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ABSTRACT
A key goal in cancer research is to find the genomic alterations that underlie malignant cells. Genomics

has proved successful in identifying somatic variants at a large scale. However, it has become evident that
a typical cancer exhibits a heterogenous mutation pattern across samples. Cases where the same alteration
is observed repeatedly seem to be the exception rather than the norm. Thus, pinpointing the key
alterations (driver mutations) from a background of variations with no direct causal link to cancer
(passenger mutations) is difficult. Here we analyze somatic missense mutations from cancer samples and
their healthy tissue counterparts (germline mutations) from the viewpoint of germline fitness. We calibrate
a scoring system from protein domain alignments to score mutations and their target loci. We show first
that this score predicts to a good degree the rate of polymorphism of the observed germline variation. The
scoring is then applied to somatic mutations. We show that candidate cancer genes prone to copy number
loss harbor mutations with germline fitness effects that are significantly more deleterious than expected by
chance. This suggests that missense mutations play a driving role in tumor suppressor genes. Furthermore,
these mutations fall preferably onto loci in sequence neighborhoods that are high scoring in terms of
germline fitness. In contrast, for somatic mutations in candidate onco genes we do not observe a statistically
significant effect. These results help to inform how to exploit germline fitness predictions in discovering
new genes and mutations responsible for cancer.

CANCER is a genetic disease whose progression has
for a long time been discussed in terms of Darwin-

ian evolution where malignant cells have a fitness ad-
vantage over normal cells (see, e.g., Merlo et al. 2006).
This evolution is a complex stochastic process where
the major evolutionary forces, mutation, genetic drift,
and selection all contribute to the observed evolution-
ary changes, making their individual roles difficult to
disentangle. However, it is precisely this decomposition
that will be critical when we attempt to understand
functional consequences of somatic mutations. Only
very recently have these theoretical considerations
found their way to data analyses at nucleotide resolu-
tion on a large scale (Yang et al. 2003; Greenman et al.
2006, 2007; Sjöblom et al. 2006). This transition is
driven by the increased technological ability to se-
quence cancer and healthy tissue samples from pa-
tients. Genomics has proved powerful in finding
somatic variants in cancer, yet the emerging picture is
complex with a typical cancer showing a heterogenous
mutation pattern across samples (Stratton et al.

2009). Specifically, in addition to the standard model
where a cancer gene is frequently mutated at a specific
location in a gene such as the V600E mutation in
BRAF (Davies et al. 2002), there is increasing evidence
that there are many driving mutations in genes occur-
ring at a very low prevalence (Greenman et al. 2007;
Carter et al. 2009). This complicates the statistical
challenges of distinguishing causal driver mutations
from a large number of passenger mutations that are
not directly contributing to the cancer phenotype of
the cells.
Methods to find driver mutations are usually classi-

fied into two main categories: mutation frequency-based
analysis and bioinformatic predictions of functional
effects of amino acid changes. These methods have
recently been reviewed in great detail (Lee et al. 2009a;
Torkamani et al. 2009). In short, frequency-based meth-
ods try to exploit the fact that mutations under positive
Darwinian selection fix in the population with a higher
rate than neutral or deleterious mutations. In its simplest
form this involves comparing the rates of substitutions in
a postulated neutral class, e.g., synonymous mutations, to
somatic missense mutations. The most obvious subtlety
in these approaches lies in identifying a truly sound neu-
tral model (Rubin and Green 2009). These approaches
generally assume a fixed background mutation rate
across the genome, an assumption that is known to be
inaccurate for homozygous deletions (Bignell et al.
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2010). Fortunately, many of the complications in the in-
ference of positive selection have been considered exten-
sively within the context of organismal evolution.
However, the powerful utilization of both substitution
and polymorphism data in conjunction still awaits
implementation in the case of cancer due to the lack
of somatic polymorphism data, i.e., frequencies of var-
iants in a cancer cell population. Such data could be
obtained from sequencing populations of single cells
from tumors. In the future, frequency-based methods
in cancer mutation analysis have the potential to draw
from the vast experience accumulated in the field of
evolutionary genetics (Fay and Wu 2000; Kreitman
2000; Nielsen 2005; Eyre-Walker 2006).

In the second main class, bioinformatic methods use
a combination of measures based on conservation,
biophysical, and structural considerations to distinguish
causal functional variants from passenger mutations.
These methods are now commonly used to assess the
potential functional consequences of discovered somatic
variants in genome-wide scans. Depending on the
specifics of training data and the availability of functional
information, they can perform strongly (Kaminker et al.
2007; Torkamani and Schork 2008; Carter et al. 2009;
Lee et al. 2009a). Many of the bioinformatic approaches
to predict the functional effects of missense mutations
were initially developed for germline variation and have
been applied to better understand common and rare
disease variants as well as evolution (Ng and Henikoff

2001; Ramensky et al. 2002; Bromberg and Rost 2007;
Kryukov et al. 2007). With a focus on germline variation,
these methods have recently been reviewed in Jordan
et al. (2010). These approaches have seen some adapta-
tion to somatic variation (Radivojac et al. 2008; Carter
et al. 2009; Kan et al. 2010).

