 

chosen and retrained on the entire training set before being tested on the test set. More 

details about the whole process are shown in Supplemental Figure 2 (available online at 

https://www.mcpdigitalhealth.org/).

Model Evaluation

The performance of the deep learning model on the test data set was compared with other 

machine learning models using the area under the receiver operating curve (AUC-ROC) 

and the area under the precision-recall curve (AUC-PR). In imbalanced datasets where the 

number of positive class samples is much lower than the number of negative class samples, 

AUC-PR can be the more useful performance measure because it is an indicator of how well 

the model can handle the positive samples. Bootstrapping was used to resample the test data 

set 500 times with replacement, 95% CIs were calculated, and the lowest and highest metrics 

values were reported.

Our deep learning model was also used to generate a list of ranked features by importance, 

with weights indicating how significantly each feature contributed to MACE prediction. 

This was achieved through the integrated gradient,15 an interpretability or explainability 

technique for deep neural networks. Using this technique, we were able to provide a 

comprehensive ranking for all input features that contributed to the model prediction for 

the entire test set.
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RESULTS

Patient Characteristics

The baseline characteristics of the patient cohort are summarized in Table 1. Of the patients 

with MACE, 37.7% were females (n=2436) and 62.3% males (n=4025); in contrast, patients 

without MACE comprised 39.9% females (n=4722) and 60.1% males (n=7121). Patients 

with MACE exhibited a higher prevalence of elevated body mass index (12.2%, n=791) 

than those without MACE (8.5%, n=1011), increased smoking rates (24.9% vs. 17.4%), and 

marked differences in diabetes, CAD, hypertension, myocardial infarction history, peripheral 

vascular disease, dyslipidemia, previous strokes, pulmonary hypertension, alcohol misuse, 

and MASH. It is worth noting that the number of patients with and without MACE varied 

across the 4 prediction windows of testing scenarios as shown in Supplemental Figure 

3 (available online at https://www.mcpdigitalhealth.org/). In our study, we examined the 

incidence of MACE up to 5 years post-transplantation, whereas most studies focused on 

30 days, 90 days, 4 months, and 1 year post-transplantation. Table 1 reports that 35.3% 

(n=6461) of liver transplant recipients experienced MACE, which was higher than the 

incidence reported in the studies we reviewed.

Prediction Performance of the Deep Learning Model Compared With Baseline Machine 
Learning Models

Table 2 displays the prediction performance metrics of the BiGRU deep learning model and 

3 machine learning models for each of the 4 prediction scenarios. The input data for the 

BiGRU model were aggregated as a sequence of feature vectors every 15 days. The BiGRU 

model performed better than the 3 baseline models in all 4 testing scenarios except the 

0- to 3-year scenario, where the light gradient-boosting machine model achieved a higher 

AUC-PR of 0.646 (0.62–0.673) than that of the BiGRU model (0.639 [0.613–0.661]).

Furthermore, we observed that the BiGRU model achieved the best AUC-ROC value in the 

0- to 30-day testing scenario. This indicates that, when compared with longer prediction 

intervals, the model performed best in predicting MACE occurrence within the first 30 

days post-LT. However, the AUC-PR values for the 0- to 1-year, 0- to 3-year, and 0- to 

5-year testing scenarios, where the imbalance between the number of patients in MACE and 

NO_MACE groups decreased (Supplemental Figure 3), were found to be better than those 

for the 0- to 30-day scenario. Figure 2 shows the receiver operating characteristic and the 

precision-recall curves for the 4 models in the 0- to 30-day testing scenario. The curves 

emphasize that the deep learning model outperformed the baseline machine learning models 

for predicting MACE within the first 30 days after LT. Furthermore, the deep learning model 

obtained the best AUC-PR value (0.578), indicating that it was the best at addressing the 

imbalance between the number of patients with MACE and those without MACE in the test 

set.

To provide an interpretable model, rankings of the pre-transplant diagnosis and medication 

features for predicting MACE using the top-performing BiGRU model in the 0- to 30-day 

interval were calculated. Figure 3 shows the top 15 MACE predictors ranked by relevance in 

descending order for diagnoses and medications.
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DISCUSSION

This study validated a deep learning model using pre-transplant data to predict MACE 

post-LT, analyzing over 20,000 patients with 6000þ MACE cases. It demonstrated the 

model’s efficiency in forecasting short-term and long-term cardiovascular issues. Using 

extensive electronic health record data sets, including claims data, enhances post-transplant 

complication predictions by providing comprehensive pre-transplant patient information. 

