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Abstract. A series of physiological and pathological changes 
occur after radiotherapy and accidental exposure to ionizing 
radiation (IR). These changes cause serious damage to human 
tissues and can lead to death. Radioprotective countermea‑
sures are radioprotective agents that prevent and reduce IR 
injury or have therapeutic effects. Based on a good under‑
standing of radiobiology, a number of protective agents have 
achieved positive results in early clinical trials. The present 
review grouped known radioprotective agents according to 
biochemical categories and potential clinical use, and reviewed 
radiation countermeasures, i.e., radioprotectors, radiation miti‑
gators and radiotherapeutic agents, with an emphasis on their 
current status and research progress. The aim of the present 
review is to facilitate the selection and application of suitable 
radioprotectors for clinicians and researchers, to prevent or 
reduce IR injury.
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1. Introduction

Ionizing radiation (IR) refers to energy released by atoms in 
the form of particles (neutrons, α or β particles) or electro‑
magnetic waves (X‑or γ‑rays), which is sufficient to ionize 
atoms or molecules (1). Exposure to IR from these sources, 
including natural and artificial radiation, can have lethal 
consequences (2,3). The effects of IR are divided into deter‑
ministic effects, such as acute radiation sickness and radiation 
cataracts, and stochastic effects, such as radiation‑induced 
cancer and genetic diseases (4). Even low‑dose IR can cause 
DNA damage, and produce free radicals and reactive oxygen, 
causing DNA and protein damage, which can result in cell 
death, teratogenesis or carcinogenesis (5,6).

Exposure to IR can lead to chemical bond breaks or a 
variety of other chemical genetic modifications that can cause 
damage to biological macromolecules, particularly DNA, 
resulting in biochemical and biological cascade reactions. 
IR‑induced DNA damage includes single‑strand breaks and 
double‑strand breaks (DSBs) (7‑9), nucleotide base damage, 
glycosyl damage and DNA cross‑linking, with DSBs being the 
most serious. DNA damage can activate a series of cellular 
DNA damage response signals, which control cell cycle arrest, 
DNA repair and cell fate. It can lead to serious consequences, 
such as cell death, chromosomal aberrations and genomic 
instability (Fig. 1). Furthermore, DNA damage followed by 
abnormal repair and genetic mutations is an important link in 
the development of tumors (8,10). Therefore, there is an urgent 
need to identify effective countermeasures against the harmful 
effects of IR.

2. Strategies to reduce radiation injury

IR countermeasures protect organisms against the harmful 
effects of IR and reduce tissue damage (11). Based on the time 
of administration relative to IR exposure, countermeasures 
against radiation injury are classified as radioprotectors, 
radiation mitigators or therapeutics (12‑15). No radioprotective 
agent is both non‑toxic at an effective dosage and capable of 
protecting normal cells from IR damage while maintaining 
the radiosensitivity of tumor cells.
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IR‑induced injury can be prevented using chemical 
compounds, biological agents, Chinese herbal extracts or 
cellular therapy (16,17). These measures reduce or improve 
radiation‑induced tissue damage, and thus promote rehabili‑
tation. Radioprotective countermeasures are radioprotective 
agents that prevent and reduce IR injury, or have therapeutic 
effects. The mechanism of action of radioprotective agents 
varies, yet the most common protective mechanism involves 
scavenging free radicals and enhancing DNA repair, thereby 
inhibiting oxidation and protecting cells.

In the present review, the radioprotective mechanisms, 
and clinical and preclinical applications, of radioprotectors, 
radiation mitigators and radiation therapeutic agents are 
summarized and discussed. Known radioprotective agents 
were grouped according to biochemical categories and 
potential clinical use, and radiation countermeasures, i.e., 
radioprotectors, radiation mitigators and radiotherapeutic 
agents, were described as was their probable mechanism of 
action (Figs. 2 and 3). These measures, and the main emerging 
therapies, are listed in Tables I and II.

Radioprotectors in clinical use
Amifostine (AMF). AMF is a United States Food and Drug 
Administration‑approved selective normal tissue radio‑
protector that can be hydrolyzed and dephosphorylated to 
active N‑(2‑mercaptoethyl)‑1,3‑propanediamine by cell 
membrane‑bound alkaline phosphatases, the sulfhydryl 
structure of which scavenges oxygen free radicals from 
tissue (18,19). Treatment with AMF during radiotherapy 
for lung cancer can reduce the incidence of severe radiation 
pneumonitis by 16%. AMF is mainly used to prevent radio‑
therapy‑induced mucositis, dry mouth, dysphagia, pulmonary 
fibrosis and pneumonia (20‑26). In previous studies, AMF 
selectively protected healthy cells against the harmful effects 
of radiotherapy, whereas cancer cells remained radiosensi‑
tive (27,28). However, AMF has a narrow therapeutic index, 
is administered intravenously and is toxic. AMF needs to be 
administered intravenously before radiotherapy; however, the 
drug is rapidly cleared from blood circulation, which cannot 
protect the gut. Furthermore, AMF is easily metabolized and 
sensitive to gastric acid, making direct oral administration 
an obstacle (19,29,30). Recently, it has been reported that a 
research team has produced orally available SP@AMF (31), 
which can prevent intestinal damage caused by radiation and 
prolong the survival period without affecting tumor regression 
in mice. Therefore, radioprotectors with oral administration, 
high efficacy, low toxicity and a long duration of action are 
needed.

