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Spin distillation cooling of ultracold 
Bose gases
Tomasz Świsłocki1*, Mariusz Gajda2, Mirosław Brewczyk3 & Piotr Deuar2 

We study the spin distillation of spinor gases of bosonic atoms and find two different mechanisms 
in 52 Cr and 23 Na atoms, both of which can cool effectively. The first mechanism involves dipolar 
scattering into initially unoccupied spin states and cools only above a threshold magnetic field. The 
second proceeds via equilibrium relaxation of the thermal cloud into empty spin states, reducing its 
proportion in the initial component. It cools only below a threshold magnetic field. The technique 
was initially demonstrated experimentally for a chromium dipolar gas (Naylor et al. in Phys Rev 
Lett 115:243002, 2015), whereas here we develop the concept further and provide an in-depth 
understanding of the required physics and limitations involved. Through numerical simulations, we 
reveal the mechanisms involved and demonstrate that the spin distillation cycle can be repeated 
several times, each time resulting in a significant additional reduction of the thermal atom fraction. 
Threshold values of magnetic field and predictions for the achievable temperature are also identified.

Since the time when the phenomenon of Bose–Einstein condensation was first predicted1,2, different methods 
of cooling have been developed, which eventually enabled the observation of the transition to a condensate. 
Laser cooling techniques, for example, allowed reaching microKelvin temperatures in atomic vapors3–5. With 
the application of evaporative cooling, the first condensates were obtained in a dilute atomic gas confined in a 
magnetic trap6–9. Due to the extremely low densities of the gas, its temperature had to be decreased well into the 
nanoKelvin range, to reach the phase-space density required for the transition. The lowest temperatures ever 
reached with Bose–Einstein condensates have been of the order of hundreds of picoKelvin10,11. Nonetheless, the 
usefulness of evaporative cooling tends to be limited to temperatures of the order of the chemical potential of 
the condensate µ ≈ gn0 , because evacuating atoms at energies of µ or less reduces the condensate at much the 
same rate as the thermal cloud.

The creation of multicomponent Bose–Einstein condensates12,13 has opened possibilities for reach-
ing extremely low temperatures using different mechanisms that were not available in a single-component 
gas11,12,14–18. Naylor et al.18 have considered and demonstrated one of these possibilities. They propose to use the 
spin degrees of freedom to efficiently remove entropy in partially Bose-condensed spinor gases, aiming to reach 
temperatures below the current limitations set by standard evaporative cooling. In the case of 52Cr, the method 
involves preparing a polarized condensate in the lowest Zeeman state ms = −3 via a sufficiently high applied 
magnetic field19–21. Then, the magnetic field is rapidly reduced to a level that allows a depolarization process to 
occur18,22,23 mediated by dipolar interactions. If the Zeeman energy is of the same order as the thermal kinetic 
energy of the system ( kBT � |gL|µB|B| ), thermal population of higher Zeeman states becomes possible (Here, 
kB is the Boltzmann constant, T the temperature, gL ≈ −2 the Landé g factor, µB the Bohr magneton and B the 
external magnetic field). Thermal atoms are much more likely to depolarize than condensate atoms because of 
the threshold energy for this process set by the Zeeman energy. Therefore, the condensate fraction in the lowest 
ms = −3 state grows. Once higher spinor components have been populated thus, they are released from the trap 
using for example, magnetic field gradient techniques. Such a spin filtering method leads then to a decrease of 
the thermal fraction and entropy of the remaining atoms in ms = −3 . The experiment demonstrated cooling 
of a 52 Cr gas after one such cycle when starting in a temperature range (0.5–0.85)Tc . It was conjectured that 
iteration of such cycles, with magnetic field adjustment after each step, could allow one to greatly reduce the 
temperature. The low temperature limiting factors are not very obvious, however. It was also suggested in18 via 
a simplified calculation that the quadratic Zeeman effect could be used for the cooling of 23Na, without the need 
for dipolar interactions.

Here we report on advanced numerical simulations made using classical field methods at realistic tempera-
tures and experimental parameters, which robustly confirm the above conjectures. They also help us explain in 
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some detail the physical underpinnings and conditions under which the spin distillation cooling can take place. 
We find that the physics of the cooling differs between chromium and sodium gases, as do the fundamental 
limitations on the processes in question.

The paper is organized as follows: We first introduce the model in the “Model” section, including specific 
aspects of the dipolar 52 Cr and contact interacting 23 Na systems. Results are then presented in the “Chromium: 
condensate assisted dipolar scattering to higher spins” and “Sodium: cooling thanks to redistribution of the 
thermal cloud” sections for chromium and sodium, respectively. Each demonstrates one of the two mechanisms 
we have identified. General remarks and a summary are given in the “Conclusions” section.

