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Abstract

Separase is a protease that promotes chromosome segregation at anaphase by cleaving cohesin. Several non-proteolytic
functions of separase have been identified in other organisms. We created a transgenic C. elegans line that expresses
protease-dead separase in embryos to further characterize separase function. We find that expression of protease-dead
separase is dominant-negative in C. elegans embryos, not previously reported in other systems. The C. elegans embryo is an
ideal system to study developmental processes in a genetically tractable system. However, a major limitation is the lack of
an inducible gene expression system for the embryo. We have developed two methods that allow for the propagation of
lines carrying dominant-negative transgenes and have applied them to characterize expression of protease-dead separase
in embryos. Using these methods, we show that protease-dead separase causes embryo lethality, and that protease-dead
separase cannot rescue separase mutants. These data suggest that protease-dead separase interferes with endogenous
separase function, possibly by binding substrates and protecting them from cleavage.
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Introduction

Separase is a cysteine protease with multiple roles during cell

division. In a number of these roles the protease activity of

separase is required, including cohesin cleavage at the onset of

anaphase [1–4], DNA repair [5], resolution of chiasmata in mouse

oocytes [6], mitotic spindle elongation [7], and centriole duplica-

tion [8–10]. Additional non-proteolytic functions of separase have

been identified, including anaphase exit [11] and Cdc14 early

anaphase release (FEAR) pathway activation [12,13], and polar

body extrusion in mouse oocytes [6]. Importantly, these studies

examined protease-dead separase in separase mutant cells and

concluded that separase can promote signaling events independent

of its protease activity. There have been no studies to our

knowledge that have examined any effects caused by the

expression of protease-dead separase in a wild-type background,

which could reveal more information about the activity of this

mutant protein.

In C. elegans, separase has been shown to regulate chromosome

segregation [14], centriole duplication ([10,15] and membrane

trafficking [16–18]. However, the mechanism(s) by which separase

controls these various cell division processes is not known. We

created a transgenic worm line expressing protease-dead separase

fused to GFP (SEP-1PD::GFP) using standard methods to

characterize its expression in C. elegans embryos [17]. As

previously reported, strains expressing SEP-1PD::GFP must be

propagated on gfp RNAi, and removed from RNAi for several

generations to examine expression [17]. In this report, we

demonstrate that SEP-1PD::GFP expression causes embryo lethal-

ity. Other researchers have encountered similar difficulties with

other mutant proteins [19], highlighting the need for methods to

control transgene expression. Here, we methodologically charac-

terize the usefulness of gfp RNAi as a way to propagate toxic

transgenes in the C. elegans embryo.

We find that gfp RNAi silences SEP-1PD::GFP transgene

expression and allows for maintenance of homozygous transgenic

lines indefinitely. Upon removal from gfp RNAi, transgene re-

expression takes several generations, with gradual reappearance of

embryonic lethality. On average, we were able to propagate SEP-

1PD::GFP worm lines for 5 generations after removal from gfp
RNAi. SEP-1PD::GFP accumulates strongly at putative sites of

separase activity, indicating that it could be substrate trapping. We

also report that homozygous sep-1 mutants expressing protease-

dead separase are not viable.

We also describe a second method using male worms to

propagate the transgene. The pie-1 promoter is widely used to

drive embryonic expression, and is expressed in the female

germline [20]. Transgenic male worms carrying the SEP-

1PD::GFP transgene can be crossed to unc-119 hermaphrodites

for many generations without obvious deleterious effects. The

resulting hermaphrodites, carrying a single copy of SEP-1PD::GFP

in a wild-type background, produce broods displaying high levels

of embryonic lethality. Further, males can be used to propagate
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SEP-1PD::GFP reliably to facilitate transgene characterization and

to combine transgene expression with mutant alleles. Using this

strategy, we find that protease-dead separase exacerbates pheno-

types in heterozygous mutants.

We have successfully used these newly developed methods to

provide the first characterization of SEP-1PD::GFP in the C.
elegans embryo. These methods employ standard laboratory

techniques used by C. elegans researchers, which will open new

possibilities for analysis of gene function in the C. elegans embryo.

SEP-1PD::GFP expression causes embryonic lethality in WT

animals, and does not rescue mutant separase animals. We

conclude that protease-dead separase is dominant negative and

interferes with endogenous separase function, a finding that was

not reported in other systems. Collectively, our results suggest that

protease-dead separase may trap substrates, as has been found for

other catalytically inactivated enzymes [21], which would interfere

with substrate cleavage by endogenous separase.