Benzydamine. Benzydamine is a nonsteroidal anti‑inflamma‑
tory drug that can inhibit the inflammatory factors TNF‑α 
and IL‑1β, and has antipyretic and analgesic effects (32‑37). 
Radiotherapy‑induced oral mucositis (RTOM) refers to 
inflammation of the oral mucosa caused by radiotherapy, 
which accounts for 80% of the complications from head 
and neck tumor radiotherapy. Benzydamine mouthwash 
has been reported to reduce RTOM pain in radioactive oral 
mucositis (38). In patients receiving radiotherapy, benzyda‑
mine oral rinse significantly reduced the rate of RTOM (32). 
Epstein et al (33) reported that benzydamine oral rinse 

reduced the rate of RTOM triggered by a high radiotherapy 
dose. Thus, benzydamine is recommended for the prevention 
and treatment of RTOM with simple radiotherapy for head and 
neck tumors in moderate doses.

Glutamine. Glutamine plays an important role in reducing 
radiotherapy side effects and improving body tolerance to 
radiotherapy (39‑41). Radiotherapy kills cancer cells as well 
as normal cells in the body, especially intestinal mucosa cells, 
which can cause nausea, vomiting, diarrhea and other symp‑
toms in patients receiving radiotherapy. A number of clinical 
studies have confirmed that glutamine is helpful in the repair of 
intestinal mucosa after radiotherapy and has significant effects 
on preventing and relieving adverse symptoms in patients with 
radioenteritis (41‑44). An animal experiment showed that 
adding glutamine to feed could reduce acute radiation damage 
to intestinal mucosa structures and improve the antioxidant 
capacity of radiation‑damaged animals (45). Similarly, the 
preventive effect of glutamine on acute radioesophagitis has 
been confirmed in several clinical trials (46‑48). IR‑induced 
enteritis was decreased by compound glutamine capsules. It 
has also been reported that the use of glutamine in patients 
receiving radiotherapy for breast cancer can significantly 
reduce the incidence of radiation injury (49). Therefore, taking 
compound glutamine capsules during radiotherapy can effec‑
tively prevent and improve the symptoms of radiation enteritis 
and esophagitis. Moreover, the combined supplementation 
of β‑hydroxy‑β‑methylbutyrate, L‑glutamine and L‑arginine 
improved radiation‑induced acute intestinal damage (50). 
Therefore, glutamine has an important protective effect for 
patients receiving radiotherapy and can improve the immune 
function of the body.

Pentoxifylline (PTX). PTX is a methyl xanthine derivative 
with anti‑inflammatory, immunomodulatory and vascular 
effects (51‑53). PTX can be used for the treatment of delayed 
skin changes, such as skin fibrosis and necrosis caused by 
radiotherapy. It is usually combined with vitamin E after 
breast resection and reconstruction. It can also be used in the 
conservative treatment of radioactive bone necrosis (54). PTX 
can also decrease the risk of radiation‑induced oral mucositis 
after oral administration. In an experimental pilot study, PTX 
suppressed TNF receptor upregulation and neuronal respon‑
siveness in patients with RTOM (55). Similarly, radiotherapy 
combined with PTX and vitamin E reduced the incidence 
of severe oral mucositis and dysphagia after adjusting for 
age (56). Therefore, PTX treatment should be considered for 
radiodermatitis and radiation‑induced mucositis.

Statins. Statins are used to lower lipid levels (57), and 
can ameliorate IR‑induced inf lammation and fibrotic 
remodeling (16,58). Statins have been found to reverse radi‑
ation‑induced gene expression disorders such as p53. p53 is 
closely associated with radiosensitivity and radiation‑induced 
cell death; notably, statins can target the p53‑controlled meval‑
onate pathway, thereby reducing the risk of cancer (59,60). The 
IR‑induced expression of proinflammatory and profibrotic 
marker genes was revealed to be attenuated by statins in vitro 
and in vivo (61‑63). These effects were mediated by the attenu‑
ation of Rho signaling. Ostrau et al (64) reported that lovastatin 
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Figure 1. Pathway of radiation response. IR, ionizing radiation; SSBs, single‑strand breaks; DSBs, double‑strand breaks. The figure was generated using online 
drawing software tools (https://www.medpeer.cn). 