In this article, we approach the scoring of cancer
missense mutations from the perspective of their germ-
line fitness effects (germline fitness quantifies repro-
ductive success of the organism and natural selection
acts via fitness differences). Throughout the study, we
carefully disentangle the predicted effects of the muta-
tions from their bare occurrence rates, e.g., by compar-
ing to null models conditioned to the same number of
missense mutations. In this sense, our work is not
frequency based. However, we do rely on evolutionary
theory—applied to germline variation—to develop our
scoring system. On the other hand, the approach does
not fall directly into the category of bioinformatic-based
methods in that we do not seek to use all possible func-
tional information available to find candidate driver
mutations. Instead, we want to know what role, if any,
germline fitness plays in cancer.

We focus on a cancer mutation data set of human
kinases from Greenman et al. (2007). With this study we
have full control over what was sequenced, which var-
iants were seen, and which were not, in both germline
and cancer samples. These are critical aspects for our

purpose. More generally, kinases are an ideal test bed to
develop methods for understanding putative disease
mutations because abnormally functioning kinases are
a major cause of human disease, an extensive body of
functional information on kinases exists, and they are
a large family and thus well suited for statistical analysis
(Manning et al. 2002; Lahiry et al. 2010).

We start by calibrating a scoring system using Pfam
(Finn et al. 2010) domain alignments, which allows us to
assign a score to both missense mutations and target
loci that they fall onto. We then discuss under what
conditions can such a multiple alignment-based score
be related to the germline fitness of the variant, using
considerations from diffusion theory; see, e.g., Kimura
(1964). We show first that for the germline variants in
our data set the score predicts the overall polymor-
phism rate and is thus consistent with it being an esti-
mate of germline fitness. The scoring is then applied to
germline and somatic mutations at the level of loci and
genes. It will become clear that comparing germline
and somatic variants directly is not appropriate for
addressing our question: rather both should be individ-
ually contrasted to a null model where mutations are
random with respect to the scores. Such a choice of
a null model has also been shown to be important for
calibrating classifiers for finding driver mutations
(Carter et al. 2009).

SCORING SYSTEM FOR CANCER VARIATION

Scoring of mutations: The scoring system that we use
for mutations should reflect the impact—in a beneficial
or a deleterious sense—of a genomic alteration. Each
gene consists of functional subunits—the protein
domains—that represent the most conserved part of
the gene. Well-organized information about these
domains is available in the Pfam database (Finn et al.
2010). Here we use the Pfam-A seed alignment of each
domain as a basis for its scoring system (Moses and
Durbin 2009). The composition of each column in
these alignments is the result of evolution and it will
usually differ markedly from a neutral distribution.
We denote the counts of amino acids in the alignment
column i by ni(a), where a 2 A (all amino acids), and
compare this observed distribution to a prior (ex-
pected) null distribution p0(a), derived for instance
from overall genomic frequencies of amino acids. Tak-
ing the log odds ratio of the functional distribution and
the null gives a so-called position-specific score [or po-
sition weight matrix (PWM) score (Durbin et al. 1998)],

si(a)5 log
~qi(a)
p0(a)

5 log
ni(a)1 p0(a)�
Ni 1 1

�
p0(a)

; (1)

where Ni is the total number of residues in the column.
The above construct of the observed q-distribution is
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regularized using pseudocounts proportional to p0 to
account for nonobserved residues in the finite sample
(Lawrence et al. 1993; Henikoff and Henikoff

1996). The two extreme cases are columns that are highly
conserved—where the most prevalent letter receives
a large positive score and all others large negative
ones—and columns that are highly variable and close
to neutral—where all letters receive scores close to zero.
For a given mutation away from the reference, we can
now record the score difference between the final and
the initial residue:

Dsi 5 si(a)2 si(aref )

               5 log
~qi(a)

~qi(aref )
2 log

p0(a)
p0(aref )

:
(2)

It can be shown that assuming a Dirichlet prior for the
frequency vector q with parameters p0 before observing
the counts n, the probability of the score Ds has a max-
imum a posteriori (MAP) value of Equation 2. For mu-
tations where the final amino acid was not observed
(n(a) ¼ 0), the posterior distribution is strongly skewed
and neither the MAP nor, e.g., the posterior mean value
is representative. We proceed using the MAP value as
a conservative estimate for Ds. Using the mean instead
does not change our results significantly. We show next
using population genetic theory that this score differ-
ence is closely related to the germline fitness difference
caused by the mutation.