Materials and Methods

Strains
C. elegans strains were maintained according to standard

protocols (Brenner, 1974). Temperature sensitive strains were

maintained at 16uC, unless otherwise indicated in the text, and

shifted to non-permissive temperature as indicated. All other

strains were maintained at 20uC. Strains containing the protease-

dead sep-1 transgene were maintained on lawns of gfp RNAi

feeding bacteria as indicated in text and below, then transferred

onto OP50 lawns as indicated. A full list of strains used in this

study and genotypes are included in Table 1.

Some strains were obtained from the Caenorhabditis Genetics

Center (CGC); see Table 1. Strain RQ372 was a kind gift from

Dr. Risa Kitagawa. JAB18 was obtained by crossing WH520

males with OD56 hermaphrodites, and subsequent generations

were maintained on gfp RNAi. At each generation following the

cross, approximately half of the worms at L4 stage were moved to

OP50 plates for 24 hours at 25uC and screened for the presence of

both SEP-1PD::GFP and H2B::mCherry transgenes by microsco-

py. Worms were then singled from the original gfp RNAi feeding

plate. This protocol was repeated until double homozygous

transgenic lines were obtained, after which the line was

maintained on gfp RNAi at 20uC. Feeding gfp RNAi did not

silence expression of H2B::mCherry.

Molecular Biology
Cloning the protease-dead separase mutant DNA sequence into

pjk#3 or pjk#7 vectors was performed as previously described

[17]. Microparticle bombardment [22] was used to obtain

transgenic worm lines as described in the text and Figure 1.

RNAi feeding
The gfp RNAi feeding construct in L4440 vector was obtained

from Dr. Scott Kennedy [23]. To silence GFP fusion transgenes

and maintain worm lines, worms were picked onto lawns of gfp
RNAi feeding bacteria and L4 worms were picked at each

generation onto fresh lawns. In order to provide the optimal RNAi

effect for transgene silencing, worms were grown on gfp RNAi at

20uC (which is the semi-permissive temperature for the sep-
1(e2406) allele), as we were unable to propagate some lines on gfp
RNAi by feeding at 16uC. For transgene re-expression, L4 worms

were removed to OP50 lawns and picked onto fresh OP50 feeding

plates at each generation as indicated in the text and figures.

Microscopy
For imaging of mitotic embryos, young adult worms were

dissected in M9 and embryos were mounted on agar pads as

previously described [17]. For imaging of meiotic embryos, in
utero imaging was performed using young adult worms immobi-

lized in 1 mg/mL levamisole mounted on 2% agar pads and

covered with a coverslip. Live cell imaging was performed using a

Nikon Eclipse inverted microscope with a CSU-22 spinning disc

imaging system equipped with a 60X 1.40NA objective from

Visitech International, running metamorph software. Digital

images were obtained with a Photometrics EM-CCD camera.

Images were analyzed and time-lapse movies were made using

FIJI (ImageJ) software using the Bio-Formats plugin from LOCI

(www.loci.wisc.edu). Images were enhanced by adjusting mini-

mum and maximum display levels in single color channels, then

overlayed to display both channels.

Table 1. Strains used in this study.

Strain Genotype Reference and/or source

N2 Bristol (wild-type) CGC

WH416 unc-119(ed3) III, ojIs58[SEP-1::GFP unc119(+)] [16]

WH520 unc-119(ed3) III, ojIs71[GFP::SEP-1(PD) unc119(+)] [17] and this study.

WH524 unc-119(ed3) III, ojIs75[SEP-1(PD)::GFP unc119(+)] This study

WH408 sep-1(e2406) I/hT2[bli-4(e937) let-? (q782) qls48] I [18]

VC1279 sep-1(ok1749) I/hT2 I CGC

WH458 sep-1(e2406) I/hT2 I; unc-119(ed3) III/hT2 III, ojIs58 [GFP::SEP-1 unc119(+)] This study

WH548 sep-1(e2406) I/hT2 I; unc-119(ed3) III/hT2 III, ojIs71 [GFP::SEP-1(PD) unc119(+)] This study

WH504 sep-1(ok1749) I/hT2 I; unc-119(ed3) III/hT2 III, ojIs58 [GFP::SEP-1 unc119(+)] This study