Figure 2. Main radioprotectors or mitigators, and their probable mechanism of action. PTX, pentoxifylline; SOD, superoxide dismutase; Mn, manganese. The 
figure was generated using online drawing software tools (https://www.medpeer.cn).
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showed tissue‑specific anti‑inflammatory and anti‑fibrotic 
effects in vivo. Furthermore, simvastatin and pravastatin alle‑
viated IR‑induced intestinal toxicity by inhibiting Rho‑ROCK 
signaling (65,66). Wedlake et al (67) demonstrated that statins 
reduced IR‑induced acute gastrointestinal symptoms in a 
group of patients receiving pelvic radiotherapy, and showed 
long‑term protective effects. However, while oral adminis‑
tration of simvastatin was shown to improve hematopoietic 
damage and gastrointestinal dysfunction caused by radiation 
in male mice, it worsened radiation‑induced symptoms in 
female mice, which was related to sex‑specific differences in 
gut flora (68). This suggests that using statins for treatment 
may be sex‑specific. Based on these pleiotropic effects, espe‑
cially on IR‑induced intestinal toxicity, statins have potential 
as radioprotectors and mitigators for IR‑induced injuries. In 
addition, statins can prevent radiation‑induced heart disease. It 

was found that statins can inhibit activation of the transcription 
factor NF‑κB during the acute response period after normal 
tissue exposure to radiation, and can significantly reduce 
TGF‑β1, ROCK I and phosphorylated‑Akt expression, thereby 
ameliorating radiation‑induced cardiac fibrosis (69).

Carbamazepine (CBZ). CBZ is an inducer of autophagy, which 
has been approved for the clinical treatment of bipolar disorder, 
trigeminal neuralgia and epilepsy (70). The safety of CBZ for 
patients with a variety of diseases has led to it being considered 
for radiation protection in humans. CBZ administration prior 
to radiation has been shown to increase hematopoietic cell 
survival and autophagy (71). However, despite its radioprotec‑
tive and mitigative effects in normal murine tissue in vitro 
and in vivo, CBZ did not exert such effects in human cells 
in vitro. In addition, no reduction in side effects was observed 

Figure 3. Main radiation treatment agents, along with their probable mechanism of action. GM‑CSF, granulocyte‑macrophage colony stimulating factor; 
G‑CSF, granulocyte colony stimulating factor; M‑CSF, macrophage colony stimulating factor; IL, interleukin; TPO, thrombopoietin; M‑GDF, megakaryocyte 
growth development factor; FL, Flt‑3 ligand; TSLP, thymic stromal lymphopoietin; KGF, keratinocyte growth factor; HAPO, hemangiopoietin; LIF, leukemia 
inhibitory factor; PF4, platelet factor 4; EPO, erythropoietin; SCF, stem cell factor; SDF‑1, stromal cell‑derived factor‑1; MSC, mesenchymal stem cell; AED, 
5‑androstenone. The figure was generated using online drawing software tools (https://www.medpeer.cn). 
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Table I. List of main radioprotectors or mitigators along with the probable mechanism of action.

Type Example Mechanism of action Limitations (Refs.)

Chemical   Most of them have low
radioprotectors   potency, short time of
and mitigators   action, high toxicity and
   severe side effects
   (hypotension, vomiting,
   flushing)
 Amifostine Free radical scavenging,  (18‑31)
  DNA repair
 Benzydamine Preventing and treating  (32‑37)
  oral mucositis triggered
  by radiation therapy
 Glutamine An essential antioxidant  (39‑50)
  that prevents free radical
  damage
 Pentoxifylline Anti‑inflammatory,  (51‑56)
 (PTX) immunomodulating and
  vascular effects
 Statins   
 Lovastatin Anti‑inflammatory and  (64)
  anti‑fibrotic effects 
 Simvastatin and Alleviate IR‑induced  (65‑66)
 pravastatin intestinal toxicity 
 Carbamazepine Further research is  (70‑73)
 (CBZ) needed
 Meloxicam Anti‑proliferation and  (74‑78)
  anti‑angiogenesis
 Metformin Reducing tumor stem cells,  (79‑85)
  and suppressing proliferation
  and hypoxia
 Mn porphyrin‑ Powerful SOD mimics  (86)
 based SD mimics
 Redox nanoparticles Free radical scavenging  (87‑89)
 Toll‑like receptors Inhibits apoptosis and  (90‑102)
  improves cell survival
 S1P Promotes survival  (100,103‑106)
Radioprotective   Only in vitro and
agents of natural   animal experiments
origin   have been performed,
   no clinical validation
  Botanical and Extracted from Strong antioxidant  (111,112)
  herbal extracts fig waste leaf activity
 flavonoid
 compounds
 Grape seed extract High antioxidant and  (107)
  free radical‑scavenging
  capabilities
 Green tea extracts Certain radioprotective  (108,113)
 and coffee bean effects
 extracts
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in patients on CBZ for radiotherapy of trigeminal neuralgia, 
head‑and‑neck cancer or lung cancer (72,73).

