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Obesity is a fast growing epidemic event worldwide. Fatness is associated with a num-
ber of comorbidities, including cardiovascular diseases (CVDs). Although obesity can be 
heredity in 30–70% cases, the environmental contributions also play an important role in 
the increasing prevalence of obesity. The relationship between development of obesity 
and CVD is poorly characterized. Obesity and CVD can also be resulted from a common 
mechanism such as metabolic, inflammatory, and neurohormonal changes. Prokineticins 
are defined as cytokines (immunoregulatory proteins), adipokines (adipocyte-secreted 
hormone), angiogenic (increasing vessel formation), or aneroxic (lowering food intake) 
hormones. Prokineticin-mediated signaling plays a key role in the development of obesity 
and CVD. Two forms of prokineticins exist in circulation and in various tissues including 
the brain, heart, kidney, and adipose. Prokineticins act on the two G protein-coupled 
receptors, namely, PKR1 and PKR2. Prokineticin-2 (PK2) via PKR1 receptor controls 
food intake and prevents adipose tissue expansion. The anti-adipocyte effect of PKR1 
signaling is due to suppression of preadipocyte proliferation and differentiation capacity 
into adipocytes. PK2/PKR1 signaling promotes transcapillary passages of insulin and 
increases insulin sensitivity. It also plays an important role in the heart and kidney devel-
opment and functions. Here, we discuss PK2 as a new adipocytokine in the association 
between obesity and CVD. We also highlight targeting PKR1 can be a new approach to 
treat obesity and CVD.
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inTRODUCTiOn

Obesity is a major health problem in worldwide regardless of sex and age (1). It is both an inde-
pendent risk factor and a risk marker for the development of asymptomatic and symptomatic 
cardiovascular disease (CVD) (2). Common pathways may involve in the pathogenesis of obesity 
and CVD. Indeed, CVD can occur due to structural and functional changes of the myocardium 
through excess fat deposition and constant and unremitting metabolic stress related to obesity (2). 
Interestingly, anti-obesity therapies with anorexic peptides improve cardiovascular function and 
reduce cardiovascular morbidity and mortality (3). Recent evident showed that some brain regions 
is involved in food intake regulation and also play an important role in regulation of cardiovascular-
blood homeostasis (4). Therefore, it is important to delineate the common mechanisms regulating 
both obesity and cardiovascular events for development of novel therapeutics. Here, we outlined the 
current information on the role of anorexic and angiogenic peptide prokineticin signaling in obesity 
and CV-renal diseases.
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PROKineTiCinS AnD THeiR ReCePTORS

Prokineticins are released by monocytes, macrophages, and 
reproductive organs (5). A high level of prokineticins has been 
found in obese human AT (6), as well as heart and kidney (7, 8).  
Two isoforms of prokineticins have been identified: prokineticin- 
1 and prokineticin-2 (PK2).

PK2 iS An AnOReXiC PePTiDe

The regulation of food intake is a complex process involving 
reciprocal signals between the central nervous system and the 
periphery. The region in the hypothalamus governing a feeding 
and energy homeostasis is called as arcuate nucleus (ARC). The 
ARC contains primary neurons that express neuropeptides with 
opposing effects on food intake. ARC neurons release anorexic 
peptide such as the proopiomelanocortin (POMC)-derived 
peptide, alpha-melanocyte-stimulating hormone, and cocaine, 
amphetamine-regulated transcript (CART) peptide (9). However, 
in the ARC, neuropeptide Y (NPY)-producing neurons have 
been shown to stimulate food intake.

Prokineticin-2 controls food intake and fat tissue expansion 
through actions in the ARC in the hypothalamus (10). Mainly, 
PKR1 receptors are expressed in the NPY/AgRP and POMC/
CART neurons. Intracranial injection of PK2 in rats abolishes 
food intake, whereas anti-PK2 antibody increases food intake. 
Anorexic effect of PK2 is mediated at least partly via the hypo-
thalamic ARC melanocortin system. Indeed, PKR1 is the first 
non-melanocortin G protein-coupled receptors to be regulated 
by the melanocortin receptor accessory protein 2 that inhibits 
specifically PKR1 signaling (11).

Peripheral administration of PK2 reduces food intake and body 
weight in both lean mice and diet-induced obesity models (12). 
Global ablation of PK2 in mice leads to obesity. Hypothalamic 
PK2 levels were found extremely high in the early neonatal 
period. However, a low level of PK2 was observed under fasting 
conditions (13). The inactivating mutations of PK2 gene and the 
obesity have been correlated in human (12, 14). Anorexic effect 
of PK2 was completely absent in the PKR1 deficient mice (12), 
indicating that the anorexic effects of PK2 are mediated by PKR1 
in the hypothalamus.