Linking scores Ds to germline fitness: Consider
a population of N individuals evolving under genetic
drift, mutation, and selection. Every individual has ei-
ther allele a or b, with mutation rates ma/b and mb/a,
and fitness values fa and fb. Let us denote the fraction of
alleles a in the population by x. For eukaryotic evolu-
tion, the mutation rates are usually very small so we can
consider this generic model in the limit Nm ,, 1. It is
well known (for a review see Rouzine et al. 2001) that in
this case the population is mostly monomorphic with
infrequent periods of polymorphism and substitution
events between the two alleles. The model allows for
a description of the time evolution of the probability
density of x, P(x, t) (including boundaries) with a diffu-
sion equation of the form

@t P ðx; tÞ
         

5 @x

�
1
2N

@xx
�
12 x

�
2s0x

�
12 x

�
1ma/bx2mb/a

�
12 x

��

             

  · P ðx; tÞ;
(3)

where s0 ¼ fa 2 fb is the selective advantage (disadvan-
tage if s0 , 0) of allele a with respect to allele b. We can
then solve for the equilibrium density of the process,

P(x)5 Z 2 1ð12 xÞ2112Nma/bx2112Nmb/a e2Ns0x ; (4)

where Z normalizes the distribution. In what follows, we
denote the scaled selection coefficient as 2Ns0 ¼ s. It is
clear from Equation 4 that for systems with Nm ,, 1
the density assumes a “U-shape” with most of the prob-
ability concentrated at the boundaries. The rates of sub-
stitution from monomorphic (all individuals carry
either allele b or a) populations can be evaluated from
Equation 3 by solving the corresponding backward
equation (see, e.g., Kimura 1964) for appropriate
boundary conditions, yielding

ub/a(s)5
mb/as

12 e2s
;   ua/b(s)5

2ma/bs

12 e1s
: (5)

The substitution rate u(s) depends on the fitness dif-
ference s so that deleterious mutations are suppressed
while beneficial mutations fix with enhanced rates. We
can put the polymorphic states aside for a moment and
evaluate the fixed-state probabilities by solving the two-
state substitution dynamics with rates from Equation 5
[neglecting terms O(Nm)]:

q(a)5 mb/a
mb/a 1ma/b e 2s; q(b)5 ma/b e

2s

mb/a 1ma/b e 2s: (6)

It then follows that the ratio of the probabilities at the
two fixed states is

q(a)
qðbÞ5

mb/a

ma/b
es: (7)

In fact, we can understand each alignment column in
our scoring systems as a finite sample from such
a distribution,

si(a)5 log
~qi(a)
p0(a)

(8)

with

~qi(a)5
ni(a)1 p0(a)

Ni 1 1
  �!Ni≫1

  qi(a); (9)

where p0(a) is the frequency of letter a in some back-
ground sequence that we are comparing the q sequence
to. If we take p0(a) to correspond to a neutral evolu-
tionary model with s ¼ 0, ma/b, mb/a, we note that

Ds5 s(a)2 s(b)5 log
q(a)
p0(a)

2 log
q(b)
p0(b)

5 log
q(a)
q(b)

2 log
p0(a)
p0(b)

5s1 log
mb/a

ma/b
2 log

mb/a

ma/b
5s:

(10)
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In other words, the score difference Ds equals the
scaled fitness difference s. The picture above is also
easily generalized to cover loci with .2 alleles (4 for
nucleotides and 20 for amino acids), as long as detailed
balance (see, e.g., Gardiner 2009) holds for the neu-
tral process and selection is given by a static fitness
landscape. Such approaches that equate observed
frequency differences between functional and neutral
classes of sequences to evolutionary fitness have been
exploited in many systems: in the contexts of co-
don usage bias (Bulmer 1991), amino acid evolution
(Halpern and Bruno 1998), binding site evolution
(Berg et al. 2004; Moses et al. 2004; Mustonen and
Lässig 2005; Doniger and Fay 2007), and human
germline polymorphism analysis (Moses and Durbin
2009).

In its simplest form (as was presented above), the
theoretical basis for these considerations can be traced
back to Kimura’s solution of the one-locus, two-alleles
model (Kimura 1955). The picture has also been ex-
tended to traits under selection defined over larger
functional units than single nucleotides or amino acids
(Berg et al. 2004).

Assumptions underlying the link between scores
Ds and germline fitness: When we link scoring of an
alignment column to the evolutionary model dis-
cussed above, we should keep in mind the following
assumptions:

Alleles on loci forming the alignment columns are un-
derstood to be the result of independent draws from
the same underlying distribution. For evolutionary dy-
namics this means that the s's are fixed for every
column individually, the neutral mutation process de-
fined by the m's is shared between the columns, and the
sequences have diverged beyond the relevant correla-
tion times and can thus be considered independent.

For sequences of length L, the scoring also assumes
that the sequence probability is factorizable, i.e.,
Q 5

QL
i51qi ; and thus there are no correlations

across the loci caused by, for example, genomic link-
age or epistatic fitness interactions. The probabilities
qi can of course vary as a function of the sequence
position. In evolutionary theory these assumptions
can be expressed as infinite recombination and addi-
tive fitness contributions across loci.

The above derivation for the two-allele model is appli-
cable to protein alignments if detailed balance holds
for the neutral evolutionary process at each locus
(column). This is a necessary condition to equate
the ratio of any two amino acid frequencies to their
substitution rates.