Meloxicam. Meloxicam is a nonsteroidal anti‑inflammatory 
drug (NSAID). It is a selective inhibitor of cyclooxygenase‑2 
(COX‑2), with anti‑proliferative and anti‑angiogenetic effects, 
and is beneficial in alleviating gastrointestinal toxicity and 
improving radiation tolerability (74‑76). Meloxicam can be 
used as a radioprotector in the mandible of irradiated rats. In 
addition, a single dose of meloxicam administered 1 h after 
a lethal radiation dose can achieve an increased survival 
rate of 30 days; however, it has been reported to be ineffec‑
tive to administer meloxicam 24 h after lethal exposure (75). 
Intercellular adhesion molecule‑1 (ICAM‑1) and COX‑2 are 
known factors involved in causing myocardial infarction after 
radiation exposure and were previously reported to be elevated 
after radiation exposure (77). According to Uehara et al (78), 
meloxicam somewhat upregulated radiation‑induced expres‑
sion of ICAM‑1 and COX‑2, i.e., the synergistic effect of 
NSAIDs with radiation was found, which would be a limita‑
tion of the clinical application of meloxicam.

Metformin. Metformin is a biguanide used for the treatment of 
type II diabetes. Previously, it has been report that metformin 
can exert radiosensitivity and radioprotective effects, and it 
can enhance the radiation response by reducing tumor stem 
cells, and suppressing proliferation and hypoxia (79‑82). 
Additionally, metformin may prevent IR‑induced esophageal 
carcinoma invasion and metastasis (83).

In vitro studies have shown, when administered 2 h before 
irradiation, metformin increased the expression of the BCL2 
gene, and reduced the expression of BAX and CASP3 genes, 
thereby suppressing IR‑induced apoptosis (84,85). Therefore, 
metformin has potential as a novel radioprotector against 
IR‑induced apoptosis.

Emerging radioprotectors
Manganese (Mn) porphyrin‑based superoxide dismutase 
(SOD) mimics. Mn porphyrins are powerful SOD mimics 

that have radioprotective effects in the lung, prostate and 
brain (86). Lead Mn porphyrins, namely MnTE‑2‑PyP5+ 
(BMX‑010, AEOL10113), MnTnBuOE‑2‑PyP5+ (BMX‑001) 
and MnTnHex‑2‑PyP5+, have entered clinical trials for glioma, 
head and neck cancer, anal cancer and multiple brain metas‑
tases, as well as for radioprotection of normal tissues during 
cancer radiotherapy (86).

Redox nanoparticles. Low‑molecular‑weight (LMW) nitroxide 
compounds have potential as radioprotectors or mitigators. 
Among the various nitroxide radicals, 4‑amino‑2,2,6,6‑tetra‑
methylpiperidine‑1‑oxyl (4‑amino‑TEMPO, also known as 
tempamine or NH2‑TEMPO), had the highest radioprotec‑
tive efficacy in vitro (87,88). Feliciano et al (89) reported 
that a novel nanoparticle‑based radioprotective agent, 
NH2‑TEMPO‑containing redox nanoparticles, had good 
bioavailability and low toxicity. Most LMW compounds 
have extremely poor bioavailability, impairing their thera‑
peutic efficacy and limiting their clinical use; therefore, their 
conversion into redox nanoparticles can effectively remove 
radiation‑induced reactive oxygen species (ROS), with charac‑
teristic long‑term bioavailability and extended tissue residence 
time.

Toll‑like receptors (TLRs). TLRs are pattern recognition 
receptors, which have been studied extensively in radiation 
protection in recent years (90‑98). TLR2, TLR5 or TLR9 
agonists have been shown to inhibit radiation‑induced apop‑
tosis and improve cell survival (91‑93). The TLR4 agonist 
lipopolysaccharide has been reported to protect IR‑induced 
bone marrow damage and reduce the mortality of mice after 
irradiation (94). The TLR5 ligand CBLB502 has been shown 
to serve a radioprotective role in mouse and rhesus monkey 
models of bone marrow, gut and reproductive damage (95,96). 
A novel TLR9 agonist containing synthetic immunomodula‑
tory CpR (R=2'‑deoxy‑7‑dezaguanosine) dinucleotide and 
3'‑3'‑attached novel structures can also protect mice from 
radiation‑induced gastrointestinal syndrome (97). There is 
growing clinical evidence that radiotherapy combined with 

Table I. Continued.