PROKineTiCin in OBeSiTY

Obesity can be resulted from adipocyte hypoplasia/hyperthrophy 
accompanied with inflammation of AT, defective of extracellular 
matrix remodeling, fibrosis, and an altered secretion or expression 
of adipokines (15). PK2 releases from AT in obese individuals; 
however, it suppresses AT expansion by two distinct mechanisms: 
the central regulation of food intake and limiting preadipocyte 
function.

In isolated preadipocytes, PKR1 activation suppresses prolif-
eration and adipogenic differentiation (6). Indeed, an abnormally 
excessive abdominal fat mass accumulation was observed in 
adipose tissue-specific PKR1-deficient (PKR1ad−/−) mice (6). 
The expansion of AT in both PKR1 null and PKR1ad−/− mice 
was due to formation of new adipocytes. These mice displayed 

an acceleration of preadipocyte proliferation and differentiation. 
Despite PKR1null and PKR1ad−/− mice display abdominal obesity, 
only PKR1null mice have peripheral obesity with a diabetes-like 
syndrome (6). Thus, non-adipocyte PKR1-mediated events may 
contribute to the development of a diabetes-like syndrome. 
Angiogenesis has important roles in the modulation of insulin 
sensitivity and expansion of AT (16). Indeed, endothelial-specific 
PKR1 knockout mice (PKR1ec−/−) had insulin resistance in adipo-
cytes (17). Insulin cannot promote normal fat storage, resulting in 
excess circulating free fatty acids that, in turn, further contribute 
into insulin resistance in muscle, leading to diabetes-like syn-
drome in PKR1ec−/− adipocytes.

The expansion of AT in obesity is also required a shift in the polar-
ized states of macrophages from the M2 to the pro-inflammatory  
M1 form (18). PK2 promotes inflammatory phenotype of mouse 
macrophages (19) and reduces IL-10 and IL-4 production in 
mice splenocytes (20). In contrast, PKR1ad−/− mice displayed 
substantial infiltration of macrophage in the AT. Whether PKR1 
signaling retains an M2 polarization, or triggers the phenotypic 
switch from M1 to M2 to preserve adequate adipocyte function 
in obesity is unknown.

PROKineTiCin in inSULin ReSiSTAnCe

The transcapillary delivery of insulin from endothelial cells (ECs) 
to the skeletal muscle is the rate-limiting step in insulin-stimulated  
glucose uptake (21). The defect in insulin delivery process via 
ECs contributes to insulin resistance (22). Thus, the vascular 
endothelium is considered as a potential therapeutic target for 
prevention of insulin resistance and related complications (23).

Endothelial cell-specific PKR1 knockout (PKR1ec−/−) mice 
exhibited impaired capillary formation and low transcapillary 
insulin uptake, which was rescued by PKR1 gene transfection by 
adenovirus (17). Overexpressing PKR1 in EC promotes insulin 
transendothelial uptake (24) and angiogenesis (25). These data 
highlight the role of PKR1 as a positive regulator of insulin uptake 
(26). In concert with this in vitro finding, PKR1ec−/− mice exhibit 
hyperphagia and severe lipodystrophy due to poor capillary 
formation in the AT. Lipodystrophies, involving a loss of AT, are 
known to induce hyperphagia and peripheral insulin resistance 
(27). Impaired insulin delivery and signaling in ECs have also 
been observed in human patients with type 2 diabetes and obesity 
with insulin resistance (28).

Therapeutic strategies targeting PKR1 could be important 
to treat obesity and obesity-associated insulin resistance, since 
PKR1 signaling suppresses appetite, reduces adipocyte expansion, 
promotes normal fat storage, and increases insulin sensitivity.

PROKineTiCin in HeART DeveLOPMenT 
AnD FUnCTiOn

PKR1 regulates epicardial–mesenchymal transition to form 
epicardial-derived progenitor cell (EPDC) during cardiogenesis 
(29). Genetic ablation of PKR1 in epicardium (PKR1wt1−/−) leads to 
a ventricular hypoplasia, septal defects, and deficient vasculariza-
tion, leading to embryonic lethality. Epicardial PKR1 contributes 
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FiGURe 1 | Prokineticin-2 (PK2)/PKR1 signaling may act as a new connector between development of obesity, diabetes and cardiovascular diseases 
(CvDs). PKR1 deficiency promotes WAT expansion and insulin resistance, CVD, and alters food intake in mice. Whether reduced level of PKR1 or functional 
mutated PKR1 involves these disorders in human needs to be studied. PK2/PKR1 signaling in central nervous system (CNS) regulates food intake. PK2 released 
from adipocytes controls preadipocyte conversion to adipocyte via PKR1 signaling and may affect food intake via CNS. Circulating or local PK2 signaling via PKR1 
contributes development and function of heart and kidney. Whether this signaling involves heart and kidney regulation via CNS remains to be study.
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to cardiomyocyte proliferation in a paracrine pathway that is 
required for the development of ventricular wall. Epicardial PKR1 
is also a key signaling for EPDC proliferation and differentiation 
into vasculogenic cell type, involved in formation of coronary 
circulation (30).