It is clear that these assumptions are never fully met
in the systems that we study. Fortunately, we have a way
of testing the sensibility of the scoring scheme with
germline polymorphism data—a piece of information

not used in the derivation. In particular, we can ask:
What is the probability to find a polymorphism of effect
s given that we have sampled m individuals? The diffu-
sion equation can be analyzed for the so-called forward
spectrum of the polymorphism frequency (Sawyer and
Hartl 1992). Up to first order in Nm we get the poly-
morphism density to be

Pp(s;m)5 2Nm
Xm21

k51

m
kðm2 kÞ

�
es2 F1ðk;m;sÞ

�
2ðes2 1Þ ;

(11)

where F1 is the hypergeometric function and terms in
the sum with k ¼ 0, m would correspond to monomor-
phic samples. Importantly, this function includes the
mutation rate only as a prefactor. Later we use Equation
11 to predict the germline polymorphism rate of occur-
rence as a function of our score Ds.

Scoring of target loci: On top of the score Ds that we
assign to every mutation with Equation 2, we incorpo-
rate the local neighborhoods of the mutation target
sites into the scoring. This is done by evaluating the
mean germline fitness per locus of the subsequence
consisting of lw ¼ 2w 1 1 amino acids centered around
the mutation site i (a set denoted by wi):

Swi 5
1
lw

X
aj2wi

sj
�
aj
�
: (12)

In contrast to the mutation score, the locus score does
not depend on the particular mutation but only on its
location. It derives its information from several loci and
gives a scale for how evolutionarily important the target
locus and its surroundings are. We can then weight
every mutation score by its neighborhood score in the
process of scoring: f(Sw)Ds. Both scores are illustrated in
Figure 1.

Defining genomic observables: We use the scores Ds
and Sw to analyze the cancer, i.e., somatic and germline
variation at the level of individual loci and genes. All
observables and distributions at locus (gene) level have
a superindex l (g). The kinome sequence consisting of
Nl loci belonging to an individual k is denoted by
ak 5 fa1k ; . . . ; aik ; . . . ; aN l kg and the score of a mutation
with respect to the reference genome (aref / a) at
a genomic locus i by Dsi(a) [ si(a)2si(aref). We can
thus define the effect per locus i,

Dsli 5
Xm
k51

DsiðaikÞ; (13)

where m is the number of sample genomes and aik
denotes the amino acid at locus i in individual k. The
projection (summing) over all samples at this early stage
of the analysis is necessary due to the relative scarcity of
the mutation data at hand.
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Similarly we define the effect per locus in gene j by
summing over all mutations in that gene and scaling by
its opportunity size l gj (approximately proportional to
the total length of all domains in it):

Dsgj 5
1
l gj

X
i2genej

Dsli : (14)

Analogously, we also define locus scores Sw and
weighted scores exp(Sw)Ds (the rationale behind the
nonlinear weighting function is discussed later). Finally,
to expose the effect of mutation counts alone we also
define a count score per locus,

cli 5
Xm
k51

cðaikÞ; (15)

with c ¼ 1 if aik 6¼ ai,ref and 0 otherwise. This count score
can also be applied at the gene level as defined above.

Defining a null ensemble: Before we can analyze the
sets of germline and somatic mutations we need to
define a null model. Our initial assumption is that all
mutations are random with respect to our scoring
system. To test this hypothesis, we construct in silico all
possible missense point mutations away from the refer-
ence sequence of the kinases aref. This set is called mu-
tational opportunity space and denoted byM. Using a null
based on all genes would not be appropriate as the
frequencies of domains are not homogenous over the
genes. This heterogeneity is a smaller problem for data
sets with a large number of genes; however, a data set-
specific null becomes increasingly more important for
smaller gene sets.

We then draw synthetic sets of mutations from M
that resemble the original sets (germline or somatic) in
their essential characteristics; i.e., they have the same
total number of missense mutations and the same biases
in the different mutation channels (mutations C:G .
T:A occur more frequently in both mutation sets than
would be expected by chance) (Greenman et al. 2007).
Such biases appear already at the level of the neutral
process, e.g., transition–transversion bias.

MATERIALS AND METHODS

Data set: We work with human cancer mutation data as
given by Greenman et al. (2007). The data consist of the
following:

i. A reference kinase gene set in nucleotide space with introns
removed. We have translated the sequences to amino acid
space and this set of genes forms our reference kinome aref.

ii. A list of somatic mutations, i.e., exclusive to 210 cancer
samples. We consider only missense mutations.

iii. A list of germline variants from these patients, which we
have polarized using chimpanzee as an outgroup to deter-
mine their ancestral alleles. For 142 germline variants the
chimpanzee allele did not decide the ancestral allele, be-
cause it had a third option, or the amino acid was missing,
or we could not identify it by our blast search against chim-
panzee refseq sequences (Pruitt et al. 2007). Extrapolating
from the set that we could polarize unambiguously we esti-
mate that within the no-call set there are ,10 variants for
which using the aref as the ancestral state results in an error.
We therefore decided to include these no-call variants nev-
ertheless, but note that leaving them out altogether does
not change our results.

iv. A list of candidate cancer genes selected from Supplemen-
tary Table 4c in Kan et al. (2010) with the condition that
copy number loss and gain frequencies are available. We

Figure 2.—Germline polymorphism density. Pp(Ds) is
shown in units of Pp(0): blue squares are data and the red
line is the theory curve from Equation 11 with m ¼ 210. Pre-
dicted polymorphism density is proportional to the values
measured from the germline variation, somewhat underesti-
mating the reduction of strongly deleterious mutations (error
bars evaluated with Ncounts6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ncounts

p
).

