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ABSTRACT

Safety-related drug failures remain a major challenge for the pharmaceutical industry. One approach to ensuring drug
safety involves assessing small molecule drug specificity by examining the ability of a drug candidate to interact with a
panel of “off-target” proteins, referred to as secondary pharmacology screening. Information from human genetics and
pharmacology can be used to select proteins associated with adverse effects for such screening. In an analysis of marketed
drugs, we found a clear relationship between the genetic and pharmacological phenotypes of a drug’s off-target proteins
and the observed drug side effects. In addition to using this phenotypic information for the selection of secondary
pharmacology screens, we also show that it can be used to help identify drug off-target protein interactions responsible for
drug-related adverse events. We anticipate that this phenotype-driven approach to secondary pharmacology screening will
help to reduce safety-related drug failures due to drug off-target protein interactions.
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Unintended adverse side effects remain a major reason for clini-
cal trial failure and postmarketing drug withdrawal (Hamon
et al., 2009; Kola and Landis, 2004; Roberts et al., 2014). One ap-
proach used to improve drug safety is to ensure specificity of
the drug candidate against the intended target or, at the very
least, to eliminate off-target interactions likely to cause adverse
events. To help ensure small molecule drug specificity, pharma-
ceutical companies often perform in vitro secondary pharmacol-
ogy screening whereby a compound is assessed for its ability to
bind to and/or modulate a variety of off-target proteins (Bowes
et al., 2012; Whitebread et al., 2016).

Currently, regulatory authorities do not mandate any spe-
cific secondary pharmacology screening, except for testing
whether drugs inhibit the Kv11.1 or “hERG” potassium channel
(encoded by KCNH2) (ICH, 2005), a known mechanism through
which drugs can cause cardiac arrhythmias (Hamon et al., 2009).
Knowing what proteins to select for a counter screen is difficult
and requires knowledge of a given protein’s function, and the
consequences of it being inadvertently “drugged” in humans. In
many ways this challenge is similar to that faced by drug

developers when trying to determine what proteins to target to
treat disease; understanding the outcome of drugging a certain
target is difficult and often is not determined until the comple-
tion of lengthy clinical trials. Indeed, the FDA has highlighted
the fact that proteins included on counter screens often lack a
clear link to human safety (Papoian et al., 2015) although when
four pharmaceutical companies compared their secondary
pharmacology screens there was some overlap in terms of the
proteins included (Bowes et al., 2012). To tackle these issues,
there are two sources of data that provide insight into the func-
tion and consequence of drugging specific proteins in humans;
pharmacology; and human genetics.

Pharmacology provides knowledge of drug indications which
reveal the phenotypic effects of functionally modulating a drug
target, but this is limited by the small number of human pro-
teins that have been successfully drugged (672 out of approxi-
mately 20 000) (Ponomarenko et al., 2016). Genetic evidence can
also be used to predict the effects of drugging a protein and is
increasingly being used in the pharmaceutical industry to select
therapeutic targets (Kamb et al., 2013; Plenge et al., 2013). Prior

VC The Author(s) 2018. Published by Oxford University Press on behalf of the Society of Toxicology.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (http://creativecom-
mons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work
is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contactjournals.permissions@oup.com

593

TOXICOLOGICAL SCIENCES, 167(2), 2019, 593–603

doi: 10.1093/toxsci/kfy265
Advance Access Publication Date: October 22, 2018
Research Article

https://academic.oup.com/


work has established genetics as a way of identifying drug tar-
gets both in large systematic analyses (Nelson et al., 2015) and
for individual drug targets such as PCSK9 (Abifadel et al., 2003;
Ference et al., 2018; Hess et al., 2018). Genetics could be used in a
similar manner to select “off-target” proteins that we do not
want drugs to modulate by helping us identify proteins whose
modulation would have safety concerns. For example, loss-of-
function variants in KCNH2 (encoding the hERG channel) cause
long QT syndrome (Curran et al., 1995) consistent with the fact
that pharmacological inhibition of hERG can result in cardiac ar-
rhythmia. Similarly, loss-of-function variants in CTSD (encoding
cathepsin D) cause neuronal ceroid lipofuscinosis, a retinal dis-
ease, mirroring retinal phenotypes observed in animals admin-
istered drugs that inadvertently inhibited cathepsin D (Siintola
et al., 2006; Steinfeld et al., 2006; Zuhl et al., 2016). For these
examples, the relationship between the genetics of the off-
target protein and drug side effects is well established. In this
study, we examined whether genetics, as well as pharmacology,
can be used more broadly to help predict drug side effects
resulting from drug off-target protein interactions.

To do this, we systematically compared the off-target drug-
protein interactions and the observed side effects of a set of
marketed drugs. Layering in known genetic associations and
drug indications for these off-target proteins allowed us demon-
strate a clear relationship between these phenotypes and drug
side effects. Our findings have implications for the selection of
small molecule secondary pharmacology screens as well as for
the retrospective identification of off-target proteins contribut-
ing to drug side effects.