JAB7 sep-1(ok1749) I/hT2 I; unc-119(ed3) III/hT2 III, ojIs71 [GFP::SEP-1(PD) unc119(+)] This study

WH488 sep-1(e2406) I/hT2 I; unc-119(ed3) III/hT2 III This study

JAB3 sep-1(ok1749) I/hT2 I; unc-119(ed3) III/hT2 III This study

RQ372 unc-119(ed3) III, ojIs58[SEP-1::GFP unc119(+)] itIs37 [Ppie-1::mCherry::his-58 (pAA64) + unc-119(+)] IV Dr. Risa Kitagawa

JAB18 unc-119(ed3) III, ojIs71[GFP::SEP-1(PD) unc119(+)] itIs37 [Ppie-1::mCherry::his-58 (pAA64) + unc-119(+)] This study

doi:10.1371/journal.pone.0108188.t001
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Results

Creation of protease-dead separase transgenic worm
lines

We created SEP-1PD::GFP expressing transgenic worm lines

using microparticle bombardment, using standard protocols [22],

but GFP expressing lines could not be maintained for more than a

few generations. The final construct contains several features that

allowed us to propagate lines carrying dominant negative

transgenes. The construct is designed to generate proteins fused

to GFP driven by the pie-1 promoter (Figure 1A). Importantly, the

pie-1 promoter is widely used to drive transgene expression in C.
elegans oocytes and young embryos [20]. The construct also has

an unc-119(+) selection marker allowing for identification of

Figure 1. SEP-1PD::GFP transgenic worm lines. A. Microparticle bombardment of homozygous unc-119(ed3); sep-1(+) worms with plasmid DNA
bound to gold beads. The plasmid (enlarged panel) contains the sep-1 coding sequence with mutation in the protease domain (C1040S) fused to GFP
under control of the pie-1 promoter and an unc-119(+) rescue sequence, allowing for identification of transformed worm lines. The designated alleles
and transgene are homozygous in the resulting transgenic worm line. B-M: SEP-1PD::GFP (top row) and SEP-1WT::GFP (bottom row) localization in
newly fertilized embryos with H2B::mCherry. Embryos were imaged after 5 generations removed from gfp RNAi feeding (see text and Figure 2).
During meiosis I, SEP-1PD::GFP and SEP-1WT::GFP localize to chromosomes and the meiotic spindle (asterisk, B,C, E, F). During prometaphase, separase
appears on cortical filaments that appear as puncta depending on whether they are oriented parallel to the focal plane (arrowheads, B and E, insets
show examples of filaments oriented properly). Separase is localized to cortical granules by the onset of anaphase (arrows, C and F). During polar
body extrusion, SEP-1PD::GFP and SEP-1WT::GFP accumulate at the base of the polar body (base of the polar body designated by arrows D and G,
respectively) between the separating anaphase chromosomes (chromosomes designated by arrowheads, D and G). SEP-1PD::GFP also accumulates
strongly on the plasma membrane of the embryo after cortical granule exocytosis (D). During the indicated stages of mitosis (H-M), SEP-1WT::GFP and
SEP-1PD::GFP localize to chromosomes (asterisk) and centrosomes (arrowhead). During cytokinesis, SEP-1PD::GFP accumulates at the cleavage furrow
(arrow, J).
doi:10.1371/journal.pone.0108188.g001
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transformed worms. We cloned genomic sep-1 sequence, with a

point mutation that results in cysteine to serine substitution at

amino acid 1040, located in the protease domain of SEP-1. We

created multiple independent worm lines with integrated trans-

genes coding for both N- and C-terminal fusions of GFP to SEP-

1PD using this strategy, all of which had severe growth defects.

We generated lines expressing both SEP-1PD::GFP and

H2B::mCherry and examined localization of GFP tagged separase

relative to chromosome segregation in the newly fertilized embryo

(Figure 1B–M, Movies S1–S4). We found that SEP-1PD::GFP

localizes similarly to SEP-1WT::GFP during meiosis I (Figure 1B-

G, Movies S1 and S2) and mitosis (Figure 1H-M, Movies S3 and

S4 and previously reported [17]). Both SEP-1WT::GFP and SEP-

1PD::GFP localize to chromosomes and the meiotic spindle during

meiosis (Figure 1B-C and E-F). SEP-1WT::GFP and SEP-

1PD::GFP localize to filamentous structures (cortical filaments) in

the oocyte prior to fertilization (not shown). We have previously

reported the localization of separase and other proteins to cortical

filaments [16], which are not well characterized. Following

fertilization, during the progression of meiosis I, SEP-1PD::GFP

moves from cortical filaments to cortical granules (Figure 1B-C,

Movie S1) as does SEP-1WT::GFP (Figure 1E-F, Movie S2).