Figure 1.—Mutation and locus scores. An example align-
ment window is shown that illustrates the scoring system de-
scribed in the text. We want to score a mutation aref ¼ C /
A ¼ a (colored with red) in position i. First, we evaluate the
difference in the position-specific score between the final and
the initial states, as defined by the alignment column (left
panel, vertical red box). Second, we evaluate a score for the
target locus onto which the mutation falls by summing up the
scores of the amino acids within a window wi (right panel,
horizontal red box). Locus score information is derived from
several loci and gives a scale for how evolutionarily important
the target locus and its surroundings are.
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use the copy number information to assign these genes to
candidate tumor suppressor and onco gene categories. The
decision criterion is as follows: if the rate of loss is greater
than the rate of gain, we call the gene a candidate tumor
suppressor gene; otherwise the gene is labeled as a candidate
onco gene. This criterion is based on Figure 3.a in Kan et al.
(2010), which shows that such a classification is a sensible
first-order estimate for these genes. We do not claim that all
these genes are tumor suppressor or onco genes, only that
these lists should be enriched with real tumor suppressor
and onco genes. The data set is summarized in Tables 4
and 5.

Evaluating other alignment-based scores: The HMMER
(v3.0) program provides the hmmsearch utility that searches
a set of sequences against a single hmm profile, giving E-values
and bit scores for each. Using the Pfam-A seed profiles of each
domain, we obtained these observables for all variant sequen-
ces that are one missense mutation away from the reference,
i.e., mutational opportunity M. We then used the difference
in bit score between variant and reference sequence, con-
verted to natural logarithms (see Clifford et al. 2004). The
fundamental similarity to Equation 2 should be clear:

DsHMM

log2
5 log2

P
�
seqvar 2 HMM

�
P
�
seqref 2 HMM

� 2 log2
P
�
seqvar 2 Null

�
P
�
seqref 2 Null

�: (16)

For the SIFT and B-SIFT scores, we installed the latest version
of SIFT (v4.0.3 together with BLIMPS v3.8) locally and
likewise produced SIFT scores for all mutational opportunity
(for SIFT see Ng and Henikoff 2003). We used cutoffs of
SIFT ,0.05 and B-SIFT .0.5 to call a variant deleterious or
beneficial, respectively. To make the comparison more defi-
nite, we based the SIFT predictions on the same domain align-
ments that are used to infer Ds. However, more generally, an
essential part of the SIFT procedure is to find homolog
sequences in a database like UniProt/TrEMBL via PSI-BLAST,
which naturally results in different alignments and different
sets of scorable mutations.

RESULTS AND DISCUSSION

Germline mutations: It is clear that the assumptions
under which we can equate the scores Ds to germline
fitness are not fully satisfied within the data set at hand.
However, the fact that the calibration of the scores does
not use information about the germline polymorphism
gives us an opportunity to predict their behavior as
a function of the score. This is done in Figure 2, which
shows the polymorphism density as a function of the
predicted fitness effect of the variant.

We can evaluate this density analytically (Equation
11) and this prediction is consistent with the score Ds
being a measurement of germline fitness. The agree-
ment is surprisingly good given the simplicity of the
model—albeit our score is clearly underestimating the
real fitness cost of the big-effect mutations. Such an
application of Pfam domain alignments has been per-
formed at a genome-wide scale by Moses and Durbin
(2009), who investigated polymorphism frequency spec-
tra, rates of substitutions, and so-called MK ratios (after
the McDonald–Kreitman test). Our results for germline
variation are consistent with their findings except one
notable difference: their theoretical prediction of sub-
stitution rate underestimates strongly deleterious sub-
stitution rates and overestimates the rate for beneficial
substitutions (see their Figure 5C). This means that for
substitutions at least, the effect of selection is somewhat
overestimated. The difference may stem from the fact
that our data set contains only kinases, which is a quite
homogenous group of genes. Nevertheless, it is clear
that even when applied at a whole-genome level, the
predictions that follow from such a scoring provide
results consistent with it being an estimate of germline
fitness to a good degree. We note that several studies
have shown a correlation between germline polymor-
phism allele frequencies and different conservation-
based scores (see discussion in Jordan et al. 2010).
However, as these results are strongly dependent on
the quality of the multiple alignment in the sense dis-
cussed earlier (Assumptions underlying the link between
scores Ds and germline fitness), applying such methods to
somatic mutations should be done in conjunction with
a corresponding germline variation analysis to address
the validity of the scoring.

Our genomic observables evaluated for the germline
mutations recapitulate the discussion above: scores for
germline variants have significantly lower deleterious
effects than the mutations in the corresponding null
model have. The effect sizes for germline mutation
scores are mostly �50% of the expectation under the
null. These results are summarized in Table 1 and are
contrasted to somatic variation, discussed next.