Model
We consider two systems: 52 Cr in the s = 3 state and 23 Na in the F = 1 hyperfine state. The gases are at tempera-
tures that are a sizable fraction of the critical temperature Tc , so they are modeled by a complex classical field, 
which is the most tractable and accurate model under these conditions. Several complementary techniques have 
been developed24–32, reviewed in33–35.

Initial thermal states.  The cooling simulations start with thermal clouds of atoms in a 3d harmonic trap 
polarized in a single spin state, which is ms = −3 for for chromium and mF = 0 for sodium. Therefore a sin-
gle-component stochastic Gross-Pitaevskii equation (SGPE)28,36 provides a convenient route to directly obtain 
thermal ensembles at a chosen temperature and particle number N35,37. One evolves the complex field �(r) in 
technical time τ according to the equation

until a stable fluctuation of observables in time around a mean is obtained—i.e. the stationary ensemble. Eqn. 
(1) is the classical field equation for a field in thermal and diffusive contact with a reservoir at temperature T 
and chemical potential µ . Here m is the atomic mass, ωj the trap frequencies in directions j = {x, y, z} (with 
coordinates rj ), and γ is a dimensionless coupling strength to the reservoir. For our system the trap frequencies 
were ωj/2π = (250, 300, 215)Hz, in all cases. The η is a complex white noise field with mean zero and variances 
�η∗(r, τ)η(r′, τ ′)� = δ(3)(r − r

′)δ(τ − τ ′) , �η(r, τ)η(r′, τ ′)� = 0 . Interaction energy is captured by the functional 
HI (�) , which is

with contact interactions in the 1st term, and dipolar interactions (only in chromium) in the second. For chro-
mium, Hd(�) = ms[Hd(�(r))]11 with the latter given in the “Methods” section and g = g6 as described in the 
“Chromium gas in the s = 3 state” section; For sodium, Hd = 0 and g = c0 as described in the “Sodium gas in 
the F = 1 hyperfine state” section. The magnetic field and chromium dipoles are oriented along the z axis.

The standard SGPE approach models the quantum degenerate gas using a classical field that describes the low 
energy/high density part of the system on a basis set spanning modes with occupations � O(1) , and a reservoir 
that describes all remaining high energy modes with occupations � O(1) . A common practice is to restrict 
the low energy subspace for � to all plane wave modes below a certain momentum cutoff kcut . We also follow 
this practice, setting the numerical lattice spacing �x = π/kcut using �kcut = 0.78

√
2πmkBT  according to the 

optimal multi-observable choice in 3d from38. The box size was around 3.2RTF = (3.2/ωj)
√
2µ/m , and was 

chosen to provide the experimentally measured condensate fraction. Thus, the mode space is chosen according 
to a balance of various observables. The simulations start from the neutral initial conditions of the vacuum state 
�(r, 0) = 0 , and used γ = 0.5 , an efficient value for finding equilibrium ensembles (they do not depend on γ
36). µ is chosen to obtain the desired ensemble average particle number. Dependence on the two control param-
eters T and µ strongly suggests that this approach should be equivalent to others based on the grand canonical 
statistical ensemble (as, for example, in31). Indeed, it can be demonstrated that the stochastic field fulfills the 
fluctuation-dissipation relation39

which is an indication of required thermal properties. Differences between grand canonical and canonical ensem-
bles are negligible in the interacting gas in the regime of interest40–42.

Samples of the stabilized field �(r, τ) in the stationary ensemble are used as the initial states for further 
evolution. This subsequent evolution, during which cooling cycles are carried out is best performed without the 
high energy bath, because of its inherently non-equilibrium nature and the long time scales involved. It proceeds 
then via a plain Gross-Pitaevskii equation (GPE)33,34.

Chromium gas in the s = 3 state.  The first system we focus on is a partially condensed gas of 52 Cr atoms 
in the s = 3 state, as per the initial experiment18. In the classical-field model the cloud is described by the seven-
component spinor wave function ψ(r) = (ψ3(r),ψ2(r),ψ1(r),ψ0(r),ψ−1(r),ψ−2(r),ψ−3(r))

T with one com-
ponent for each value of the spin projection ms ∈ {−3,−2, . . . , 2, 3} along the direction of the applied magnetic 
field B . It evolves according to the multicomponent Gross-Pitaevskii equation43:

(1)i�
∂�(r, τ)

∂τ
= (1− iγ )

[

−
�
2

2m
∇2 +

1

2
m

∑

j

ω2
j r

2
j +HI(�)− µ

]

�(r, τ)+
√

2�γ kBT η(r, τ),

(2)HI (�) = g |�(r, τ)|2 +Hd(�)

(3)�N2� − �N�2 = kBT

(

∂N

∂µ

)

T
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where the energy functional consists of three parts. The first one represents the single-particle term

which includes the kinetic, potential Vtrap = 1
2m

∑

j ωjrj , as well as Zeeman energies, in which µ = gLµBs/� . 
Since the magnetic field direction is constant in the z direction, −µ · B = −gLµBms|B| ≈ 2µBmsB.