Type Example Mechanism of action Limitations (Refs.)

  Vitamins, minerals Vitamins A, C and E, Antioxidant  (114‑119)
  and hormones and selenium
 Melatonin Effective scavenger of  (120,121)
  hydroxyl radical and
  peroxyl radical
  Bacterial extracts Recombinant Antioxidant and  (92,122‑125)
 polypeptide derived radioprotective
 from Salmonella activities
	 flagellin (CBLB502)

GM‑CSF, granulocyte‑macrophage colony stimulating factor; G‑CSF, granulocyte colony stimulating factor; M‑CSF, macrophage colony 
stimulating factor; IL, interleukin; TPO, thrombopoietin; M‑GDF, megakaryocyte growth development factor; FL, Flt‑3 ligand; TSLP, thymic 
stromal lymphopoietin; KGF, keratinocyte growth factor; HAPO, hemangiopoietin; LIF, leukemia inhibitory factor; PF4, platelet factor 4; 
EPO, erythropoietin; SCF, stem cell factor; SDF‑1, stromal cell‑derived factor‑1; MSC, mesenchymal stem cell; AED, 5‑androstenone.
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new TLR agonists targeting TLR3, TLR7/8 or TLR9, in addi‑
tion to protecting normal tissues from radiation and sensitizing 
cancer cells to ionizing radiation, may enhance antitumor 
immunity. Mechanistic studies have shown that TLR agonists 
can enhance dendritic cell‑mediated T‑cell initiation after 
radiotherapy, in some cases leading to the production of 
systemic antitumor immunity and immune memory (98‑102). 
Additionally, it has been reported that one of the protective 
mechanisms of gut flora against radioactive intestinal injury 
is resistance through the TLR signaling pathway. Bacterial 

DNA binding TLR9 act as radiation protection by activating 
the transcription factor NF‑κB. In addition to gut flora, this 
mechanism is also applicable to oral microorganisms (90), 
which supports the protection against radiotherapy‑induced 
oral mucositis. Furthermore, activation of the TLR9 pathway 
protected against IR‑induced intestinal injury (90,99). These 
findings suggested that activating the TLR signaling pathway 
may have significant radioprotective effects, indicating that 
TLRs have great advantages as a new target for radiation 
protection.

Table II. List of main radiation treatment agents along with the probable mechanism of action.

Type Example Mechanism of action Limitations (Refs.)

Stem cell MSC Secrete hematopoietic‑ Occurrence of severe (127‑152)
therapy  related factors, GvHD
  facilitate hematopoietic
  reconstruction 
Cytokines  Regulate immune, nerve Combination of cytokines
  and endocrine function; needs further study
  participate in inflammation;
  promote wound healing;
  regulate hematopoiesis
 GM‑CSF, Promote the recovery  (129)
 G‑CSF, M‑CSF of the granulocyte
  system and preven
  infection
 IL‑3, IL‑11, Promote the recovery  (129)
 TPO, M‑GDF of megakaryocytes and
  thrombogenesis, and
  prevent bleeding
 IL‑7, FL, Promote the recovery  (129)
 TSLP, KGF of the lymphocyte line,
  and promote the
  reconstruction of immune
  function
 IL‑3, IL‑6, IL‑11, Affect the proliferation  (153)
 FL, HAPO, TNF‑α, and differentiation
 LIF, PF4, G‑CSF, of hematopoietic cells
 GM‑CSF, EPO
 SCF, TPO, FL, Antiapoptotic factor  (153)
 IL‑3, SDF‑1 
 KGF, IL‑11 Enhance repair  (154)
Immuno‑ β‑glucan water‑ Induce the production Proinflammatory response (159‑161)
modulators soluble of hematopoietic and immunogenicity;
 polysaccharide, cytokines and stimulate long‑term use may cause
 ginsenosides, the regeneration of allergies and organ damage
 AED hematopoietic stem
  cells