The study sourced data from Optum’s de-identified Clinformatics Data Mart Database, 

allowing broad analysis beyond single institutions. It highlighted the effectiveness of 

machine learning, especially deep learning, in handling large, complex datasets without 

extensive feature selection, using techniques like recurrent neural networks to explore 

temporal data and reveal critical clinical correlations.

Machine learning, especially neural networks, aids liver disease research, covering pre-

transplant predictions (waitlist outcomes and hepatic steatosis), liver segmentation, graft 

allocation, and posttransplant forecasts (survival, rejection, failure, and postoperative 

risks).16,17

This pioneering model forecasts short-term and long-term MACE post-LT, using 

comprehensive pre-transplant data (age, gender, diagnoses, medications, and procedures). 

Leveraging patient claims, it proves deep learning’s efficiency in predicting MACE and 

identifying key risk factors for transplant candidates.

Multiple studies have been published to provide predictive information for MACE after 

LT, with 4 papers using single-center data and 2 publications using large national sample 

databases.1,6,18–20 However, the main limitation of single-center data is the small sample 

size, limited generalizability, and lack of calibration and status stick reporting.

Studies using large national data are limited by the assumption of linear correlation between 

pre-LT predictive variables and output variables, independence of predictive variables, 

dependence on a small number of selected predictors owing to concerns of over-fitting, 

and reliance on traditional statistical models such as logistic regression.21–23

Northwestern University’s study introduced the CAR-OLT score to estimate cardiovascular 

risks post-LT, highlighting its effectiveness yet noting limitations.6 CAR-OLT, confined 

to a year’s post-LT risk assessment, contrasts with our deep learning model, extending 

predictions to 5 years. The model’s reliance on the top 3 discharge codes for its risk 

equation might underrepresent cardiovascular complications. In addition, being limited to 

Northwestern Medicine hospitals could omit broader cardiovascular event data. The study’s 

focus on a single center may also skew results toward specific practices and patient 

demographic characteristics. Furthermore, our investigation encompassed 2 alternative 

prediction models, broadening the scope of risk assessment tools in this field. Umphrey 

et al19 created a model that used the percentage of maximum predicted heart rate and 

the rate pressure obtained during dobutamine stress echocardiographic along with model 

for end-stage liver disease score to predict cardiovascular events up to 4 months post-

transplantation.19 The study’s main limitations are the small cohort of patients studied, the 

short posttransplant follow-up period, and the external validation required. Josefsson et al18 
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developed a score consisting of pre-transplant renal impairment, prolonged QTc interval, 

and older age, which would help identify the need for extensive cardiac testing in liver 

transplant candidates. The small sample size and the need for external validation are the 

study’s main limitations.

We verified previously published high-risk factors associated with MACE, including age, 

gender, body mass index, smoking, diabetes, a history of CAD, hypertension, previous 

myocardial infarction, peripheral vascular disease, dyslipidemia, previous stroke, pulmonary 

hypertension, alcohol abuse, and MASH.1,6,18–20 Our study stands out by examining a 

comprehensive set of clinical risk factors not collectively analyzed in previous research, with 

a notably larger patient cohort.18,19

We explored the BiGRU deep learning model and 3 machine learning models, assessing 

different observation windows (1 and 2 years) and aggregation intervals (1 and 3 months). 

Narrower observation windows with larger aggregation intervals degraded performance. 

Unlike previous models built on selected variables for cardiovascular risk or MACE 

prediction post-LT, we used all available pre-transplant data, avoiding selective bias. For 

instance, a study used 35 variables to assess machine learning models for MACE prediction 

in liver transplant patients, where XGBoost reported the best AUC-ROC of 0.71 (0.63–

0.79).23 Another study used up to 190 variables for deep learning models to predict fatal 

post-LT complications, achieving an AUC-ROC of 0.807 (0.795–0.842) for 1-year and 

0.722 (0.705–0.764) for 5-year predictions.21 Our approach leverages the full spectrum of 

pretransplant data, maximizing deep learning’s potential with high-dimensional datasets.

To interpret our deep learning model’s findings, we pinpointed key MACE predictors post-

LT (Figure 3). Using a relative contribution score, we assessed the importance of each 

predictor within the model. The process begins by determining each predictor’s absolute 

importance through its cumulative impact across the testing set. This importance is then 

normalized to a relative score, capped at 1, through minimum-maximum normalization. 