The second term originates from the contact interactions. Hc is a 7× 7 matrix in spinor compo-
nents. The matrix elements are evaluated in a two-atom basis consisting of |s,m1�|s,m2� states, where 
m1,m2 ∈ {−3, 2, . . . , 2, 3} , and |s,ms� is the state of a single atom with spin s and projection ms . The matrix 
elements are given by

Here, the symbol �s,m1; s,m2|SM� is a Clebsch-Gordan coefficient and |SM� is the state of a pair of atoms 
with a total spin S and spin projection M. Only S = 0, 2, 4, 6 channels are allowed, M = m1 +m2 = m′

1 +m′
2 

and the interaction strengths characterizing the colliding atoms with a total spin S are given as gS = 4π�2aS/m . 
We take the scattering lengths to be: a0 = 91 , a2 = −7 , a4 = 63 , and a6 = 102 in units of the Bohr radius44,45.

The last term in Eq. (1) describes the dipolar interactions. Since the spin projection of a pair of atoms colliding 
via dipolar forces can change at most by 2 and the spin projection of a single atom changes maximally by 1, the 
matrix Hd becomes tridiagonal43. On the main diagonal one has [Hd]mm = m [Hd]11 . The elements on the first 
diagonal below are [Hd]m,m−1 =

√
(4−m)(3+m)/12 [Hd]10 . The “Methods” section gives [Hd]11 and [Hd]10 , 

and all other elements are determined by the requirement that Hd be Hermitian.
Evolution starts with the equilibrated stochastic field �(r) obtained with Eq. (1) placed in the ms = −3 state 

as ψ−3(r) , and vacuum ψms (r) = 0 in the other spin states ms = −2, . . . , 3 . Subsequent evolution follows Eq. (4).

Sodium gas in the F = 1 hyperfine state.  The second system we focus on is a thermal gas of 23 Na 
atoms. Due to their low magnetic moment, their dipolar interactions will be not considered. This is a spin-1 
system described by a spinor wave function with three components ψ = (ψ1,ψ0,ψ−1)

T of spin projection 
mF = 0,±1 along the externally applied magnetic field.

The model Hamiltonian of the system is simpler than in the case of 52 Cr and contains no dipolar term. 
Therefore in the evolution equation (4), Hd = 0 . The contact part for the jth component, coming from (6) with 
S = 0, 2 , can be written

in which n(r) =
∑

mF
nmF (r) =

∑

mF
|ψmF (r)|2 is the local total atom density and F = (ψ†Fxψ ,ψ†Fyψ ,ψ†Fzψ) 

is the local spin density. The Fx,y,z are the spin-1 matrices. The spin-independent and spin-dependent interaction 
coefficients are c0 = 4π�2(2a2 + a0)/3m and c2 = 4π�2(a2 − a0)/3m , where aS is the s−wave scattering length 
for colliding atoms with total spin S46,47. We take a0 = 50 and a2 = 55 in units of the Bohr radius aB , consistent 
with most determinations48–50.

Since the Hamiltonian of an F = 1 spinor gas is invariant with respect to a rotation of the spin vector around 
the direction of the magnetic field, we consider only the quadratic Zeeman effect51. The magnetic part of the 
Hamiltonian is HQZE = −q

∫

dr n0(r), where a constant offset has been dropped. n0 is the atom density in the 
mF = 0 component, and q = αq|B|2 is the Zeeman energy. For sufficiently low magnetic fields, αq/2π� ≈ 277
Hz/G252. Then

Similarly to the chromium case, the state with the lowest effective magnetic energy (here mF = 0 ) is ini-
tially populated by the stochastic field �(r) generated by (1). The other components start with a tiny seed of 
ψ±1(r) = 10−5�(r) . The dynamics of the system is subsequently described by:

(4)i�
∂

∂t
ψ(r) =

(

Hsp +Hc +Hd

)

ψ(r),

(5)Hsp = −
�
2
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(7)i�
ψj(r)

∂t
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,

(8)Hsp = −
�
2
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∇2 + Vtrap(r)− q δmF ,0.
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Chromium: condensate assisted dipolar scattering to higher spins
We proceed as in the initial experiment18 and begin with the chromium gas confined in the harmonic trap, with 
all atoms in the lowest Zeeman state of the system, ms = −3 . Dipolar collisions allow for a change of the mag-
netization of the system45,53–56. In fact, transfer of atoms to ms ≥ −2 components is possible only due to dipolar 
interactions43. Energies available in the cloud can surmount the Zeeman energy difference |gL�ms|µBB ∼ 2µBB 
when the magnetic field magnitude B = |B| is sufficiently low, making possible the population of higher Zee-
man states. What one also wants for cooling is for thermal atoms to change spin state, but condensate atoms to 
remain in ms = −3 . The conditions needed for this are twofold. First that thermal atoms can cross the Zeeman 
threshold, requiring

Second that condensate atoms cannot, requiring that the ground state is ferromagnetic. The threshold mag-
netic field above which the ground state of the system remains polarized in ms = −357 is

where n is the atomic density. When the condensate peak density is used for n, condition (11) prevents all 
condensate atoms from changing spin state. We can safely omit dipolar contributions to condition (11) because 
their input to condensate energy is minor58,59. The ratio of dipolar length ( add = µ2m/3�2 ) to contact scattering 
length in the ms = −3 state is ǫdd = add/a6 = 0.15 ≪ 1.