Following cortical granule exocytosis and meiotic anaphase I,

SEP-1PD::GFP associates strongly with the embryo plasma

membrane for an extended period of time and with the base of

the polar body as compared to SEP-1WT::GFP (Figure 1D and G,

Movies S1 and S2). Interestingly, SEP-1PD::GFP accumulates

strongly compared to SEP-1WT::GFP at several sites of putative

action during mitosis, including centrosomes, mitotic spindle

(compare Figure 1H-I and 1K-L) and the cleavage furrow during

cytokinesis (compare Figure 1J and 1M, [17]). These sites of

separase activity may contain substrates of separase, which may

have stronger binding to the inactive protease leading to its

accumulation relative to wild-type separase, suggesting that SEP-

1PD::GFP could be substrate-trapping.

Silencing of SEP-1PD::GFP expression by gfp RNAi
If protease-dead separase remains bound to substrates, it could

interfere with their cleavage by endogenous separase, therefore

having a dominant-negative effect. Consistent with a dominant

negative activity, SEP-1PD::GFP expression caused embryo

lethality (Figure 2 and Figure S1, see below) in the wild-type

background with two copies of endogenous separase. Dominant

negative activity of protease-dead separase has not been reported

in other systems. High levels of embryonic lethality in SEP-

1PD::GFP expressing worm lines required us to develop methods to

propagate this ‘‘toxic’’ transgene for further examination. RNAi

provides a reliable system for targeted gene knock down in C.
elegans. We took advantage of RNAi in order to silence expression

of the SEP-1PD::GFP transgene by maintaining transgenic worm

lines on lawns of gfp RNAi feeding bacteria.

After bombardment following the standard protocol, Unc

rescued animals were screened for GFP expression, and Unc

rescued GFP positive lines had high lethality when grown under

standard lab conditions. However, SEP-1PD::GFP transgenic

worm lines fed gfp RNAi showed no embryonic lethality and

could be propagated indefinitely at 20uC and 25uC (Figure 2A).

When worms were transferred from gfp RNAi onto OP50,

embryonic lethality returned after several generations (Figure 2A),

and higher levels of embryonic lethality correlated with higher

GFP expression levels. Interestingly, broods from individual

worms showed similar levels of embryonic lethality within group

at each generation after removal from RNAi (note error bars for

each data point, Figure 2A), in contrast to variability in individual

offspring from the same brood following injection of RNAi [24].

This difference could be the result of uniform RNAi administra-

tion when feeding RNAi continually over multiple generations and

selective pressure that would favor animals with more effective

RNAi response. The return of embryonic lethality was dependent

on temperature, as embryonic lethality occurred in 3–5 genera-

tions at 20uC and 2–3 generations at 25uC, which could be due to

reduced generational gfp(RNAi) transmission, increased transgene

expression at 25uC, or an increase in cell cycle timing leading to a

decrease in fidelity of division. Picking a larger number of worms

at each generation allows for propagation of the transgenic line on

OP50 through one more generation (Figure 2B). This could be

due to effects with picking animals of different penetrance of

generational RNAi propagation, as seen previously [24]. Similar

results were obtained for multiple independent worm lines

expressing both N-terminal and C-terminal SEP-1PD GFP fusion

proteins, indicating that the position of GFP fusion is not a factor

(Figure S1). SEP-1PD expressing worms that survive hatching show

abnormal developmental phenotypes including tail defects, slow

growth, and sterility (Figure 2C), suggesting that protease-dead

separase interferes with normal developmental processes in

addition to causing embryonic lethality. Because transgene

expression is pie-1 driven, and should be most highly expressed

in the germline and deposited in the egg, these results suggest that

SEP-1PD expressing worms show phenotypes that are a result of

defects in the developing embryo.