GvHD, graft‑vs. ‑host disease; GM‑CSF, granulocyte‑macrophage colony stimulating factor; G‑CSF, granulocyte colony stimulating factor; 
M‑CSF, macrophage colony stimulating factor; IL, interleukin; TPO, thrombopoietin; M‑GDF, megakaryocyte growth development factor; 
FL, Flt‑3 ligand; TSLP, thymic stromal lymphopoietin; KGF, keratinocyte growth factor; HAPO, hemangiopoietin; LIF, leukemia inhibitory 
factor; PF4, platelet factor 4; EPO, erythropoietin; SCF, stem cell factor; SDF‑1, stromal cell‑derived factor‑1; MSC, mesenchymal stem cell; 
AED, 5‑androstenone.
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Sphingosine 1‑phosphate (S1P). S1P increases the 
likelihood of human cell survival by activating the phos‑
phoinositide 3‑kinase/AKT and mitochondrion‑dependent 
pathways (100,103). Nitzsche et al (104) showed that S1P 
can maintain blood perfusion and microvascular patency 
in ischemic penumbra. Moreover, S1P and its analogs 
(FTY720/fingolimod) preserved testicular and ovarian func‑
tion and fertility in IR‑exposed animals and humans (105,106).

Radioprotective agents of natural origin. Some of the afore‑
mentioned chemical radioprotective agents are unsuitable for 
clinical use because of their toxicity and adverse side effects. 
Therefore, effective radioprotective agents with low toxicity 
have become a focus of research.

Botanical and herbal extracts. Some botanical and herbal 
plants, such as black tea extract, have radioprotective proper‑
ties (107‑110). Flavonoid compounds extracted from fig leaf 
exert strong antioxidant effects by removing superoxide anion 
and hydroxyl free radicals (111,112). Moreover, they signifi‑
cantly reduced the levels of ROS and malondialdehyde, and 
increased catalase, SOD and glutathione peroxidase activities 
in MC3T3‑E1 mouse calvaria‑derived preosteoblast cells. 
In another study (107), the blood samples of subjects who 
received 100, 300, 600 or 1,000 mg grape‑seed extract were 
subjected to 1.5 Gy of X‑ray radiation. The grape‑seed extract 
reduced IR‑induced DNA damage, exhibiting high antioxidant 
and free radical‑scavenging effects. Furthermore, green tea 
and coffee bean extracts are reported to exert radioprotective 
effects (108,113).

Vitamins, minerals and hormones. Vitamins A, C and E, 
and selenium, are antioxidants that act as radioprotective 
agents (114). Dietary vitamin A in soybean oil can prevent the 
internal radiation‑induced biological effects of radionuclides 
in mice (115). Vitamins C and E can reduce chromosome 
breakage in human lymphocytes by scavenging ROS, thus 
protecting against internal radiation damage caused by the 
radionuclide iodine‑131 (116‑118). Vitamin E, alone or in 
combination with WR‑3689 [S‑2((3‑methylaminopropyl)
amino)ethylphosphorothioic acid], increased the survival rate 
of IR‑exposed mice (118). Selenium can also protect against 
free radical‑induced damage. Selenium reversed the effects 
of IR on spermatogenesis in mice, thereby reducing damage 
to the testicles (119). Melatonin, a hormone produced by the 
pineal gland can scavenge hydroxyl radicals and peroxyl radi‑
cals to exert a radioprotective effect (120,121).

Bacterial extracts. Some bacterial species are resistant to 
radiation (122). A recombinant polypeptide from Salmonella 
flagellin (CBLB502) exhibited high radioprotective efficacy 
in mice and primates (92). In addition, an extracellular 
polysaccharide from the radiation‑resistant bacterium 
Deinococcus showed antioxidant and radioprotective activi‑
ties in vitro (123). Lactobacillus rhamnoides GG has been 
reported to protect the intestinal epithelium from radiation 
damage by releasing lipophosphate, promoting macrophage 
activation and the migration of mesenchymal stem cells (124). 
Furthermore, another study (125) reported that intestinal 
microorganisms are the primary regulators against radiation 

damage and protect the hematopoietic and gastrointestinal 
systems, among which Psilocytidae and Enterococcaceae and 
their downstream metabolites (propionate and tryptophan) 
have the greatest defense. The study suggests that microbial 
metabolites can protect against radiation damage; therefore, 
bacterial extracts have potential as radioprotective agents.

Radiation therapeutic agents. IR affects hematopoietic tissues, 
and significantly reduces the number of neutrophils and plate‑
lets. The resulting decrease in the number of peripheral blood 
cells can cause sepsis, bleeding, anemia and, in some cases, 
death (126). Therefore, radiation therapeutics aim to promote 
the recovery of hematopoietic function. At present, acute 
radiation sickness is treated clinically using biological agents, 
such as cytokines and mesenchymal stem cells (MSCs), modu‑
late normal immune system function (127) and the secretion of 
hematopoietic growth factors, and promote reconstruction of 
the hematopoietic microenvironment (128). Biological agents 
have advantages such as low immunogenicity, and ease of 
transfection and expression of exogenous genes. Therefore, 
they are used to treat IR‑induced injury (129). Table II lists 
the main radiation therapeutic agents along with the probable 
mechanism of action.