Altered expression of prokineticins and their receptors has 
been implicated in heart failure (31) and aortic rupture (32). Pro-
kineticin signaling plays an important role especially in cardiac 
progenitor cell commitment and cell-to-cell communications (30).

PKR1 signaling protects cardiomyocytes against hypoxia-
mediated apoptosis by activating Akt signaling pathway (7). 
Transgenic mice-overexpressing PKR1 in the cardiomyocytes 
exhibits an increased number of EPDCs, associated with 
increased number of vessels (30). Indeed, the cardiac PKR1 sign-
aling up-regulates its own ligand PK2 to stimulate the EPDC dif-
ferentiation into endothelial and smooth muscle cells to promote 
neovasculogenesis (30). Interestingly, PKR1null mice displayed 
cardiomyocyte contractile defects and apoptosis partially due to 
lack of PKR1 signaling in cardiomyocytes (8). These data indicate 
that cardiomyocyte PKR1 is essential for cardiomyocyte survival 
and contractility with a cell autonomous way. However, cardio-
myocyte PKR1 derives EPDCs proliferation and differentiation.

In cardiac ECs, PKR1 activates Akt and MAPK to promote 
proliferation, migration, and angiogenesis (25). Accordingly, 
loss of PKR1 in ECs leads to defective angiogenesis (17). The 
posterior walls of PKR1ec−/− hearts were thinner due to the loss 
of capillary formation and a high level of apoptosis (17). Indeed, 
PKR1ec−/− hearts displayed ectopic lipid deposition and abnormal 
insulin signaling together with capillary defects, resulting in 

impaired diastolic function. Abnormal insulin signaling was due 
to defective transcapillary transport of insulin in the vascular wall 
of PKR1ec−/−mice. In accord with this in  vivo findings, isolated 
ECs from the mutant cardiac and renal tissues exhibited very 
little insulin uptake, confirming that the loss of PKR1 from ECs 
decreased insulin transport (17). Indeed, activation of PKR1 in 
ECs promoted FITC-insulin passage. Nitric oxide deficiency in 
the ECs is associated with the insulin resistance and endothelial 
dysfunction (33). Similarly, in the endothelium of patients with 
diabetes mellitus, insulin-mediated eNOS activation is altered 
(34). In agreement, insulin uptake and insulin-mediated eNOS 
activation were impaired in PKR1-deficient ECs. Impaired tran-
scapillary insulin delivery leads to defective eNOS activation, 
affecting endothelium-dependent relaxation in PKR1ec−/−aortas 
(17). These impairments in PKR1ec−/− mice resulted in hyperten-
sion at the later age. These mice models should facilitate studies 
of both pathogenesis and therapy of cardiac disorders in humans.

PROKineTiCin in RenAL DeveLOPMenT 
AnD FUnCTiOn

In contrast to developing heart, PKR1 is necessary for renal 
mesenchymal–epithelial transition (MET) that is involved in for-
mation of renal progenitors, regulating glomerulogenesis toward 
forming nephrons during kidney development (29). Indeed, PKR1 
activates NFATc3 and modifies MET processing involved in the 
development of nephron. Mutant mice with targeted PKR1 gene 
disruptions in nephron progenitors has been shown to exhibit 
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neys with premature glomeruli and necrotic nephrons. Kidney 
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COnCLUSiOn

Multiple biological mechanisms linking obesity and CVD events 
have been identified. Identification of signaling pathways link-
ing obesity and CVD is important for development of novel 

therapeutics. PKR1 signaling plays an important role in central 
regulation of appetite, the suppression of adipocyte mass and 
insulin sensitizing effects on skeletal muscle and other tissues, 
cardiac regeneration, and kidney development and function 
(Figure 1). Whether PKR1 signaling regulates heart and kidney 
function via vagus nerve remains to be study. Recently, PKR1 
non-peptide agonist has been discovered (35), which it prevents 
cardiac lesion formation and improves cardiac function after 
myocardial infarction in mice, promoting proliferation of cardiac 
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AUTHOR COnTRiBUTiOnS

The author confirms being the sole contributor of this work and 
approved it for publication.