Transgenic SEP-1PD::GFP males can be used to propagate
dominant negative SEP-1PD::GFP to offspring

Expression of most transgenes in the C. elegans embryo,

including our SEP-1PD::GFP transgene, is under control of the

maternal pie-1 promoter [20]. We created transgenic SEP-

1PD::GFP male worms by heat shock and backcrossed to unc-
119 hermaphrodites to easily identify Unc-rescued sep-1(+)/sep-
1(+); SEP-1PD::GFP/- males, which did not express significant

levels of SEP-1PD::GFP and gave rise to many cross progeny for

our studies (Figure S2). Typically, expression of pie-1 driven

transgenes is not observed in sperm, although expression in the

male germline has been previously observed [25], which may

depend where the transgene is integrated. We therefore reasoned

that we could use males with a single copy of SEP-1PD::GFP to

propagate the SEP-1PD::GFP transgene. From the F1 progeny,

males heterozygous for the transgene (in unc-119(ed3); sep-1(+)
homozygous background) crossed to unc-119(ed3) homozygous

hermaphrodites produce heterozygous SEP-1PD::GFP males (Unc

rescued), heterozygous SEP-1PD::GFP hermaphrodites (Unc res-

cued), and both male and hermaphrodite unc-119 offspring

(Figure 3A). The heterozygous SEP-1PD::GFP hermaphrodites,

identified by Unc rescue (mobility), can be used for analysis of

transgene expression, while the transgenic heterozygous males

(also identified by Unc rescue) were continually backcrossed to

unc-119 hermaphrodites to maintain the line (Figure 3A), and

were also used in crosses with other worm lines to test for genetic

interactions. Single F1 heterozygous transgenic SEP-1PD::GFP

hermaphrodites were picked onto individual plates and their

progeny were analyzed for embryonic lethality. We found that

embryonic lethality in the F2 brood was consistently in the range

of 40–60% (Figure 3B), which shows that even a single copy of

SEP-1PD::GFP has dominant-negative effects in a wild-type

background. After backcrossing males to unc-119 hermaphrodites

more than 50 generations, embryonic lethality in the F2 remained

within this range (Figure 3C), regardless of C-terminal or N-

terminal GFP fusion (not shown). Propagation of SEP-1PD::GFP in

males bypasses lethality and can be done indefinitely, while also

Protease-Dead Separase in C. elegans

PLOS ONE | www.plosone.org 4 September 2014 | Volume 9 | Issue 9 | e108188



providing consistent transgene expression in the F1 generation.

Therefore, this approach provides a convenient strategy to

introduce transgenes into different mutant backgrounds to test

for genetic interactions (see below) or to create worm lines in

combination with other transgenes.

Genetic interactions of protease-dead separase with
separase mutants

Previous studies demonstrated that protease-dead separase can

rescue some loss of function separase phenotypes [11–13].

Therefore, we examined genetic interactions of SEP-1PD::GFP

with mutant separase alleles: the hypomorphic sep-1(e2406) allele

and the sep-1(ok1749) deletion allele. The sep-1(e2406) homo-

zygous mutant is temperature sensitive and viable at 16uC, but

100% embryo lethal at the semi-permissive temperature, 20uC.

The sep-1(ok1749) deletion mutant is likely a null allele since no

protein can be detected by western blot [18]. At all temperatures,

nearly all homozygous sep-1(ok1749) progeny die during

embryogenesis, with very few surviving animals that arrest at

early larval stages. Both sep-1(e2406) and sep-1(ok1749) are

maintained as balanced heterozygotes with the hT2[bli-4(e937)

let-? (q782) qls48] balancer chromosome which encodes GFP

localized to the pharynx (hT2g). hT2g is a translocation balancer

that can be used to balance mutations in LGI or LGIII. Scoring

for GFP expression in the pharynx allows for identification of

heterozygous (GFP+ pharynx) and homozygous (GFP- pharynx)

mutants.