Somatic mutations: The global pattern of somatic
variation in the kinase set is not significantly different

TABLE 1

Germline variation in kinases

Germline

Score Level P-value Effect size

Ds Locus ,1025 0.61
Gene ,1025 0.52

eS
10
Ds Locus ,1025 0.56

Gene ,1025 0.49

TABLE 2

Genomic observables for candidate tumor suppressor genes

Somatic Germline

Score Level P-value Effect size P-value Effect size

c Locus 0.004 1.39 NS —
Gene 0.02 1.33 NS —

Ds Locus 0.003 1.69 0.00006 0.55
Gene 0.002 1.80 0.00002 0.50

eS
10
Ds Locus 0.0007 1.98 0.00007 0.49

Gene 0.0003 2.10 0.00002 0.45
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from random for the locus- and gene-level observables
studied here. This is surprising even though a majority
of somatic mutations are expected to be passengers
(Stratton et al. 2009); it is interesting to contemplate
how large a genetic load passenger mutations impose
on the cells. To assess whether somatic mutations in
cancer genes are different we use a list of hand-curated
candidate cancer genes from Kan et al. (2010) to de-
lineate the data set (see materials and methods). As
distinct classes of cancer genes are known to contribute
to tumorigenesis in a different manner, we further di-
vide these genes into candidate tumor suppressor and
onco genes, using information on copy number loss
and gain frequencies (see materials and methods

for the precise criterion).
Somatic mutations in candidate tumor suppressor genes: In

this gene set the impact of somatic mutations is on
average more deleterious than the impact of random
mutations from the null (see Table 2 and Figure 3).
Furthermore, they fall preferably onto loci residing in
neighborhoods with high overall germline fitness per
allele. We see this pattern for both locus- and gene-level
observables but the improvement with respect to count
scores alone is stronger at the gene level where we see

almost a two orders of magnitude drop in the P-values
and a considerable increase in effect sizes of 1.33 /
2.10 (see Table 2). This implies that using the germline
scores at the gene level integrates the underlying bio-
logical signal coherently and thus enhances the differ-
ences between the somatic variants and the null model.
In Figure 3 we show results for this set for both germline
and somatic mutations.
Furthermore, we calculated the correlation between

the copy number loss frequency (data from Kan et al.
2010) and the combined score at the gene level. Con-
sidering only genes that have a nontrivial score (i.e.,
only genes with somatic mutations), we observed a mod-
est correlation of 20.4 with a P-value of 0.01 (32 genes
in the sample; the mutation scores for genes are given
in supporting information, File S1.). This correlation
seems to arise largely from a few outliers, which suggests
that the scores work for a subset of genes. This scatter
may stem from the fact that in the candidate tumor
suppressor gene set we expect only an enrichment of
real tumor suppressor genes.
Among all kinases with respect to their somatic

mutation scores, MAP2K4 stands out with a P-value of
0.015 for the mutation score and 0.041 for the

Figure 3.—Gene-level observ-
ables averaged over candidate tu-
mor suppressor genes. Histograms
denote the obtained averages in
105 synthetic sets (null model)
and blue dots denote the values
in the data. (A–C) Germline
mutations (green). (A) Count
scores c g show no significant ef-
fect. In contrast, scores for germ-
line mutations are less deleterious
than for mutations in the null. (B)
Dsg, P-value ¼ 2 · 1025, effect size
0.50 (evaluated as data value di-
vided by the mean of synthetic
sets). (C) ðeS10DsÞg , P-value ¼ 2 ·
1025, effect size 0.45. (D–F) So-
matic mutations (red). (D) Count
scores cg, P-value ¼ 0.02, effect size
1.33. There is a surplus of counts
over what would be expected
within the null. Furthermore,
germline fitness scores for somatic
mutations are more deleterious
than for mutations in the null.
(E) Ds g, P-value ¼ 0.002, effect
size 1.80. (F) ðeS10DsÞg , P-value ¼
0.0003, effect size 2.10.
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combined score at gene level (after Bonferroni correc-
tion for multiple testing, with the number of kinase
genes being 518; the mutation scores for genes are
given in supporting information, File S1). The germline
scores thus predict MAP2K4 as a cancer gene (without
the information from the copy number rates or its mem-
bership in the curated candidate cancer gene list). For
comparison we note that for the count score this is not
the case (P-value ¼ 0.36), and thus the additional in-
formation from the germline scores proves decisive.
This is an example of how germline fitness scoring can
be exploited in finding individual cancer genes. Interest-
ingly, experimental results suggest a dominant negative
role for MAP2K4 (Kan et al. 2010). The important role of
MAP2K4 in oncogenesis is reviewed in Whitmarsh and
Davis (2007).