Stem cells. MSCs originate in the embryonic mesoderm and are 
the most important stem cells in the bone marrow matrix. MSCs 
are capable of multidirectional differentiation and immune regu‑
lation (127). MSCs secrete a variety of hematopoiesis‑related 
factors, such as interleukin (IL)‑6, Flt‑3 ligand (FL), stem cell 
factor (SCF), granulocyte colony‑stimulating factor (G‑CSF) and 
granulocyte‑macrophage colony stimulating factor (GM‑CSF), 
making up for IR‑induced deficiencies in cytokines. Therefore, 
MSCs can repair IR‑induced damage to bone marrow stromal 
cells and the hematopoietic microenvironment. In addition, 
MSCs have hematopoietic support functions in bone marrow. 
The described characteristics of MSCs render them important 
therapeutics for IR‑induced injury (130‑132).

Liu et al (133) reported that MSCs promote recovery of 
hematopoietic function. Additionally, MSCs can inhibit 
T‑cell activation and proliferation by secreting cytokines, 
growth factors and receptors. Co‑transplantation of MSCs 
and hematopoietic stem cells into recipient bone marrow has 
been shown to prevent and reduce graft‑versus‑host disease 
(GvHD) (134). MSCs exhibit ectopic differentiation and block 
distal microvessels and other inherent defects (135). Further 
research will likely lead to the development of more effective 
and safer MSC‑based therapeutics for IR‑induced injuries.

Numerous studies and clinical trials have shown that 
MSCs have a significant effect on wound recovery from 
radiation burns (136‑138). For the first time, stem cells were 
transplanted into a patient with deep skin burns and it was 
revealed that the patient exhibited faster healing. In addi‑
tion, paracrine factors from stem cells used to treat local 
radiation burns in rats, can lead to increased skin regen‑
eration and decreased leukocyte infiltration. Furthermore, 
Wharton's jelly‑derived‑MSC‑derived conditioned medium 
(MSC‑CM) (139) was revealed to be effective for the treatment 
of IR‑induced skin wounds in rats, suggesting that MSC‑CM 
could serve as the basis of novel cell‑free treatments for 
radiation dermatitis.
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For radiation‑shock trauma, stem cells have been shown 
to enhance the response of the body to infection and improve 
chronic diseases, such as osteomyelitis and osteoarthritis that 
radiation‑shock trauma can induce (140). In addition, compart‑
ment syndrome and segmental bone defects can also be treated 
with stem cell transplantation (141,142).

For treating acute radiation syndrome, hematopoietic stem 
cell transplantation can be used to rebuild hematopoietic 
functions, which attracted attention after the 1999 Tokaimura 
nuclear accident in Japan. Furthermore, MSCs can promote 
the implantation of hematopoietic stem cells and prevent the 
occurrence of GvHD (143), thus improving patient survival. 
In addition, a number of studies have shown that MSCs 
have a good tissue repair effect on the gastrointestinal tract, 
lung injury and burn‑burn complex injury caused by radia‑
tion (144‑146).

Radiation cataracts are also a serious complication caused 
by IR, and Maleki et al (147) showed that umbilical cord 
MSCs can be induced by the vitreous to differentiate into 
lens fibroblasts, thus providing the possibility for treatment 
of cataracts. In 2016, the Zhongshan University Eye Hospital 
used endogenous stem cells to regenerate new lenses in situ, 
successfully restoring complete vision to children with 
congenital cataracts (148).

Radiation exposure can also cause IR‑induced xerostomia, 
which is a permanent side effect of radiotherapy for head and 
neck cancer that damages the large salivary glands (149‑151). 
A clinical trial (152) of 33 patients with xerostomia caused 
by radiotherapy for oropharyngeal squamous cell carcinoma 
evaluated the long‑term safety of injecting autologous adipose 
tissue‑derived MSCs/stromal cells into the mandibular glands. 
The results showed that this therapy was safe and beneficial for 
IR‑induced dry mouth‑related symptoms.

In summary, MSC‑based stem cell therapy has been used 
in a variety of radiation‑induced diseases as an effective 
post‑radiation disease treatment strategy and has played an 
important role in clinical practice.