We examined sep-1 mutant embryos expressing SEP-1WT::GFP

or SEP-1PD::GFP, to determine if either of these transgenes can

rescue sep-1 mutants. We generated lines that were homozygous

for either the SEP-1WT::GFP or SEP-1PD::GFP transgenes in these

balanced separase mutant backgrounds. Both the balanced

heterozygous sep-1(e2406) and sep-1(ok1749) deletion mutants

with the SEP-1PD::GFP transgene could not be maintained on

normal OP50 bacterial plates. Therefore, the balanced separase

mutant lines with SEP-1PD::GFP were maintained on gfp RNAi at

20uC, because gfp RNAi feeding at 16uC did not allow for

propagation of the strains (not shown). Furthermore, the balanced

separase mutant lines homozygous for SEP-1PD::GFP could only

be propagated for a maximum of 1-3 generations off of gfp RNAi

at 20uC (compared to an average of 5 generations in the sep-1(+)/

Figure 2. SEP-1PD::GFP worm lines can be maintained on gfp RNAi. A. Embryonic lethality of SEP-1PD::GFP line on gfp RNAi and after removal
onto OP50 plates at 20uC (left) or 25uC (right). Each data point with error bars represents the average of embryonic lethality from 10 singled worms
+/2 SEM. B. Average generation +/2 SEM that could be propagated for the SEP-1PD::GFP line after removal from gfp RNAi when the indicated
number of worms are picked at each generation and kept at 20uC. C. Percentage of sterile animals in the SEP-1PD::GFP line after removal from gfp
RNAi.
doi:10.1371/journal.pone.0108188.g002
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sep-1(+) background, Figure 2) before all progeny died, arrested

prior to reaching adult, or were completely sterile.

We analyzed lethality in embryos from heterozygous, balanced

mutant animals homozygous for SEP-1WT::GFP or SEP-1PD::GFP

transgenes (Figure 4A). Consistent with the growth defects we

observed, embryonic lethality in balanced mutant lines homozy-

gous for SEP-1PD::GFP was more severe than the mutant alone,

and this effect was reduced when transgene expression was

silenced with gfp RNAi (not shown). Further, SEP-1WT::GFP

expression was able to rescue both homozygous sep-1(e2406) and

sep-1(ok1749) mutant progeny while SEP-1PD::GFP could not

(Figure 4B and 4C). Importantly, expression of SEP-1WT::GFP

can rescue both homozygous sep-1(e2406) hypomorphic and sep-
1(ok1749) deletion mutants to produce a few gravid adult animals

(not shown). These data indicate that protease-dead separase does

not rescue viability in separase mutant embryos.

We employed our transgenic male propagation method to

examine the phenotype of sep-1(e2406)/+ embryos expressing

SEP-1WT::GFP or SEP-1PD::GFP. Transgenic SEP-1WT::GFP or

SEP-1PD::GFP males were crossed with sep-1(e2406) homozygous

hermaphrodites at 16uC, and F1 progeny were grown to L4 at

16uC (Figure 5A). Unfortunately all other mutant alleles of

Figure 3. Propagation of the SEP-1PD::GFP transgene by backcrossing. A. The diagram represents the strategy used to propagate the SEP-
1PD::GFP transgene using males. Transgenic unc-119(ed3)/unc-119(ed3); sep-1(+)/sep-1(+); SEP-1PD::GFP/- males heterozygous for the transgene are
continually crossed to unc-119(ed3) hermaphrodites to generate heterozygous sep-1(+)/sep-1(+); SEP-1PD::GFP/- males and hermaphrodites in the unc-
119(ed3) background. The resulting progeny (male and hermaphrodite) that carry the SEP-1PD::GFP transgene are readily identified by mobility
because they are Unc rescued due to presence of the transgene. B. Embryonic lethality in F2 broods from singled F1 sep-1(+)/sep-1(+); SEP-1WT::GFP/-
or sep-1(+)/sep-1(+); SEP-1PD::GFP/- hermaphrodites at the indicated temperature. C. Embryonic lethality in the F2 after the indicated number of
backcrosses of heterozygous sep-1(+)/sep-1(+); SEP-1WT::GFP/- or sep-1(+)/sep-1(+); SEP-1PD::GFP/- transgenic males to unc-119 hermaphrodites. Data
points represent the average of a group of 10 singled worms +/2 SEM.
doi:10.1371/journal.pone.0108188.g003
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separase, including sep-1(ok1749), are not viable as homozygotes

and could not be tested this way. We attempted to cross sep-
1(ok1749)/hT2g and sep-1(e2406)/hTg, both with the unc-
119(ed3) background, hermaphrodites to transgenic SEP-1::GFP

males to obtain the desired genotype, but had results inconsistent

with the expected outcome in the F2 generation (not shown).