Several investigations have used conservation-based
measures to analyze cancer mutations: Talavera et al.
(2010) report putative driver mutations to be enriched
in conserved positions when compared to passenger
mutations, Izarzugaza et al. (2009) find that prede-
fined driver mutations are closer to regions important
for function and conserved residues, Dixit et al. (2009)
find driver mutations falling onto locations with slightly
higher conservation signals than passenger mutations,
and Mort et al. (2010) show that cancer mutations have
relative enrichment of deleterious effects when com-
pared to a neutral polymorphism set. While our results
are in general consistent with these studies, at the same
time, we make the case for the role that germline fitness
plays in cancer substantially sharper. This clarity stems
from the following reasons in particular. First, we use an
explicit population genetic-based model to derive our
scoring system, which allows us to state under which
conditions we can expect the score to be germline fit-

ness. Second, we show by predicting to a good degree
the germline polymorphism rate that our scoring is per-
forming well on its primary task. Third, we have a null
model that allows us to analyze the germline and somatic
mutations separately. Thus, effects of somatic mutations
are not misinterpreted by comparing them to the germ-
line variants that can be under selective pressures them-
selves. Finally, we focus on a data set where we have
precise knowledge on the variation seen and not seen—
aspects important for the calibration of the null model.

Somatic mutations in candidate onco genes: Mutations in
candidate onco genes do not differ from the null model
in a statistically significant way for the observables
reported here. This clear contrast to mutations in
candidate tumor suppressor genes may point to activat-
ing mutations being more heterogenous in conferring
their cancerous effect, or to the germline fitness play-
ing no (or a smaller) role for them, or to our simple
classification criterion being a definition not accurate
enough for onco genes. However, we note that Lee et al.
(2009b) put forward a proposition that a subset of acti-
vating mutations may have positive scores, i.e., that they
are germline beneficial, and they provide structural ev-
idence for predictions that such a criterion produces.
They define a relative score B-SIFT ¼ SIFT(mutant) 2
SIFT(wild type) (B for bidirectional; for SIFT see Ng

and Henikoff 2003), which in principle can capture
both deleterious and beneficial substitutions, similar
to our Ds. In our candidate onco genes, we neither find
any B-SIFT beneficial mutations (those with B-SIFT .
0.5) nor see a surplus of positive scores Ds. An explana-
tion, also given by Lee et al. (2009b), could be that
a majority of functionally activating mutations in cancer
are still germline deleterious, in a sense that they are not
observed in healthy cells.

TABLE 3

Results for sSIFT and DsHMM scores

Germline all
Somatic candidate
tumor suppressor

Germline candidate
tumor suppressor

Score Level P-value Effect size P-value Effect size P-value Effect size

sSIFT Locus ,1025 0.61 0.02 1.61 0.0001 0.46
Gene ,1025 0.55 0.02 1.73 0.00008 0.43

DsHMM Locus ,1025 0.51 0.006 1.75 ,1025 0.43
Gene ,1025 0.45 0.003 1.91 ,1025 0.39

TABLE 4

Number of (available) mutations in the different categories

Opportunity (average) (105) Somatic Germline

All T. supp. Onco All Tumor suppressor Onco All Tumor suppressor Onco

Total 29.37 3.63 3.68 620 100 83 2423 277 264
Scored 14.26 1.78 1.87 324 56 49 1018 125 102
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Comparison to other scores extracted from align-
ments: There are several ways the effects of mutations
can be scored given an alignment. Our focus here is to
explore the relation between germline and somatic
fitness, and thus the score Ds defined in Equation 2 is
particularly appealing for it allows a direct and intuitive
connection to population genetic theory as discussed
earlier. However, it is also of interest to see how Ds
compares to other alignment scores in terms of its abil-
ity to separate the germline and somatic variation from
the null. To that extent we evaluated the widely used
SIFT (sSIFT) (Ng and Henikoff 2003) and HMMER3
scores (DsHMM) (Clifford et al. 2004) (http://hmmer.
org) for the domain alignments in the data set (see
materials and methods). For germline variation, both
sSIFT and DsHMM scores give equivalent results to that of
Ds. For somatic mutations in candidate tumor suppressor
genes we observe that sSIFT shows lower performance in
separating the data and the null than DsHMM and Ds,
which give very similar results (see Table 3).

We further correlated the scores DsHMM and Ds and
record a correlation of 0.71 for germline variants and
0.80 for somatic variants. The similarity in terms of
results and the high correlation between these two
measures is not unexpected. In bioinformatic terms,
they both score a mutation via its predicted change to
the probability of that residue conforming to the par-
ticular alignment. We note, however, that HMMER3 is
underpinned by a more sophisticated (and more com-
plicated) probability model for the sequences. Thus,
linking its predictions to an explicit population genetic
model may not be feasible. In summary, while DsHMM

performs bioinformatically similarly to Ds for the stud-
ied data, the latter has an advantage if we wish to utilize
population genetic theory either as a basis for interpre-
tation of the results or to develop scoring systems going
beyond individual mutations (e.g., by forming locus
scores Sw).