Cytokines and immunomodulators. Cytokines regulate 
immune, nerve and endocrine function; participate in inflam‑
mation; promote wound healing; and regulate hematopoiesis. 
Some cytokines have marked effects on IR‑induced inju‑
ries (129). Several cytokines promote recovery of granulocytes 
and prevent infection (129), such as GM‑CSF, G‑CSF and 
macrophage colony‑stimulating factor, whereas others promote 
recovery of megakaryocytes and thrombogenesis, and prevent 
bleeding, such as IL‑3, IL‑11, thrombopoietin (TPO) and 
megakaryocyte growth development factor. Other cytokines 
promote lymphocyte‑mediated recovery of immune function, 
such as IL‑7, FL, thymic stromal lymphopoietin and kerati‑
nocyte growth factor (KGF). Some cytokines are involved in 
early differentiation, namely IL‑3, IL‑6, IL‑11, FL, heman‑
giopoietin, TNF‑α, leukemia inhibitory factor and platelet 
factor 4, whereas others act on the anaphase of differentiation 
(e.g., G‑CSF, GM‑CSF and erythropoietin). Cytokines with 
antiapoptotic effects include SCF, TPO, FL, IL‑3 and stromal 
cell‑derived factor‑1 (153). Finally, some cytokines promote 
tissue repair and ameliorate multiple organ dysfunction 
syndrome, such as KGF and IL‑11 (154). However, cytokines 
are pleiotropic, i.e., they exert varying biological effects 

on different target cells; for example, IL‑11 can effectively 
promote the recovery of gastrointestinal mucosa (153). Certain 
cytokines interact with other cytokines, forming a complex 
cytokine network in vivo. Therefore, blocking or promoting 
one cytokine may affect the activities of other cytokines. Some 
cytokines increase sensitivity to IR when used alone, such as 
tumor growth factor‑β, IL‑6 and TNF‑α (155‑157). These 
cytokines must be used in combination with other cytokines. 
Therefore, further research is needed to identify the optimum 
combinations of cytokines for the treatment of IR injury.

Immunomodulators are not cytokines but induce the 
production of hematopoietic cytokines and stimulate the 
regeneration of hematopoietic stem cells. Cytokine release 
stimulates the growth, differentiation and proliferation of 
hematopoietic progenitor cells and stem cells. Therefore, 
immunomodulators are important therapeutics for IR‑induced 
injury. Based on its immunopharmacological effect, β‑glucan 
water‑soluble polysaccharide has been used to modulate the 
host immune response (158). Glucan can increase the number 
of endogenous multifunctional hematopoietic stem cells in 
irradiated mice (159). Ginsenosides have also been shown to 
stimulate the production of IL‑1 and IL‑6. Administration 
of 100 mg/kg ginsenoside 24 h before γ‑ray irradiation 
significantly increased the survival rate of mice, as well as the 
numbers of bone marrow cells, spleen cells, peripheral blood 
neutrophils, lymphocytes and platelets, and the GM‑CFC 
level (160). The dehydroepiandrosterone derivative 5‑andro‑
stenone has been reported to stimulate the synthesis of IL‑1, 
IL‑3 and IL‑6 to promote recovery of the irradiated hemato‑
poietic system in mice (161).

Gene therapy. There is much interest in gene therapy for 
radiation protection (162,163). At present, gene therapy for 
IR‑induced injury typically involves growth factor and free 
radical inhibitor genes, to inhibit apoptosis and enhance 
damage repair (163). In addition, gene transfer vectors, 
multiple gene combinations and targeted specific gene therapy 
can be used to prevent harmful effects of IR. SOD, CAT, snail 
homolog 2, multidrug resistant gene 1, IL‑3, KGF and eryth‑
ropoietin have been evaluated in preclinical models regarding 
their radioprotective potential (164). Zhang et al (165) reported 
that IR‑induced SOD2 overexpression increased the radiosen‑
sitivity of HT‑29 colon cancer cells and prevented IR induced 
damage to normal colon (CCD841) cells.

3. Conclusion

Radiation exposure events occur occasionally, yet increasing 
numbers of patients are undergoing radiotherapy for tumors, 
which can have severe side effects. The present review 
discussed the clinical potential of radioprotectors, radiation 
mitigators and radiation therapeutic agents.

The ideal radioprotective agent would exert a protective 
effect when administered before or after IR exposure, prevent 
or repair IR‑induced tissue damage, have a rapid onset of action 
and long half‑life, be administered orally, and be resistant to 
the deleterious effects of IR and high temperatures. However, at 
present, most radioprotective agents with marketing approval 
or in clinical trials are administered intravenously. Accidental 
radiation exposure occur occasionally, yet increasing numbers 
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of patients are undergoing radiotherapy for tumors, which 
can have severe side effects. The present review discussed the 
clinical potential of radioprotectors, radiation mitigators and 
radiation therapeutic agents. This review may help to provide 
improved ideas and application value for clinical radiological 
protection.
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