In each cooling cycle the initial cloud is allowed to evolve in-trap for 155ms. At the end of the cycle, all 
atoms in the higher ms ≥ −2 spin states are removed. Then a new cycle is begun starting with the remaining 
atoms in ms = −3 . Condensate fractions of the clouds are estimated by the spatial averaging technique34,60. 
In this case, the cloud is averaged over the z coordinate to construct an approximate one-body density matrix 
ρ̄
(1)
j (x, y, x′, y′, t) =

∫

dz ψ∗
j (x, y, z, t)ψj(x

′, y′, z, t) . The highest eigenvalue of ρ̄(1)
j  gives an estimate of condensate 

occupation in spin state j.
In Fig. 1 three successive cycles of a spin distillation procedure of partially condensed 52 Cr are presented. 

Initially the cloud contains N ≈ 20000 atoms, with a condensate fraction of 0.55, corresponding to a tempera-
ture of about T0 = 235nK. These conditions are similar to the experiments18. In this simulation the magnetic 
field was kept at the same value B = kBT0/2µB through all cycles, chosen as per the temperature condition in 
(10) with the initial temperature. After three cooling steps the condensate fraction increases very strongly up to 
0.9. Notably, this simulation demonstrates that successive cooling cycles can give continued improvement. The 
condition (10) eventually breaks down due to falling T. In fact no further cooling is seen after the third cycle, 
and with this protocol the final condensate fraction is 91%, with N = 13000 atoms in total.

(10)2µBB � kBT .

(11)B � Bth =
4π�2

mµB

[
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Figure 1.   Upper frame: Condensate fraction of 52 Cr gas in the ms = −3 Zeeman component as a function of 
time. Three sets of data represent three successive steps of the cooling procedure. Simulations were performed 
at magnetic fields chosen according to the rule: 2µBB = kBT0 using the initial temperature T0 = 235 nK at the 
beginning of the cooling procedure. Hence, the magnetic field equals 1.75 mG for all cooling steps. Lower frame: 
Schematic diagram of time sequence of cooling event: (A)—a thermal sample of atoms is prepared, (B)—active 
cooling begins, (C)—active coolings stops, (D)—unwanted atoms are removed.
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It has been conjectured that much lower temperatures can be reached when the magnetic field is adapted 
to a running value of T18. Figure 2 shows the progress when the magnetic field is adapted at the beginning of 
each cooling cycle to the actual temperature value T(t) according to the rule 2µBB = 1

3kBT(t) . The calculated 
condensate occupation N0(t) was used to obtain T(t) = T0

c (t)[1− N0(t)/N(t)]1/3 , where T0
c (N(t)) is the the 

ideal gas critical temperature. Here, the final condensate fraction is about 0.97 with N = 12850 atoms remaining.
The dynamics is investigated in more detail in Figs. 3 and 4 which plot the evolution of several quantities 

over a single cooling step. The first of these shows that the number of condensed atoms in the ms = −3 state 
does not significantly change in time, while thermal cloud atoms migrate to higher ms components (primarily 
ms = −2 ), which are purely thermal. This is as planned, and in agreement with the conditions (10)–(11). Taking 
the Thomas-Fermi estimate of the peak density npeak−3  in a fully condensed cloud61 as the maximum value of n, 
we estimate that Bth = 0.29 mG for our case.

An understanding of the cooling mechanism seen can be summarized as follows: 

1.	 Dipolar interactions populate the ms = −2 state via the process ψ c
−3 &ψ th

−3 ⇋ ψ c
−3 &ψ th

−2 , where the c and 
th superscripts denote condensate and thermal fractions, respectively. Higher spin states are reached through 
ψ c
−3 &ψ th

ms
⇋ ψ c

−3 &ψ th
ms+1 , with ms = −2,−1, . . . , 2 . At ultracold temperatures Bose enhancement favors 

processes that involve the condensate, but all-condensate transitions like those seen in18,43 are ruled out by 
the Zeeman energy threshold.