MATERIALS AND METHODS
Data Download and Processing

Drug Side Effect and Target Information
The following pharmacology databases were downloaded:
DrugBank (v5.0.6, r2017-04-01; http://www.drugbank.ca; last
accessed April 10, 2017) (Knox et al., 2011; Law et al., 2014;
Wishart et al., 2006, 2008), SIDER (v4.1, r2015-10-21; http://sideef-
fects.embl.de/; last accessed January 14, 2016) (Kuhn et al., 2010,
2016), OFFSIDES (r2012-03-14; http://tatonettilab.org/resources/
tatonetti-stm.html; last accessed June 23, 2016) (Tatonetti et al.,
2012), and Pharmaprojects, Pharma Intelligence 2016 (d2016-11-
22; https://pharmaintelligence.informa.com/; last accessed
November 22, 2016).

Side effects of marketed drugs were obtained from the SIDER
database that lists side effects reported on drug labels (Kuhn
et al., 2010, 2016). Side effect phenotypes were mapped to
MedDRA terminology to allow systematic comparison between
phenotype terms from different sources (see below). Side effects
seen in patients treated with a placebo were removed. To get
high-confidence side effects we only considered side effects
also present in postmarketing physicians’ reports (within the
FDA Adverse Event Reporting System, or FAERS) that were sta-
tistically significant, as determined from the OFFSIDES database
(Tatonetti et al., 2012); p values of drug-side effect associations
were used to impose a 5% false discovery rate (Benjamini and
Hochberg, 1995). Side effects belonging to the “General disorders
and administration site conditions” MedDRA category were re-
moved as these were likely to be common side effects associ-
ated with drug treatment generally rather than side effects due
to specific off-target interactions. The indications of these drugs
were obtained from Pharmaprojects.

All proteins that interact with the set of drugs extracted
from SIDER (including both intended targets and “off-targets”)
were identified using Prous Institute Symmetry and
Chemotargets CLARITY (http://www.chemotargets.com), which
integrate carefully selected data on compound-target interac-
tions from literature, patent applications, and both publically
accessible and commercial databases (Excelra GOSTAR).
Bioinfogate’s safety intelligence portal, OFF-X (http://www.tar-
getsafety.info), was also used in the process. From this set of
drug-protein interaction pairs, the therapeutic drug-target pairs
were identified using Drugbank (Knox et al., 2011) with the re-
mainder of interactions classified as “off-target.” Interactions
with a number of cytochrome P450 enzymes were excluded to
rule out interactions related to drug metabolism. Altogether, we
examined 618 drugs with side effect and target information in
the enrichment analysis. For the logistic regression we limited
ourselves to small molecule drugs using Drugbank as the source
of modality information and analyzed 587 drugs.

Drug target phenotype information. The phenotypic associations of
these drugs’ targets were obtained from both human genetics
and pharmacology. To get genetic information, genes involved
in Mendelian traits curated in Online Mendelian Inheritance in
Man (OMIM) were obtained from the Human Phenotype
Ontology (HPO) (r2017-04-13; http://human-phenotype-ontol-
ogy.github.io; last accessed June 7, 2017) (Kohler et al., 2017). For
each OMIM syndrome, we considered only phenotype terms de-
fined as frequently associated with the disease by HPO
(“frequent frequencies”) giving 3159 genes associated with 4056
OMIM syndromes, each of which was described by a list of HPO
phenotype terms. If the protein was the intended target of an
approved drug, pharmacological phenotypes were assigned us-
ing the indication of that drug obtained from Pharmaprojects.
Where there were different variants in the same gene with vary-
ing disease associations or drugs with different indications
modulating the same protein we took the union of all pheno-
types to make sure we considered all potential safety risks that
could be caused by modulating a particular target.

Phenotype Mapping and Comparison

To allow comparison between side effect terms and phenotypes
from pharmacology and genetics we mapped all phenotypes to
MedDRA terminology using the Unified Medical Language
System (UMLS) Metathesaurus (2015AB release), MetaMap natu-
ral language processing (NLP) tool (MetaMap2016, r2016-01), and
the UMLS-Interface software (https://www.nlm.nih.gov/re-
search/umls/; last accessed May 9, 2016) (McInnes et al., 2009).
All phenotype terms were mapped to the most specific MedDRA
term within the UMLS which was in turn mapped to MedDRA
Higher Level Group Terms (HLGT) and System Organ Class (SOC)
terms. Similarity scores for all MedDRA terms were calculated
using the UMLS-Similarity modules from the UMLS-Interface
software. For the enrichment analysis we defined a similarity
score between two terms of greater than or equal to 0.7 as a
“phenotype match.”