Briefly, we observed that the SEP-1PD::GFP transgene was not

expressed in the Unc rescued F2 as expected, although the SEP-

1WT::GFP transgene was expressed. Given that the hT2g balancer

breakdown has previously been reported [26], it is possible that

there was a potential issue with hT2g. The F1 sep-1(e2406)/+;

SEP-1WT::GFP/- and sep-1(e2406)/+; SEP-1PD::GFP/- worms

were shifted to 20uC at the L4 stage and embryonic lethality was

determined in the F2 brood. GFP expression was confirmed in the

oocytes and embryos of the F1 hermaphrodites used in this

analysis that give rise to F2 broods. Since the oocyte and early

embryo is determined by the maternal genotype due to maternal

deposition of cellular machinery, early F2 embryos reflect the sep-

1(e2406)/+; SEP-1WT or PD::GFP maternal genotype. F2 embryos

from sep-1(e2406)/+; SEP-1WT::GFP/- animals were fully viable

as expected, but sep-1(e2406)/+; SEP-1PD::GFP/- F2 progeny

showed 100% embryonic lethality (Figure 5B). This is consistent

with a dominant negative activity of SEP-1PD::GFP, because SEP-

1PD::GFP causes lethality in separase wild-type background

(Figures 2 and 3), and enhances the phenotype of mutant separase

alleles (Figure 4 and 5).

Discussion

We employed the methods described in this manuscript to

examine the consequence of SEP-1PD expression in the C. elegans
embryo. We find that protease-dead separase is dominant negative

and likely interferes with endogenous separase function in our

system. A dominant negative activity of protease-dead separase has

not been reported in other systems, and could alter the

interpretation of phenotypes of cellular expression of protease-

Figure 4. Wild-type SEP-1, but not protease-dead SEP-1, rescues sep-1 mutants. A. Lines with SEP-1PD::GFP transgene were maintained on
gfp RNAi at 20uC and removed for several generations to allow transgene expression. Balanced worms were then singled and progeny were analyzed.
B. Percentage of progeny that are balanced mutant or homozygous mutant from singled sep-1(e2406)/hT2g hermaphrodites homozygous for the
indicated transgene. C. Percentage of progeny that are balanced mutant or homozygous mutant from singled sep-1(ok1749)/hT2g (referred to as D)
hermaphrodites with indicated transgene at 20uC.
doi:10.1371/journal.pone.0108188.g004
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dead separase. If dominant negative activity of protease-dead

separase arises due to substrate trapping by the mutant separase

enzyme, substrate cleavage by endogenous separase could be

prevented and cause embryo lethality. In support of this, we find

accumulation of protease-dead separase at putative sites of

separase activity where it could be preventing access to substrates

by endogenous separase. However, protease-dead separase could

still potentially rescue non-proteolytic functions of separase.

Further, expression of protease-dead separase in mutant cells that

are not true null alleles can further confound interpretations. This

could explain discrepancies in findings and conclusions regarding

the protease function of separase in anaphase spindle elongation.

Using temperature sensitive separase alleles in budding yeast, two

groups [27,28] concluded that separase proteolytic function was

not required for anaphase spindle elongation. However, using

more stringent alleles, [29] and [7] came to the opposite

conclusion.

The lack of an inducible gene expression system in C. elegans
makes it difficult to study dominant-negative or otherwise toxic

mutant proteins. Here we discuss methods that facilitate studies

involving worm lines with toxic pie-1 driven transgenes. Although

an inducible heat shock promoter has been suggested for inducing

transgene expression [30], this approach does not lead to germline

specific expression which could complicate phenotypic analysis.

Combining soma or germline specific RNAi mutants (for example,

rrf-1 vs. ppw-1 mutants) with gfp RNAi and inducible expression

might be a way to circumvent this problem. While we were able to

create SEP-1PD::GFP transgenic lines by normal methods,

recovery of bombarded animals directly on gfp RNAi could allow

isolation of worm lines with transgenes that are more toxic than

SEP-1PD or allow for the isolation of overexpressing lines. These

methods could also be combined with mutants defective in

generational RNAi or temperature sensitive mutations in the

RNAi machinery to more rapidly shut off the multigenerational

RNAi silencing mechanism and more quickly induce transgene

expression [31,32]. In addition, bombardment of him;unc lines

could allow for immediate isolation of transgenic males, which can

be maintained by backcrossing. The male propagation method

bypasses the multigenerational propagation of gfp RNAi, but only

introduces a single copy of the transgene, which may not lead to

highest expression levels. On the other hand, backcrossing to unc-
119 each generation can help reduce selective pressure that might

silence transgene expression or select for suppressor mutations.

The gfp RNAi feeding and male propagation methods allow for

crossing schemes to study genetic interactions of mutant proteins.