2.	 No condensates appear in components ms = −2,−1, . . . , 3 . The condensate remains only in the ms = −3 
state. This is because all but the lowest energy states are not populated highly enough and the saturation of the 
thermal gas is not attained. A crude estimation of the maximum number of atoms in excited states allowed by 
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Figure 2.   Condensate fraction of 52 Cr gas in ms = −3 , similarly to Fig. 1. Here, magnetic fields were chosen 
according to the rule: 2µBB = 1

3kBTcycle , with Tcycle determined by the value of condensed fraction at the 
beginning of a cycle. The initial magnetic field was 0.58mG.
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Bose statistics, based on the assumption of an ideal gas, gives about 9000 atoms for our temperature T = 235
nK. Indeed, much less occupation of higher spin states is observed, shown in Fig. 4, left panel.

3.	 Equilibration of thermal atoms within a spin component is seen: see Fig. 4, right frame. The thermalization 
rates, due to contact interactions, are determined by the density n of atomic cloud, the typical velocity v, 
and the cross section σ through γ = nσv . For the ms = −2 Zeeman state, at the peak atomic density and at 
the critical temperature γ ≈ 40s−1 (64). Hence, a timescale of hundreds of milliseconds is needed to estab-
lish equilibrium within the ms = −2 state. On the other hand, atoms in different spin states are not seen to 
equilibrate with each other, the kinetic energy per thermal atom does not equipartition between the Zeeman 
states: Fig. 4 right frame. One reason is the low rate of spin changing collisions due to the small spatial overlap 
of thermal clouds appearing in different spin states. This occurs because higher spin states have low popula-
tion and the resulting clouds exhibit speckle-like density patterns due to thermal fluctuations. Moreover, the 
equipartition is not guaranteed to hold in equilibrium for energy gaps of the order of kBT or more.

4.	 Kinetic energy per thermal atom is higher in more energetic spin states. This can be due to the following 
properties of dipolar interactions. For one, atoms transferred dipolarly to a higher spin state must carry 
nonzero angular momentum62. The higher the spin state, the more angular momentum needs to be carried. 
Therefore, the threshold energy consists of both Zeeman and rotational contributions. The energy associ-
ated with the rotation is next dissipated into the cloud increasing the kinetic energy present. The growth of 
the dipolar collision rate with velocity at low magnetic fields44,63 may also contribute to the highest energy 
atoms moving further up the spin ladder. Since spin-changing collisions are very low rate processes64, the 
net result is an increase of kinetic energy per thermal atom in successive spin states.

Together, the conditions (10) and (11) set a limit for this cooling approach: kBT � 2µBBth . Substituting the 
peak density estimate n = µ/g6 , we obtain

In particular, depending on the scattering lengths, this can be very far below µ , which is the usual limiting value 
for standard evaporative cooling. For our present parameters, condition (12) gives a very low value of 39nK.

Sodium: cooling thanks to redistribution of the thermal cloud
The second case of a sodium gas in the F = 1 hyperfine state, was considered briefly by18 via a basic uniform 
model. In the detailed model here, we find that the cooling is also effective, and notably that the process differs 
significantly from the chromium case. The initial thermal state is prepared in the mF = 0 component, which 
has lowest quadratic Zeeman energy. Transfer of thermal atoms to the mF = ±1 components is possible via the 
spin-asymmetric contact interactions (the last terms proportional to c2 in Eqs. (9)).

Zero‑magnetization case.  We start our analysis with a case of zero magnetization, i.e. when the popula-
tions of mF = ±1 states are equal. Additionally, we choose initial occupations of these states as almost zero—
only a tiny seed is left to allow a transfer to mF = ±1 states. Other starting conditions are possible as well and 
are mentioned in the next subsection. The results of a simulation are presented in Fig. 5 for Zeeman energy 
q = 0.011�ωx , about N = 20000 atoms and an initial temperature of about 235nK. Significant cooling is seen 
in each cooling cycle, via an increase of condensate fraction in mF = 0 , though notably the timescale is longer 
than for chromium. Cooling slows after about 1 s, which is a good time to remove atoms in the mF = ±1 states 
and begin a new cycle. After three cycles the mF = 0 population is N ∼ 4500− 10000 (large Rabi oscilations) 
with 90% condensate.
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Figure 4.   Populations (left) and kinetic energy per thermal atom (right, units of �ωx ) as a function of time, for 
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A visible element of the evolution is a rapid oscillation (period ∼ 30ms). This stems from a Rabi oscillation 
that coherently transfers both condensate and noncondensate atoms between the mF = 0 and mF = ±1 hyper-
fine states as can be deduced from the top row of Fig. 6. Its period ( ∼ 30ms) corresponds well to predictions 
based on the energy of the spin changing term c2n0 . The presence of the oscillation indicates coherent exchange 
between spin states, both in the condensate and the thermal cloud (at least initially). Therefore a different process 
is dominant than the one seen for chromium.
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The obvious condition to transfer thermal atoms from mF = 0 to ±1 via the 2n0 ⇋ n±1 mechanism is that the 
thermal energy is sufficient to overcome the quadratic Zeeman energy, q, i.e. q � kBT . However, the magnetic 
field used here is already practically negligible compared to the thermal energy ( kBT ∼ 1800q in Fig. 5). Instead, 
we find a limiting factor at much lower magnetic field. Figure 7 shows the first step of cooling for q/�ωx = 0.15 
and 0.17. Surprisingly, no cooling is observed for the higher magnetic field, even though the thermal energy 
there is still enormously greater than the Zeeman energy: kBT/q ≈ 100 . Figure 8 shows the abrupt breakdown 
of cooling with growing Zeeman energy q in detail. There must be another limitation involved.