Different levels of integration: Our scoring system is
built on domain alignments that are used to extract
germline fitness. Above we have used the scores at the
level of loci and genes and we have seen that integration
of germline fitness scores at the gene level enhances our
ability to differentiate between the somatic and null sets.
Ideally, we wish to perform this integration also at the
level of domains. Indeed, we note that there is an effect

in the number of somatic mutations that can be scored,
i.e., fall onto Pfam domains. This set is significantly larger
than expected if they were falling randomly onto the
kinases genes (P-value ¼ 3.1 · 1022). This result seems
to hold more generally: see enrichment analysis of Pfam
domain mutations across multiple cancer data sets in Li
et al. (2009) and clustering analysis of so-called mutation
hotspots in protein domains (Yue et al. 2010). However,
this effect is conditioned out in our analysis as our null
model has precisely the same number of scorable mis-
sense mutations as the somatic set does. Therefore any
direct comparison to our gene-level scores would be bi-
ased. Once genome-wide cancer sequences arrive in
numbers, the question of the optimal level of integration
should be addressed also at the pathway level (for path-
way considerations see, e.g., Ding et al. 2008; Kan et al.
2010).
Relationship between somatic Fsom. and germline fit-

ness Fgerm.: We note that there is no a priori reason why
germline fitness should reflect the somatic fitness and evo-
lution at all. However, on the basis of the results pre-
sented above it seems clear that within the class of
candidate tumor suppressor genes there is a definite
statistical relationship between predicted germline fit-
ness effects and the acquired somatic mutations. In this
study we used for the neighborhood scores a window
size lw ¼ 21 (w ¼ 10), which we selected on the basis of
an autocorrelation analysis of the information content
of the domain alignments. However, finding the rele-
vant length scale for cancer variation systematically is
left to future work. At this time point we note that for
our main result, i.e., that the germline fitness score is
relevant for tumor suppressor genes, it is sufficient to
use only mutation scores without a window score weight
factor, but this weakens the effect as can be seen from
Figure 3 and Table 2. Here we chose a nonlinear
weighting function for two reasons: first, to underline
the fact that such a nonlinearity would affect the anal-
ysis since the order of taking the averages would matter,
i.e., Fsom:ðhFgerm:〉Þ 6¼ hFsom:ðFgerm:Þ〉, where h. . . 〉 denotes
ensemble averages [given that the substitution rate of a
mutation in a population is by itself a strongly nonlinear
function of fitness effect (see Equation 5), it does not
seem unreasonable to anticipate such a behavior]; and
second, to highlight our general ignorance about the
specifics of the relationship [our ansatz for Fsom.(Fgerm.)
with a sign reversal (i.e., germline deleterious roughly
equals somatic beneficial) in conjunction with a neigh-
borhood-based weight relies implicitly on the relation-
ship being monotonic]. This is likely not going to hold
for many strongly deleterious germline variants that
in essence kill the cell. It has been proposed that the
alleles underlying complex traits have more subtle
effects on disease risk and are hence more likely to in-
clude variants that affect the gene function modestly
(Hirschhorn and Daly 2005). Indeed, common dis-
ease mutations in the kinases have been shown to fall

TABLE 5

Mutational biases

Channel Opportunity (%) Somatic (%) Germline (%)

A:T . T:A 17 7 5
A:T . C:G 19 3 5
A:T . G:C 16 10 21
C:G . G:C 19 13 11
C:G . A:T 16 10 9
C:G . T:A 13 57 49
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preferably onto regions where they have moderate effect
on function (Torkamani et al. 2008). It will be of consid-
erable interest to try to quantify both the cancer-specific
length scale (if it exists) and the functional form of the
fitness relation in future work.

Conclusions: There is little doubt that evolutionary
theory will continue to be at the center stage in analyses
of somatic mutations as the ongoing large-scale sequenc-
ing efforts generate more data (see the International

Cancer Genome Consortium 2010 for data efforts and
Frank 2010 for a discussion on the time evolution of
somatic variation). There is a lot to be learned as we still
do not have a quantitative understanding of the key evo-
lutionary parameters for cancer such as the selective
advantages of the driver mutations, albeit estimates based
on modeling and known timescales of tumor progression
have been put forward (Beerenwinkel et al. 2007; Bozic
et al. 2010).

Here we focused on analyzing somatic variants from
the perspective of their germline fitness effects. As it is
not clear from the outset that germline fitness has
anything to do with somatic fitness of the cells, this is an
interesting theoretical question. We have shown that for
candidate tumor suppressor genes there is a relation
where cancer mutations are on average more germline
deleterious than random mutations—practical implica-
tions of this result are obvious, e.g., the prediction of
MAP2K4 as a cancer gene above. Our findings point to
future directions of integrating germline scores into
a computational framework that uses additional infor-
mation, e.g., synonymous mutations and missense events
that do not fall into domains. Such an integration will
be important as we could assign a germline score for
only slightly more than half of the missense variants
seen. Another important direction would be developing
similar methods to score also insertions and deletions.
This will require a basic understanding of germline rates
of these events that can be attained from detailed analyses
of human genomes (see, e.g., http://www.1000genomes.
org/). Finally, we point out that calibrating germline
fitness effects as was done here has been applied also
to noncoding variation in the context of binding sites
(Moses et al. 2004; Mustonen and Lässig 2005;
Doniger and Fay 2007), so the framework will be appli-
cable for cancer variation in regulatory regions as well.
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thanks the Deutsche Forschungsgemeinschaft for funding through
the Bonn-Cologne Graduate School for Physics and Astronomy
and the Sonderforschungsbereich/Transregio 12. V.M. acknowl-
edges the Wellcome Trust for support under grant 091747.
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