Mutant separase alleles are lethal when homozygous and must be

maintained as heterozygotes with chromosomal balancers. We

found that SEP-1PD::GFP could not rescue hypomorphic or null

separase mutants, and that SEP-1PD::GFP expression exacerbated

phenotypes in heterozygous hypomorphic separase mutants. We

were unable to examine SEP-1PD::GFP in separase null back-

ground because separase null worms are not viable. Further, male

propagation and gfp RNAi feeding allow for the creation of

double transgenic lines to study localization patterns and

phenotypes by live imaging.

With the current advancements of CRISPR-Cas genome

editing [33], the use of gfp RNAi and similar strategies may be

advantageous. For example, gfp RNAi could be used to knock

down expression of any endogenous gene of interest tagged with

GFP. This strategy may also prove more effective than gene-

specific RNAi for RNAi resistant genes. Further, one could

temporally control mutant allele expression for multiple alleles by

designing and utilizing gfp RNAi in combination with another,

such as RNAi directed against mCherry.

Further analysis is required to determine which functions of

separase require protease activity in the C. elegans embryo.

Previous work indicated that polar body extrusion is independent

of separase’s proteolytic activity in mouse oocytes [6]. However,

this analysis was performed in separase-null mouse embryos,

which may have a different phenotype than seen in wild-type

separase background. For example, separase could require

autocleavage to efficiently bind substrates, which could be

mediated in our SEP-1PD transgenic lines by endogenous separase.

Ultimately, detailed mechanistic understanding of separase func-

tion will require the identification of relevant substrates and

characterization of how their cleavage works together with non-

proteolytic signaling mechanisms to execute various cell division

events.

Supporting Information

Figure S1 Embryonic lethality in lines with N-terminal
or C-terminal GFP fusion to SEP-1PD. Both WH520 (C-

terminal fusion to SEP-1PD) and WH524 (N-terminal fusion to

SEP-1PD) could be maintained on gfp RNAi (not shown). The

graph shows embryonic lethality for WH520 and WH524

following removal from gfp RNAi at 20uC for the indicated

Figure 5. Genetic interactions of wild-type or protease-dead SEP-1 with sep-1(e2406). A. Crossing scheme of heterozygous SEP-1WT::GFP or
SEP-1PD::GFP transgenic males to sep-1(e2406) homozygous hermaphrodites. GFP transgene expression in the F1 was determined by microscopy after
the shift to 20uC. Only progeny from animals expressing SEP-1WT::GFP or SEP-1PD::GFP were analyzed. B. The table shows embryonic lethality in the F1
and F2 progeny when males carrying the indicated transgene were used in the initial cross.
doi:10.1371/journal.pone.0108188.g005
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number of generations. Each data point with error bars represents

the average of a group of 10 singled worms +/- SEM examined in

an individual experiment.

(PDF)

Figure S2 GFP expression in the male germline. GFP

expression in N2 males (A) and WH520 males (B). Regions

corresponding to sperm (box with dashed line) and testes (box with

solid line) are outlined. C. Image of gonad of an F1 SEP-1PD::GFP

hermaphrodite derived from the cross outlined in Figure 3. The -1

oocyte and +1 and +2 embryos are designated by labels and the

spermatheca is outlined by the box with dashed line.

(PDF)

Movie S1 Meiosis I, including cortical granule exocyto-
sis and the first polar body extrusion, in an embryo
expressing SEP-1PD::GFP and H2B::mCherry. The movie

shows a maximum projection of selected 1 mm z stacks to display

cortical granules and chromosomes. Images were acquired every

20 seconds. Playback rate of the movie is 10 frames per second.

(AVI)

Movie S2 Meiosis I, including cortical granule exocyto-
sis and the first polar body extrusion, in an embryo
expressing SEP-1WT::GFP and H2B::mCherry. The movie

shows a maximum projection of selected 1 mm z stacks to display

cortical granules and chromosomes. Images were acquired every

20 seconds. Playback rate of the movie is 10 frames per second.

(AVI)

Movie S3 Mitosis in an embryo expressing SEP-
1PD::GFP and H2B::mCherry. Images of a single z plane

were acquired every 30 seconds. Playback rate of the movie is 10

frames per second.

(AVI)

Movie S4 Mitosis in an embryo expressing SEP-
1WT::GFP and H2B::mCherry. Images of a single z plane

were acquired every 30 seconds. Playback rate of the movie is 10

frames per second.

(AVI)
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