FUnDinG

The publication was supported in part by grants from Fondation 
pour la Recherche Médicale (Equipe Labellisée), Centre National 
de la Recherche Scientifique, and Université de Strasbourg. 
This work has also been published within the LABEX ANR-
10-LABX-0034_Medalis and received a financial support from 
the French government managed by Agence Nationale de la 
Recherche (ANR) under “Programme d’investissement d’avenir.”

http://www.frontiersin.org/Cardiovascular_Medicine
http://www.frontiersin.org
http://www.frontiersin.org/Cardiovascular_Medicine/archive
https://doi.org/10.1016/S0140-6736(05)67483-1
https://doi.org/10.1016/S0140-6736(05)67483-1
https://doi.org/10.1007/s11883-016-0575-4
https://doi.org/10.1007/s11883-016-0575-4
https://doi.org/10.1016/j.numecd.2007.
06.004
https://doi.org/10.1016/j.numecd.2007.
06.004
https://doi.org/10.1016/j.mce.2016.07.021
https://doi.org/10.1038/sj.embor.embor830
https://doi.org/10.1371/
journal.pone.0081175
https://doi.org/10.1371/
journal.pone.0081175
https://doi.org/10.1096/fj.07-8116com
https://doi.org/10.1161/ATVBAHA.110.222323
https://doi.org/10.1161/ATVBAHA.110.222323
https://doi.org/10.1210/jc.2004-0428
https://doi.org/10.2337/db09-1198
https://doi.org/10.7554/eLife.12397
https://doi.org/10.1111/j.1476-5381.2012.02191.x
https://doi.org/10.1016/j.ijdevneu.2014.02.001
https://doi.org/10.1210/jc.2009-0843
https://doi.org/10.1210/jc.2009-0843
https://doi.org/10.1161/CIRCULATIONAHA.111.087213
https://doi.org/10.1016/
j.cmet.2013.08.008
https://doi.org/10.1016/
j.cmet.2013.08.008
https://doi.org/10.1161/JAHA.
113.000411
https://doi.org/10.1161/JAHA.
113.000411
https://doi.org/10.3945/an.112.003020
https://doi.org/10.1038/sj.bjp.0706467


5

Nebigil Obesity and CVD Linkers

Frontiers in Cardiovascular Medicine | www.frontiersin.org April 2017 | Volume 4 | Article 20

20. Franchi S, Giannini E, Lattuada D, Lattanzi R, Tian H, Melchiorri P, et al. The 
prokineticin receptor agonist Bv8 decreases IL-10 and IL-4 production in mice 
splenocytes by activating prokineticin receptor-1. BMC Immunol (2008) 9:60. 
doi:10.1186/1471-2172-9-60 

21. Kubota T, Kubota N, Kumagai H, Yamaguchi S, Kozono H, Takahashi T, et al. 
Impaired insulin signaling in endothelial cells reduces insulin-induced glu-
cose uptake by skeletal muscle. Cell Metab (2011) 13:294–307. doi:10.1016/j.
cmet.2011.01.018 

22. Genders AJ, Frison V, Abramson SR, Barrett EJ. Endothelial cells actively 
concentrate insulin during its transendothelial transport. Microcirculation 
(2013) 20:434–9. doi:10.1111/micc.12044 

23. Cao Y. Angiogenesis as a therapeutic target for obesity and metabolic diseases. 
Chem Immunol Allergy (2014) 99:170–9. doi:10.1159/000353254 

24. LeCouter J, Ferrara N. EG-VEGF and the concept of tissue-specific angiogenic 
growth factors. Semin Cell Dev Biol (2002) 13:3–8. doi:10.1006/scdb.2001.0284 

25. Guilini C, Urayama K, Turkeri G, Dedeoglu DB, Kurose H, Messaddeq N, 
et al. Divergent roles of prokineticin receptors in the endothelial cells: angio-
genesis and fenestration. Am J Physiol Heart Circ Physiol (2010) 298:H844–52. 
doi:10.1152/ajpheart.00898.2009 

26. Von Hunolstein JJ, Nebigil CG. Can prokineticin prevent obesity and insulin 
resistance? Curr Opin Endocrinol Diabetes Obes (2015) 22:367–73. doi:10.1097/ 
MED.0000000000000185 

27. Guo T, Bond ND, Jou W, Gavrilova O, Portas J, McPherron AC. Myostatin 
inhibition prevents diabetes and hyperphagia in a mouse model of lipodys-
trophy. Diabetes (2012) 61:2414–23. doi:10.2337/db11-0915 