The spin mixing terms responsible for transfer from the initial mF = 0 to mF = ±1 have energy of the order 
of c2n0 . Therefore, the amplitude of any spin mixing process will decay rapidly once the energy difference exceeds 
this level. In order to take two atoms from mF = 0 and place them in the mF = ±1 states, an energy of q per atom 
is required, leading to the additional condition

for cooling onset. Thresholds of the same order ( q � O(c2n) ) are commonly seen in studies of the stationary 
states of low temperature F = 1 anti-ferromagnetic condensates51,65,66. In our case, taking the peak density of a 
100% condensate, condition (13) is q � 0.16�ωx , which matches quite well with the threshold seen in Fig. 8. Fur-
ther corroborating evidence for this interpretation of the cooling threshold includes the fact that no Rabi oscilla-
tions are seen above threshold at q = 0.2�ωx in Fig. 6 (bottom right). Moreover, if one takes a small condensed 
fraction of 6%, no cooling or Rabi oscillations are observed (Fig. 9, top left), nor transfer to mF = ±1 , despite 
the same Zeeman energy q = 0.09�ωx that cooled the larger condensate in Fig. 7. This is also consistent and 

(13)q � c2n
max
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expected since a small condensate has highly reduced density, and the condition (13) now becomes q � 0.03�ωx

—which is not met.
What is the actual mechanism for cooling, though? It cannot be a threshold Zeeman energy that sorts atoms 

into high and low energy in different spin states like we saw in chromium, since the atoms can be seen flowing 
freely to all spin states and back. On the other hand, the population transfer process is not reversible in the long 
term and the populations and condensate fractions settle to a more or less stationary value. There is another 
collision process that does not change spin populations, but can rearrange atoms between modes. The spin-
preserving and spin-exchanging collisions between mF = 0 and mF = ±1 atoms include contributions such as 
ψ c
0 &ψ th

±1 ⇋ ψ th
0 &ψ c

±1 which can exchange thermal and condensate fractions within a spin component, and 
degrade the Rabi oscillations, leading to a stationary equilibrated state. Notably, the cooling is arrested when the 
iψ̇0 ∼ (n+1 + n−1)ψ0 and iψ̇±1 ∼ n0ψ±1 terms responsible for the ψ0 &ψ±1 ⇋ ψ0 &ψ±1 collisions are removed 
(Fig. 9 top right), proving the crucial role of this process.

The process can be followed in Fig. 9 (bottom). Two long timescales are evident: Most of the flow of thermal 
atoms from mF = 0 to mF = ±1 is completed by about 1 s, and it is also at this time that the Rabi oscillations of 
the thermal components die out (also Fig. 6, bottom left). The Rabi oscillations between condensates last longer, 
and there is a second timescale of about 3 s over which the last thermal atoms accumulate in mF = ±1 and the 
kinetic energy of thermal atoms in all three hyperfine states equilibrates.

The cooling procedure can in fact be understood as a re-equilibration punctuated by periodic removal of 
the atoms in the unwanted spin states. Once condition (13) is met, the number of accessible thermal degrees of 
freedom increases threefold. The thermal atoms redistribute, leaving only 13 of the original number in mF = 0 . 
Figures 6 and 9 (bottom left) confirm that the number of condensate atoms in mF = 0 reduces only slightly by 
about 2000, while the initial 9000 thermal atoms in mF = 0 redistribute approximately equally among the three 
hyperfine states, leaving only 3000 in mF = 0 . Hence, after mF = ±1 populations are removed, significant cool-
ing has occurred.

Whether re-distribution can occur depends on whether condition (13) is fulfilled. For homogeneous station-
ary states it can be shown51 that for zero magnetization miscible solutions exist only provided q < 2c2n , which 
resembles (13). Only then can the spin-changing processes ψ0 &ψ0 ⇋ ψ1 &ψ−1 for condensed atoms start, so 
(13) works as a kind of ignition condition. After the appearance of condensed atoms in ±1 components, the real 
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re-equilibration can ensue. Within this stage, the thermal atoms are redistributed to ±1 states via spin-preserving 
and spin-exchanging collisions ψ0 &ψ±1 ⇋ ψ0 &ψ±1 , and become ready for removal.