Subsequently, predictors related to MACE diagnoses and medications are ranked by their 

contribution. It is important to note that these scores indicate the strength of the predictor’s 

association with MACE but not the direction (positive or negative) of the association. Key 

pre-transplant factors linked to MACE within the first 30 days post-LT include shortness 

of breath, end-stage renal disease, essential hypertension, and hepatic failure without 

coma, along with medications such as furosemide, warfarin, acetaminophen, spironolactone, 

and pantoprazole. Warfarin use, often related to atrial fibrillation or thrombosis history, 

and the prescription of diuretics for fluid management in cirrhosis or heart failure are 

noteworthy. The connection of acetaminophen and pantoprazole with MACE requires 

further exploration. These insights underscore the importance of monitoring specific 

conditions and medications to effectively manage MACE risks in the critical initial post-LT 

phase.

The strengths of this study include the use of a large patient population and a machine 

learning model that uses all available patient data as predictors for MACE without the 

need for expert feature selection. Our model can predict not only short-term but also long-

term cardiovascular complications whereas not being restricted to one hospital or member 
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hospitals. Deep learning can identify complex relationships between high-dimensional data, 

which can help model complex multivariate functions. Furthermore, sequence-based deep 

learning models can leverage longitudinal data to learn temporal dependencies between 

the input variables (features) which can result in improved performance. To compensate 

for the lack of external validation, we established 2 levels of internal validation. The 

first level used 5-fold cross-validation using 80% of the cohort. At the second level, the 

model was validated using a completely independent test set comprising 20% of the cohort. 

Finally, using pre-transplantation longitudinal data, we created an interpretable model and 

were able to explore the most important input variables (in both categories, diagnoses, and 

medications) for predicting MACE after LT.

However, it is important to acknowledge the limitations of our study. First, we encountered 

common problems related to the quality of the dataset, including the presence of incorrect 

or missing data such as patient phenotypes and LT-related information such as ischemia/

reperfusion time, operation time, quality of donor graft, and severity of liver disease (eg, 

model for end-stage liver disease [MELD] score). These issues may have introduced some 

degree of noise or bias into our analysis. We also acknowledge the intricacies posed by 

conflicting risks, such as organ rejection or recurrence of liver disease, which can impact the 

interpretation of MACE occurrences post-LT. In addition, our study is retrospective in nature 

and focused exclusively on pre-transplantation variables to predict post-transplantation 

MACE. Given the crucial nature of the operation and the chance of MACE occurring on 

the same day, we decided to align our prediction intervals with the day of LT. However, 

this approach restricts the consideration of post-transplant variables that could potentially 

influence MACE outcomes. Although we recognize the importance of testing our model’s 

generalizability on a different dataset, our model has not been externally validated owing to 

a lack of accessibility. We attempted to address this limitation by implementing 2 levels of 

internal validation in our study design. Nevertheless, since our model uses standard coded 

pre-transplant variables, similar datasets could be easily adapted for validation without the 

need for retraining the model.

CONCLUSION

This study presented compelling evidence supporting the use of deep learning models as a 

risk-stratifying tool for predicting MACE in transplant recipients using pre-transplantation 

longitudinal claim data. Our findings indicate that leveraging all available patient data 

as predictors for MACE eliminates the need for expert feature selection to prespecify a 

certain set of features. This approach has the potential to aid clinicians in identifying 

high-risk transplant recipients and developing targeted interventions to reduce MACE. The 

study’s results contribute to the growing body of knowledge in this field and have practical 

implications for improving patient care and outcomes in the transplantation setting.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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CAD coronary artery disease

LT liver transplantation

MACE major adverse cardiovascular events

MASH metabolic dysfunction-associated steatohepatitis
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FIGURE 1. 
Study design: (A) Cohort construction. (B) The study design diagram showing the 

aggregation of medical concepts before the index date. The study’s objective is shown 

as well: to predict the first MACE within a defined prediction window after liver 

transplantation. MACE, major adverse cardiovascular event.
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FIGURE 2. 
Performance comparisons of the deep learning model and other machine learning models 

for major adverse cardiovascular event prediction in the 0- to 30-day interval. The blue line 

is used to show the performance of the bidirectional gated recurrent units (BiGRU) model; 

the orange line for the LGBM model; the green line for the random forest; and the red 

line for the logistic regression. (A) Comparison of the models’ areas under the receiver 

operating characteristic curves (AUC-ROCs). (B) Comparison of the models’ areas under 

the precision-recall curves (AUC-PR).
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FIGURE 3. 
Ranking by importance of the top 15 predictors (diagnoses and medications) for major 

adverse cardiovascular event prediction using the bidirectional gated recurrent units 

bidirectional gated recurrent unit deep learning model in the 0- to 30-day interval. (A) 

Top-ranked diagnoses. (B) Top-ranked medications.
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