Enrichment Analysis

We annotated phenotype matches (as defined above) between
drug side effects and off-target phenotypes obtained from ge-
netics, pharmacology, or both. To test for which phenotypes off-
target genetics/pharmacology tended to reflect drug side effects
we performed an enrichment analysis using 230 MedDRA HLGT
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terms (ie, all HLGT terms for which there were side effects in
our dataset). First, we removed all side effect terms that
mapped to the same SOC term as the drug indication to avoid
side effects likely to represent exaggerated pharmacology (eg,
drugs with cardiac indications were removed when we consid-
ered cardiac arrhythmia as a side effect). Second, we excluded
drugs where the intended target had genetic or pharmacological
evidence for the phenotype reasoning that such effects were
more likely to be modulated by the intended target rather than
an off-target interaction. We then recorded the number of drugs
that had a matching side effect and off-target phenotype (ie, the
drug side effect matched the phenotype of at least one of the
drug’s off-targets), absence of the side effect and absence of a
matching off-target phenotype, presence of side effect but ab-
sence of a matching off-target phenotype, and absence of a side
effect but presence of an off-target phenotype. Drugs with phe-
notype matches with the intended target were removed from
the analysis. We constructed 2 � 2 contingency tables contain-
ing the number of drugs fulfilling each of these criteria and cal-
culated an odds ratio and p value for each HLGT term using a
two-sided Fisher’s exact test (Agresti, 2002; Fisher, 1935)
“fisher.test” in the R “stats” package (R version 3.4.2). Fisher’s
exact test was chosen to be robust to small sample sizes in cer-
tain contingency tables (Kim, 2017; Ludbrook, 2008). For instan-
ces where there were zero values in the contingency table (ie,
when no drugs matched the criteria) these were assigned a
pseudocount of one to avoid infinite or zero odds ratio values.
We corrected our significance threshold for multiple testing us-
ing the Bonferroni method which adjusts the p value based on
the number of tests performed (Bland and Altman, 1995). In this
instance, we examined 618 drugs over each of 230 phenotypes
giving a total of 1.4 � 105 tests performed. We considered a p
value of < 3.5 � 10�7 as significant, which is equivalent to an ad-
justed p value < .05.

Logistic Regression

To assess the correlation between off-target phenotypes (from
genetics and pharmacology) and the side effect profile of a drug,
we performed a multivariate logistic regression (using the “glm”
function in the R “stats” package) (R version 3.4.2). Out of the 46
MedDRA HLGT phenotype terms significant in the enrichment
analysis, 44 had a sufficient number of drugs with that side ef-
fect to build a model. The logistic regression model for each of
these phenotypes used disease indication (21 MedDRA SOC or
organ system level terms), whether the intended targets have
genetic evidence matching that phenotype, and whether the
off-targets have evidence for the phenotype as predictors of
drug side effect. All predictors were encoded as binary variables.

Deep Neural Network Modeling of ADRA2B Activity

The R “deepnet” package version 2.0 (Warr, 2012) was used to
generate a categorical deep neural network (DNN) model to pre-
dict whether a compound can bind to ADRA2B. This DNN model
was trained using compounds derived from CHEMBL database
(version 23, last accessed 2017-09-22) with known activities
against ADRA2B (Bento et al., 2014). Compounds marked as “not
active” in CHEMBL were collected as “inactives” for training set.
To avoid the potential discrepancy between different assays,
only compounds with confirmed IC50 values (between 0.52 nM
and 31.88 lM) in radioligand ADRA2B binding assays were used
for the “active” set. A total of 824 structurally unique CHEMBL
compounds, including 720 “inactives” and 104 “actives,” were

used to build the model. The 824 CHEMBL compounds were ran-
domly separated into a training set (75%, 641 compounds) and a
testing set (25%, 183 compounds). The model was first gener-
ated based on the training set, and then validated using the
testing set. The default neural net parameters and multiple
compound properties, including FCFP_4 fingerprints, AlogP, mo-
lecular weight, number of fragment, molecular polar surface
area, molecular solubility, number of H donors, number of H
acceptors, number of aromatic rings, etc. were used for model
training. The generated DNN model reached a high predictive
accuracy of 98.5% (632 of 641) for the training set, with 91.6%
sensitivity of (76 of 83) and 99.6% specificity (556 of 558). Cross-
validation using the testing set resulted a comparable accuracy
of 95.6% (175 of 183), with 76.2% sensitivity (16 of 21) and 98.1%
specificity (159 of 162).

After the DNN model was validated using the test set of
compounds, it was applied to predict the activities of additional
compounds not known to bind ADRA2B. From SIDER, 59 mar-
keted drugs with seizure as a side effect whose intended targets
did not include ADRA2B and that had no ADRA2B interaction
documented in Symmetry were collected. Drugs containing
mixtures of compounds were removed leaving 55 drugs. Out of
the 55 drugs, 16 already had ADRA2B binding data in CHEMBL
with 5 of these drugs showing binding to the receptor. For the
39 remaining drugs, their activity against ADRA2B was pre-
dicted using the DNN model.