The present study is complementary to the work on sodium in18 (supplement) which used a Bogoliubov 
approximation to investigate the high condensate fraction regime. The present work considers low initial conden-
sate fraction, and we find that the Bogoliubov regime of condensate fraction � 0.9 can be reached after just several 
cooling cycles. The two works mesh then at intermediate temperatures, covering the whole range of cooling from 
near Tc to very low T. Cooling cycle efficiency becomes very high in the phonon regime when T ≪ µ/kB

18, due 
to a softer phonon spectrum for the mF = ±1 states ( E±

k
≈ |k|√c2n ) than the mF = 0 states ( E0

k
≈ |k|√c0n ). 

For a density n. Then, below a given energy Emax , which corresponds to wavenumbers k0,±max = Emax/
√
c0,2n , 

respectively, the number of states in volume V is N0,± ∼ (4π/3)(V/(2π)3)(k0,±max)
3 . As a result, the number of 

accessible states at the beginning of each cooling cycle goes from N0 to N0 + 2N± . This is an increase by a fac-
tor of about 1+ 2(c0/c2)

3/2 , rather that merely by 3 as seen here at higher temperatures. It has been argued that 
this kind of cooling may be ultimately only limited by quantum depletion effects at extremely low entropies and 
thermal fractions.

Finally, we have investigated whether cooling is seen in 23 Na via the process established in the “Chromium: 
condensate assisted dipolar scattering to higher spins” section. The condition (10) suggests values of q ≈ 20�ωx 
to be appropriate as an energy barrier that can only be overcome by thermal atoms. Figure 10 (left panel) shows 
the results of such a simulation. Negligible cooling is observed over this timescale. In fact, this is not unexpected, 
because there are no dipolar interactions. Therefore, the coherent rapid process in which a thermal atom in 
mF = 0 is scattered by the condensate to mF = 1 or −1 cannot take place. The incoherent scattering rate can be 
estimated via Ŵ = nvσ with cross-section68 σ = 4π((a2 − a0)/3)

2 , and thermal relative velocity v = 4
√
kBT/πm

69. Integratng over space as in69 yields a time constant for the mF = ±1 populations of τ = 23/2/Ŵ ∼ 15 s, well 
beyond typical experimental and simulation times. We expect, though, that a nonzero initial magnetization can 
help because it opens up other scattering channels. The right panel of Fig. 10 shows that this is indeed the case.

Non‑standard initial conditions.  To consider values of initial magnetization other than zero, or initial 
nonzero populations in the mF = ±1 components would significantly increase the complexity of the studies, 
since in such a case the problem becomes dependent actually on three parameters: the quadratic Zeeman energy 
and the numbers of atoms in mF = +1 and mF = −1 states. On the other hand, as already discussed at the end 
of the previous section and shown in Fig. 10 (right panel) such considerations might open new routes in cooling 
technique.

Leaving detailed analysis of cooling processes in full three-parameter space for a future work, here we just 
present some intriguing results for the “non-standard initial conditions” case. We have found that if a nonzero 
magnetization is introduced, or if there is minority occupation of mF = ±1 states initially, then the range of q 
that allows cooling increases. Two examples are shown in Fig. 11 for q = 0.2�ωx , a value that is too high to lead 
to cooling when all atoms start in mF = 0 . Here the initial populations in mF = ±1 are obtained by coherently 
transferring part of the initial cloud from the mF = 0 hyperfine state at t = 0 , e.g. by applying an appropriate short 
Bragg pulse to the cloud67. Why cooling appears at higher q here is not obvious and remains an open question. 
It may, however provide an additional useful pathway. For example, the case with nonzero seed in mF = 1 can 
still be cycled by emptying only the mF = −1 spin state, or cooling at a given q could be started by producing 
small seeds at mF = ±1 with a Bragg pulse.

Conclusions
The spin distillation cooling mechanism as originally proposed and partially experimentally tested in18, was stud-
ied using advanced numerical models that allow for a realistic treatment of temperature, Bose enhancement, and 
nonlinear dynamics over experimental timescales. These calculations confirm that successive cycles of cooling can 
be applied to a spinor gas, leading to a very high final condensate fraction (97% in our case), while simultaneously 

 0.49

 0.5

 0.51

 0.52

 0.53

 0.54

 0.55

 0  0.2  0.4  0.6  0.8  1

C
on

d.
 fr

ac
. i

n 
m

F
 =

 0

time (s)

 0.5

 0.55

 0.6

 0.65

 0  0.2  0.4  0.6  0.8  1

C
on

d.
 fr

ac
. i

n 
m

F
 =

 0

time (s)

Figure 10.   Condensate fraction of 23 Na in the mF = 0 component as a function of time for a high Zeeman 
energy of q = 20�ωx (B = 4.25 G). This value corresponds to the thermal energy of the system kBT . The initial 
magnetization of the system is M = 0 (left) and M = 0.2 (right).
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losing only a minority of atoms. Spin distillation was observed both for systems with long-range ( 52Cr, 7 spin 
states) and short-range ( 23Na, 3 spin states) forces. We identify two different mechanisms for a cooling cycle:

{1} With a high Zeeman energy barrier, as seen in the chromium example, the thermal atoms dipolarly scat-
tering with condensed ones are able to surmount the energy barrier. Such a mechanism moves thermal energy 
out of the initial cloud to relatively few atoms in higher spin states, from which they and the entropy they carry 
with them can be cyclically removed. This process works for magnetic fields above a threshold (11), and is even-
tually limited to temperatures of (12). Notably, these can be very low temperatures far below the kBT ∼ µ that 
is possible with standard evaporative cooling. Also, since the scattered atoms are in a different mode space from 
the source cloud, removal does not eat into the condensate like in standard evaporation.

{2} With a very low Zeeman energy barrier, as seen in the sodium example, an initially spin polarised ther-
mal cloud relaxes into m̃ empty hyperfine states, leaving only 1/(m̃+ 1) of it in the original spin state. Here the 
cooling can be ignited only below a maximum threshold for the magnetic field (13), and is not highly sensitive 
to the value of the temperature. The process can work at very small magnetic fields, far below the bounds set by 
(11) and appears quite universal in its simplicity.

There are similarities in the mechanisms we have identified. In both of them the existence of a condensate 
is crucial. For chromium, thanks to Bose enhancement, thermal atoms are scattering off condensed ones to 
higher spin states, state by state. For sodium, coherent transfer of already condensed atoms is fast and triggers 
the process of redistribution of thermal atoms. Also, in both mechanisms, the role of contact interactions in 
thermalization of newly populated states is similar. In the chromium case, they allow thermal atoms to reach 
equilibrium within, but not between, spin components. For sodium they arrest the Rabi oscillations of condensed 
and noncondensed atoms between components, first making oscillations of thermal atoms die out and finally 
decohering condensed and noncondensed atoms.

Our cooling protocol makes some idealisations. For instance, contrarily to what happens in real experiments, 
we assume perfect and instantaneous removal of unwanted atoms. This idealization can be partially relaxed, sim-
ply by trying simulations where a small remnant fraction of atoms is left in ms = −2,−1, . . . , 3 for chromium and 
mF = ±1 components for sodium after each cooling cycle. We have checked that the cooling efficiency remains 
unchanged to within the noise level in the cooling plots even for a fraction of retained atoms equal to about 10%.

The eff iciency of evaporative cooling is commonly characterised by the parameter 
γ = −d(lnDfin/Dini)/d(lnNfin/Nini)

70, where Dini ( Dfin ) is the initial (final) phase-space density of a gas and 
Nini and Nfin are the corresponding numbers of atoms. The cooling efficiency in the first cooling cycle can be 
calculated assuming Dfin and Nfin are taken at the end of the cycle and concern chromium and sodium atoms 
in the ms = −3 and mF = 0 components, respectively. In our case, to estimate the phase-space density we take 
the product of the spatial extents of the atomic cloud in the x, y, and z directions with the respective extents in 
momentum space available via Fourier transform of the classical field. The classical field is averaged over a short 
period of time to diminish irrelevant fluctuations before determining the size of the cloud (as the full size at half 
maximum). As a result, we obtain a value of parameter γ ≈ 1 both for chromium and sodium atoms, which is 
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Figure 11.   Evolution of condensate and thermal fraction populations for 23 Na with q = 0.2�ωx (B = 425 mG), 
but with non-standard starting conditions. The top row shows the case with nonzero magnetization (20% of 
population initially in mF = 1 , 80% in mF = 0 ), while the bottom row the case with M = 0 but 12% of initial 
population in each of mF = ±1 . In both cases, mF = +1 populations are shown on the left, mF = 0 in the 
middle, mF = −1 on the right. Strong cooling is seen in both cases as evidenced by the drop in non-condensed 
population in mF = 0.
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close to typical values of γ for alkali atoms for evaporation cooling70. (For example γ = 0.86 for chromium at 
1.75 mG and γ = 0.53 for sodium at 100 mG).

In summary, spin distillation cooling emerges as a versatile technique to reach ultra low temperatures in 
spinor gases, below what is achievable via standard evaporative cooling. It appears to be applicable in a wide 
range of regimes and for many atomic species, acting through at least two distinct physical mechanisms. The 
simulations presented above verify that it can be effective under realistic conditions.

Methods
Matrix elements for the dipolar Hamiltonian

The dipolar matrix element [Hd]11 is given in CGS units by43

where γCr = gL µB/� is the gyromagnetic ratio for 52Cr. The orthonormal set of spatial coordinates r = [x, y, z] 
are arranged such that z lies along the direction of the applied magnetic field B . The off-diagonal dipolar matrix 
element [Hd]10 is
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