28. Kolka CM, Bergman RN. The endothelium in diabetes: its role in insulin 
access and diabetic complications. Rev Endocr Metab Disord (2013) 14:13–9. 
doi:10.1007/s11154-012-9233-5 

29. Arora H, Boulberdaa M, Qureshi R, Bitirim V, Gasser A, Messaddeq N, 
et al. Prokineticin receptor-1 signaling promotes epicardial to mesenchymal 
transition during heart development. Sci Rep (2016) 6:25541. doi:10.1038/
srep25541 

30. Urayama K, Guilini C, Turkeri G, Takir S, Kurose H, Messaddeq N, et  al. 
Prokineticin receptor-1 induces neovascularization and epicardial-derived 
progenitor cell differentiation. Arterioscler Thromb Vasc Biol (2008) 28:841–9. 
doi:10.1161/ATVBAHA.108.162404 

31. Urban JD, Clarke WP, von Zastrow M, Nichols DE, Kobilka B, Weinstein H, 
et al. Functional selectivity and classical concepts of quantitative pharmacol-
ogy. J Pharmacol Exp Ther (2007) 320:1–13. doi:10.1124/jpet.106.104463 

32. Choke E, Cockerill GW, Laing K, Dawson J, Willson WRW, Loftus IM, et al. 
Whole genome-expression profiling reveals a role for immune and inflam-
matory response in abdominal aortic aneurysm rupture. Eur J Vasc Endovasc 
(2009) 37:305–10. doi:10.1016/j.ejvs.2008.11.017 

33. Duncan ER, Crossey PA, Walker S, Anilkumar N, Poston L, Douglas G, et al. 
Effect of endothelium-specific insulin resistance on endothelial function 
in vivo. Diabetes (2008) 57:3307–14. doi:10.2337/db07-1111 

34. Tabit CE, Shenouda SM, Holbrook M, Fetterman JL, Kiani S, Frame AA, et al. 
Protein kinase C-beta contributes to impaired endothelial insulin signaling 
in humans with diabetes mellitus. Circulation (2013) 127:86–95. doi:10.1161/
CIRCULATIONAHA.112.127514 

35. Gasser A, Brogi S, Urayama K, Nishi T, Kurose H, Tafi A, et  al. Discovery 
and cardioprotective effects of the first non-peptide agonists of the G protein- 
coupled prokineticin receptor-1. PLoS One (2015) 10:e0121027. doi:10.1371/
journal.pone.0121027 

Conflict of Interest Statement: The author declares that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Copyright © 2017 Nebigil. This is an open-access article distributed under the terms 
of the Creative Commons Attribution License (CC BY). The use, distribution or 
reproduction in other forums is permitted, provided the original author(s) or licensor 
are credited and that the original publication in this journal is cited, in accordance 
with accepted academic practice. No use, distribution or reproduction is permitted 
which does not comply with these terms.

http://www.frontiersin.org/Cardiovascular_Medicine
http://www.frontiersin.org
http://www.frontiersin.org/Cardiovascular_Medicine/archive
https://doi.org/10.1186/1471-2172-9-60
https://doi.org/10.1016/j.cmet.2011.01.018
https://doi.org/10.1016/j.cmet.2011.01.018
https://doi.org/10.1111/micc.12044
https://doi.org/10.1159/000353254
https://doi.org/10.1006/scdb.2001.0284
https://doi.org/10.1152/ajpheart.00898.2009
https://doi.org/10.1097/
MED.0000000000000185
https://doi.org/10.1097/
MED.0000000000000185
https://doi.org/10.2337/db11-0915
https://doi.org/10.1007/s11154-012-9233-5
https://doi.org/10.1038/srep25541
https://doi.org/10.1038/srep25541
https://doi.org/10.1161/ATVBAHA.108.162404
https://doi.org/10.1124/jpet.106.104463
https://doi.org/10.1016/j.ejvs.2008.11.017
https://doi.org/10.2337/db07-1111
https://doi.org/10.1161/CIRCULATIONAHA.112.127514
https://doi.org/10.1161/CIRCULATIONAHA.112.127514
https://doi.org/10.1371/journal.pone.0121027
https://doi.org/10.1371/journal.pone.0121027
http://creativecommons.org/licenses/by/4.0/

	Prokineticin Is a New Linker between Obesity and Cardiovascular Diseases
	Introduction
	Prokineticins and Their Receptors
	PK2 is an Anorexic Peptide
	Prokineticin in Obesity
	Prokineticin in Insulin Resistance
	Prokineticin in Heart Development and Function
	Prokineticin in Renal Development and Function
	Conclusion
	Author Contributions
	Funding
	References