Selection of Targets for Secondary Pharmacology Screen

Phenotypes were assigned to all human proteins using genetic
and pharmacological evidence as described above. Using
MedDRA terms, proteins with phenotypes affecting the cardio-
vascular, respiratory, and nervous systems were selected (SOC
terms “Cardiac disorders,” “Vascular disorders,” “Respiratory,
thoracic, and mediastinal disorders,” “Nervous system disor-
ders”) giving 2542 human proteins. To construct a selectivity
screen with immediate application in the pharmaceutical in-
dustry we identified which of these proteins currently have
in vitro assays available from major suppliers (CEREP, Panlabs,
DiscoveRx). We excluded DNA methyltransferases, histone
methyltransferases and transcription factors (with the excep-
tion of nuclear receptors). To reduce redundancy on the panel
representative members were selected. Protein families were
defined using HUGO gene nomenclature committee gene family
assignation. Representative proteins from families were se-
lected by aligning all members of a family against each other
using Clustal Omega (Goujon et al., 2010; Larkin et al., 2007). For
each family member, the percent identity against all other fam-
ily members was summed, and the family member with the
highest value was chosen as the most representative. When
strong evidence for association with a concerning cardiovascu-
lar, respiratory, or nervous system phenotype was present, this
“representative” protein was chosen for inclusion in the selec-
tivity panel. If phenotypic evidence was less convincing the
next most “representative” family member was chosen.

RESULTS

The Genetic and Pharmacological Phenotypes of a Drug’s Off-Targets
Match Its Side Effects
We performed a retrospective analysis of marketed compounds
to assess whether the genetics and intended pharmacology of a
drug’s off-target proteins correlate with its side effects. Drug
side effects were obtained from the drug label (SIDER database)
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(Kuhn et al., 2016) and these were intersected with side effects
from postmarketing reports (OFFSIDES database) (Tatonetti
et al., 2012) to get high-confidence side effects for each com-
pound. To exclude the possibility that some side effects may
represent exaggerated pharmacology rather than being the re-
sult of off-target interactions, we removed side effects in the
same organ system as the drug indication (eg, cardiac arrhyth-
mia side effects were excluded for any drug treating a cardiac
disorder). We annotated both the drugs’ intended targets and
off-targets using various databases as described in the methods.
Altogether 618 individual drugs with side effect and target infor-
mation were analyzed.

We then examined phenotypic associations for each “off-
target” protein with which these drugs interact. Phenotypes
were assigned from genetics (Mendelian diseases caused by var-
iants in the gene encoding the protein) and pharmacology (dis-
ease indications of approved drugs targeting that protein) or
both and mapped to MedDRA terminology. To test for corre-
spondence between these genetic and pharmacological pheno-
types and drug side effects, we performed an enrichment test,
excluding drugs where the intended target had genetic or phar-
macological evidence for involvement in the side effect
phenotype.

For 230 MedDRA terms, we recorded the number of drugs
that had a matching side effect and off-target phenotype (ie, the
drug side effect matched the phenotype of at least one of the
drug’s off-targets), absence of the side effect and absence of a
matching off-target phenotype, presence of side effect but ab-
sence of a matching off-target phenotype, and absence of a side
effect but presence of an off-target phenotype. We constructed
2 � 2 contingency tables containing the number of drugs fulfill-
ing each of these criteria and calculated an odds ratio and p
value for each phenotype term using Fisher’s exact test.

When considering genetic and pharmacological phenotypes
combined we found that for 46 side effect categories, drugs with
off-target phenotypes predicted by these data were more likely
have that particular side effect. Drugs associated with blood
platelet disorders (p ¼ 1.44 � 10�40, OR � 354) and seizure (p ¼
5.38 � 10�39, OR � 541.61) side effects showed the most signifi-
cant enrichment followed by drugs with side effects affecting vi-
sion and glucose metabolism (Table 1). Other phenotypes of
high safety concern where drugs with off-target evidence were

overrepresented were movement disorders, heart failure, vas-
cular hemorrhage, and cardiac arrhythmia (Table 1 and
Supplementary Table 1). To further explore the biology driving
these enrichment results, for each significant phenotype we
identified the most frequently hit off-target protein with genetic
and/or pharmacological support (Table 1).

We then repeated our enrichment analysis using genetic
and pharmacological sources of phenotypes separately. When
only genetic associations were used, results were similar to
those from the combined analysis, suggesting that genetic data
drove most of these predictions (Supplementary Table 2). This
might reflect the fact that fewer off-targets have been drugged
than have genetic evidence; 315 off-target proteins in the analy-
sis had genetic information whereas 202 had pharmacological
information (of these, 94 proteins had both genetics and phar-
macology). When considering only the pharmacological pheno-
types of drug off-targets, 14 out of 230 phenotypes were
significant and drugs associated with heart failure, coronary ar-
tery disease and seizure showed the most significant enrich-
ment (Supplementary Table 3).

These results show that the phenotypes of a drug’s off-
target proteins inferred from genetics or pharmacology can be
used to help predict its side effects and that combining both
sources of phenotypic evidence is likely to be the most powerful
approach to identify the most problematic proteins that a drug
could unintentionally modulate.

Regression Modeling Shows That the Correlation Between Off-Target
Phenotypes and Drug Side Effects Persists When Controlling for
Confounders
Whereas a causal relationship between the phenotypes of a
drug’s off-target proteins and its side effects is mechanistically
plausible, there are potential confounding factors that could
contribute to the enrichment we observe, including side effects
that correlate with the disease being treated. In the enrichment
analysis we removed side effects where there was a likely con-
tribution from drug indication or the genetics of the drug’s
intended target but may not have controlled adequately for all
confounders. To address this, we tested the contribution of drug
indication, on-target genetics and off-target phenotypes (from
genetics and pharmacology) to the side effects of 587 small mol-
ecule drugs in a logistic regression model. We tested the 46

Table 1. Phenotypes Most Significantly Enriched for Matches Between Side Effect and Off-Target Genetics/Pharmacology

Phenotype Term (MedDRA) p Value OR Most Frequently Hit Off-Target

Blood platelet disorders 1.45 � 10�40 353.97 TBXAS1
Seizures 1.82 � 10�37 541.61 ADRA2B
Vision disorders 1.24 � 10�34 80.94 KCNJ13
Glucose metabolism disorders 1.81 � 10�25 66.24 KCNJ11
Movement disorders 1.10 � 10�23 58.98 KCNA1, KCNC1, KCNA2, KCND3, KCNJ10, ADRA2B
Heart failures 3.29 � 10�23 218.55 KCNJ5, KCNJ8
Nonhemolytic anemias 3.05 � 10�22 125.69 TBXAS1
Cardiac and vascular investigations 6.91 � 10�22 11.80 ADRA1B, ADRA1A, ADRA1D
Skin appendage conditions 9.96 � 10�22 51.19 KCNJ8
Bone disorders 9.42 � 10�21 100.83 TBXAS1
Disease coronary artery 1.83 � 10�20 323.05 ADRA1A
Vascular hemorrhagic disorders 2.37 � 10�20 40.39 TBXAS1
Acid-base disorders 3.53 � 10�20 82.54 KCNJ1, KCNJ10
Cardiac arrhythmia NOS 3.10 � 10�19 9.44 KCNQ1, KCNJ2, KCNH2

A p value < 3.5 � 10�7 from Fisher’s exact test was considered significant based on Bonferroni correction for the 1.4 � 10�5 tests performed. This is equivalent to an ad-

justed p value < .05.
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phenotypes that were significant in the enrichment analysis
and, out of 44 with enough data to run the model, we found that
off-target phenotypes were a significant predictor of drug side
effects for 7 phenotypes tested (p < .05). Three of these pheno-
types passed a more conservative threshold adjusted for the
number of side effect classes tested (p < .001) (Figure 1 and
Supplementary Table 4). The vast majority of side effect pheno-
types tested showed a positive association between off-target
phenotypes and drug side effects (38/44). The side effect that
had the most significant contribution from off-target genetics
was cardiac arrhythmia (p ¼ 5 � 10�6, OR ¼ 2.45) (Figure 1).
Thus, the contribution of off-target phenotypes to drug side
effects persists even when controlling for well-established con-
tributors to drug side effects.

Genetics and Pharmacology Can Help to Retrospectively Identify Off-
Target Proteins Contributing to Drug Side Effects
Secondary pharmacology screening is ideally performed as part
of the process of selecting which drug should continue into clin-
ical trials. However, in reality, only a subset of human proteins
can practically be screened against during development. This
means that there is a risk that a drug could have off-target ac-
tivity that is not detected until human exposure to the mole-
cule. When such instances arise, it is critical to be able to
determine which off-target the drug is interacting with so that a
back-up molecule without these effects can be advanced into
trials. We wanted to test whether our approach of applying phe-
notypic associations from human genetics and pharmacology
could be useful for “issue resolution” in such instances.

In our analysis of marketed compounds, 29% of drugs caus-
ing seizure had off-target interactions with the alpha-2B adre-
nergic receptor (ADRA2B) in the dataset used. Recent reports
have implicated gain of function mutations in ADRA2B in famil-
ial adult myoclonic epilepsy (De Fusco et al., 2014)
(OMIM:607876). We asked whether 55 drugs that have seizure as
a side effect but do not have ADRA2B binding data in our off-
target protein dataset might have interactions with ADRA2B
that could contribute seizure. To assess this, we extracted
ADRA2B binding data from ChEMBL (Bento et al., 2014) and
found that five of the 55 drugs with seizure as a side effect had
known ADRA2B interactions (Table 2). Because most of the
drugs (39/55) did not have ADRA2B binding data in ChEMBL, we

generated a ligand-based DNN model to predict whether any of
these 39 drugs might also bind ADRA2B. This DNN model had a
high prediction accuracy of 95.6% as demonstrated by 2-fold
cross validation (see Materials and Methods section).

The DNN model was then applied to predict ADRA2B binding
for the 39 drugs for which seizure was documented as a side ef-
fect, but without known binding to ADRA2B. The predictions in-
dicated that five out of these 39 drugs are likely to bind ADRA2B.
Interestingly, eight of the drugs with confirmed or predicted
ADRA2B binding were antipsychotics or anti-histamines and six
out of these 10 drugs had structurally similar tricyclic ring scaf-
folds (Table 2). Notably, one of the drugs identified as an
ADRA2B interactor, clozapine, is known for its risk of seizure al-
though little was previously known about the underlying mech-
anism (Varma et al., 2011; Williams and Park, 2015). The
confirmation that 10 out of 55 drugs with seizure as a side effect
have known or predicted off-target activity against ADRA2B
demonstrates that human genetics can be used more broadly to
prioritize proteins that may be responsible for a given side
effect.

Systemic Selection of Proteins for Secondary Pharmacology Screening
Using Genetics and Pharmacology
In addition to the use of in vitro assays to explain adverse events
related to drug treatment in a preclinical or clinical setting, sec-
ondary pharmacology screens are used routinely during drug
development to improve specificity and help select the best
clinical candidates. We used phenotypes from genetics and
pharmacology to systematically select proteins to include on
such a screen (Figure 2A). Proteins associated with phenotypes
affecting the cardiovascular, respiratory and central nervous
systems were prioritized for inclusion, as disrupting the func-
tion of such vital organ systems has the potential to result in se-
rious life-threatening conditions. This is in line with
international regulatory guidance emphasizing that these organ
systems are the most critical for safety pharmacology (ICH,
2001). To design a panel that could immediately be used by the
pharmaceutical industry we identified which of those proteins
have commercially available in vitro assays. Furthermore, to re-
duce redundancy on the panel, representative family members
were selected in cases where more than three related proteins
were under consideration (see Materials and Methods section).
This resulted in a secondary pharmacology screen consisting of
70 targets from diverse protein classes (Figure 2B) associated
with cardiovascular, respiratory and nervous system pheno-
types (Figure 2C, Table 3 and Supplementary Table 5).

A number of proteins on our panel have phenotypic associa-
tions that come solely from human genetics including the
hyperpolarization-activated ion channel HCN4 and transient re-
ceptor potential cation channel TRPM4, which are included
based on links between mutations in the genes encoding these
proteins and cardiac conduction defects (Kruse et al., 2009; Liu
et al., 2010; Milanesi et al., 2006; Milano et al., 2014; Nof et al.,
2007; Schulze-Bahr et al., 2003; Schweizer et al., 2014; Stallmeyer
et al., 2012; Ueda et al., 2009). Some proteins on the screen have
evidence coming from both pharmacology and genetics. One
such example is the purinergic receptor P2RY12 which is a tar-
get of the anti-clotting drugs clopidogrel and ticlopidine
(Boeynaems et al., 2005; Dorsam et al., 2003; Herbert and Savi,
2003). Consistent with a biological role in blood clotting, loss-of-
function mutations in the P2RY12 gene cause a platelet-type
bleeding disorder (Cattaneo et al., 2003; Nurden et al., 1995).

By systematically choosing proteins with known phenotypic
associations for screening, we can eliminate interactions

Figure 1. Results for off-target phenotypes in logistic regression models.

Showing all phenotypes where off-target phenotypes had p < .05. Circular points

indicate odds ratios from the models; error bars are 95% confidence intervals.

***p < .001, **p < .01, *p < .05.
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between drug candidates and the most concerning off-target
proteins. Furthermore, if certain drug off-target protein interac-
tions cannot be avoided, knowing the potential consequences
of such interactions allows us to monitor for them in preclinical
and clinical studies.

DISCUSSION

We show that drug side effect can be predicted, in part, from
the genetics and pharmacology of its “off-target” protein inter-
actions. We examined the contribution made by the phenotypes
of a drug’s off-target proteins to its side effects by examining a
set of marketed drugs using two different methods—enrich-
ment analysis and logistic regression.

The enrichment analysis showed that for 46 side effect phe-
notypes, including many of high safety concern such as seizure
and platelet disorders, drugs with off-target evidence for the
same phenotype were more likely to have that side effect. We
then attempted to more comprehensively model the effect of
off-target phenotype, drug indication, and on-target genetics on
drug side effects using logistic regression. For seven side effect
phenotypes we found that off-target genetics and/or pharma-
cology were a significant predictor of drug side effects, with car-
diac arrhythmia having the most significant effect. The reasons
why the phenotypes significant in the enrichment analysis are
not all significant in the logistic regression may be due to an in-
ability to separate the contribution of drug off-target protein
interactions from the contribution of other predictors such as
drug indication or due to limited power of the regression models
due to the relatively small number of drugs examined.
Nonetheless these results, taken together with the enrichment
analysis, suggest that using phenotypes from genetics and
pharmacology can help to identify drug off-target protein inter-
actions contributing to side effects.

A challenge with this type of analysis is having a compre-
hensive set of “off-target” interactions available for each drug.
Here we used a curated database of in vitro drug-target interac-
tions, a limitation of which is a lack of negative experimental
results (ie, a set of targets with which a drug does not interact).
Furthermore, available in vitro data may be skewed towards
highly studied proteins. In the future, as such data sources ex-
pand and methods of in silico target prediction improve, more

comprehensive information on drug off-target interactions may
strengthen such analyses. In addition, if a larger set of well-
curated drug side effect information were available this would
increase statistical power and perhaps allow us detect effects
for additional phenotypes.

For some phenotypes certain off-targets predominate, for
example drugs causing platelet side effect frequently modu-
lated thromboxane synthase (TBXAS1) and drugs with seizure
side effects often interacted with ADRA2B as well as a number
of potassium channels. This could be due to a number of fac-
tors. One of these may be the propensity of small molecules to
interact with these proteins due to structural features or other
protein properties. In the case of TBXAS1, although its structure
remains undermined, a detailed fluorescence spectroscopy
study demonstrated that the hydrophobic active site of the en-
zyme is large so that TBXAS1 could accommodate multiple
ligands simultaneously. The ligand binding is further facilitated
by a cluster of phenylalanine residues near the ligand binding
pocket, which increases the chance of unspecific entropic bind-
ing (Chao et al., 2013). In the case of ADRA2B and many other
GPCR targets, their flexible and half buried binding pockets tend
to attract compounds with varied chemical structures contain-
ing hydrophobic fragment(s) (Maudsley et al., 2005). Another ex-
planation is that proteins similar to a drug’s intended target are
more likely to have unintended interactions with that molecule.
As approximately 34% of marketed drugs modulate GPCRs to ex-
ert their therapeutic effects (Hauser et al., 2017; Rask-Andersen
et al., 2014; Santos et al., 2017) this may partially explain the pro-
pensity of ADRA2B to have off-target interactions with some of
these molecules. Such frequently occurring proteins from our
analysis could be prioritized for off-target screening when in-
vestigating drug-protein interactions that are responsible for
particular side effects.

During the drug development process secondary pharmacol-
ogy screening is used for two main applications and prioritizing
proteins using genetic and pharmacological evidence can be
useful for both. First, assessment of drug off-target protein
interactions can be used to explain which proteins may be me-
diating particular adverse events seen in preclinical or clinical
studies. Mimicking this situation, we examined whether drugs
causing seizure interacted with alpha-2B adrenergic receptor
(ADRA2B), a protein with genetic evidence for involvement in
epilepsy. We found that 10 out of 55 drugs examined had known

Table 2. Drugs With Seizure As A Side Effect: Drugs With Seizure As A Side Effect That Have Known ADRA2B Binding From ChEMBL (“Known
Active”) or Predicted Binding From the ADRA2B DNN Model (“Predicted Active”, Score from Model Is Shown)

Drug Activity Against
ADRA2B

ADRA2B
Activity Score

Intended Target Drug Indication

Chlorpromazine Known active 1 (known) DRD2, DRD1, HTR2A, HTR1A,
ADRA1A, ADRA1B, HRH1

Schizophrenia, nausea, vomiting, agitation

Cyproheptadine Known active 1 (known) HRH1, HTR2A, HTR2C Allergic rhinitis, angioedema,
urticaria, anaphylaxis

Maprotiline Known active 1 (known) SLC6A2 Depression
Quetiapine Known active 1 (known) HTR2A, DRD2 Bipolar disorder, schizophrenia, depression
Desloratadine Known active 1 (known) HRH1 Rhinitis, urticaria, eczema, pruritus
Clozapine Predicted active 0.98 DRD2, HTR2A Schizophrenia
Hydroxyzine Predicted active 0.88 HRH1 Anxiety, pruritus, allergy
Duloxetine Predicted active 0.71 SLC6A4, SLC6A2 Depression, pain, anxiety disorder
Eletriptan Predicted active 0.74 HTR1D, HTR1B, HTR1F Migraine
Aprepitant Predicted active 0.96 TACR1 Nausea, vomiting

The intended target of these drugs (from Drugbank) along with the drug indication (from Drugbank/Pharmaprojects) is shown.
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or predicted binding to ADRA2B. This may indicate that, for
these drugs, off-target interactions with ADRA2B could contrib-
ute to seizure. For the drugs predicted to be inactive against
ADRA2B, their observed seizure side effect may result from ac-
tivities against other off-target proteins. Indeed, 26% of drugs
with seizure side effects analyzed interacted with the potas-
sium channels KCNQ2, KCNT1, and/or KCNA2 all of which have
genetic evidence for involvement in epilepsy and seizure (Barcia
et al., 2012; Singh et al., 1998; Syrbe et al., 2015). Our enrichment
analysis does not distinguish between whether a single off-
target is the likely culprit for causing a side effect or if, in certain

situations, interaction between a drug and multiple off-target
proteins is needed to elicit a particular side effect. This would
be an interesting avenue for further study.

Second, a routine part of lead optimization is screening
drugs against a secondary pharmacology panel to ensure specif-
icity against the proteins most likely to cause serious safety
concerns. Achieving complete selectivity for the intended drug
target is challenging for small molecule drugs so it is important
to avoid unintended interactions with the proteins most likely
to have serious effects in humans. Using genetic and pharmaco-
logical evidence we designed a panel consisting of proteins

Figure 2. Selection and characteristics of phenotype-focused secondary pharmacology screen. A, Selection of targets to include on secondary pharmacology screen, us-

ing phenotypes from human genetics and drug indications. B, Protein class distribution. C, Distribution of key safety phenotypes for the 70 proteins included on our

proposed secondary pharmacology panel.
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associated with cardiovascular, respiratory and nervous system
phenotypes, consistent with regulatory guidance. A key consid-
eration in drug safety is the dose at which adverse events occur.
The potency of the drug candidate against off-target proteins
can be determined by titration of the compound in the second-
ary pharmacology assay and this information can be incorpo-
rated into the model of exposure used preclinically or clinically.
During in vivo studies, positive hits on the in vitro secondary
pharmacology screen could be followed up in a number of ways:
(1) Appropriate monitoring for the phenotypes expected from
off-target hits can be added to preclinical or clinical studies. For
example, for hits against Nav1.5/SCN5A we would monitor for
cardiac arrhythmia as genetic and pharmacological evidence
shows strong associations between Nav1.5 and arrhythmia (see
Table 3 and [Chen et al., 1998; Wang et al., 1995]). (2) We can also
integrate biomarkers or assays establishing off-target activity
into preclinical or clinical studies. For example for inhibitors of
the purinergic receptor P2RY12, ADP-induced platelet aggrega-
tion assays are commonly used to assess efficacy (Storey et al.,
2009), the same assays could be used to assess whether off-
target activity against P2RY12 is detectable in vivo. As data are
generated using this new secondary pharmacology screen of 70
proteins, the relationship between off-target in vitro activity and
in vivo drug side effects will become more clear, and the screen
can be further refined.

Our secondary pharmacology screen is limited based on
available assays. Given the changing nature of pharmaceutical
companies’ portfolios, a broader range of potential off-target
proteins may need to be considered for future screening.
Proteins for which no assays are currently available could be
prioritized for assay development based on genetic evidence
linking them to adverse phenotypes in humans.

In some cases, the phenotypes resulting from genetic pertur-
bation and drug indications gleaned from pharmacology may be
different. For example, ADRA2B is a target of the drug Clonidine
used to treat hypertension but gain-of-function mutations in
ADRA2B are associated with epilepsy (De Fusco et al., 2014). This
may be due to a number of factors. Notably, genetic information
usually results from perturbing a single gene whereas drugs
may have multiple intended targets that contribute to their
therapeutic phenotypes as is the case for Clonidine. Other dif-
ferences between genetic and pharmacological phenotypes
could be due to differences in effects on protein function (eg,
pharmacological agonism but genetic loss-of-function). There
may also be differences in the phenotypes manifesting as a re-
sult of the lifelong perturbation caused by genetic variants and
those caused by acute pharmacological modulation.
Nonetheless, our enrichment analysis results support using
both genetic and pharmacological to get a comprehensive view
of the potential consequences of drugging a particular protein.

An additional consideration for assessing the impact of drug
off-target interactions is the effect of genetic polymorphisms in
the gene encoding the off-target protein. Individuals harboring
variants in the genes encoding drug off-target proteins may be
more susceptible to side effects caused by such drug off-target
interactions. One example of this is people with nonpathogenic
variants in genes encoding ion channels such as hERG/KCNH2
and KCNE1 who are more susceptible to drug-induced arrhyth-
mias caused by off-target interactions with these channels
(Kannankeril et al., 2010; Paulussen et al., 2004).

Beyond the applications examined here, which focus on
small molecule therapeutics, there are a number of other uses
for this kind of phenotype-centered approach in off-target
screening. For example, when developing antibody therapeutics

although specificity is not as big an issue as it is for small mole-
cules, a counter screen against a protein related to the drug tar-
get is usually employed. Genetics could be used in this situation
to select the target family member associated with the most
concerning phenotype for counter screening.

We anticipate that integrating phenotypic information from
genetics and pharmacology into secondary pharmacology
screening will be relevant to current and future drug develop-
ment programs and will help to reduce safety-related failures
and drug side effects.
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