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Abstract: This paper systematically studies the effect of Fe3O4 nanoparticle size on the insulation
performance of nanofluid impregnated paper. Three kinds of Fe3O4 nanoparticles with different
sizes and their nanofluid impregnated papers were prepared. Environmental scanning electron
microscopy (ESEM) and infrared spectroscopy were used to analyze the combination of Fe3O4

nanoparticles and nanofluid impregnated paper. The effect of nanoparticle size on breakdown voltage
and several dielectric characteristics, e.g., permittivity, dielectric loss, of the nanofluid impregnated
paper were comparatively investigated. Studies show that the Fe3O4 nanoparticles were bound
to impregnated paper fibers by O–H bonds, while the relative permittivity and dielectric loss of
the nanofluid impregnated papers were increased. Meanwhile, the increase of trap depth, caused
by the nanoparticles, can trap the electric charge and improve the breakdown strength. The test
results show that the direct current (DC) and alternating current (AC) breakdown voltages of
nanofluid impregnated paper increased by 9.1% and 10.0% compared to FR3 nanofluid impregnated
paper, respectively.
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1. Introduction

Oil-paper insulation composed of insulating oil and oil impregnated paper is the main insulation
method for electrical equipment [1–3]. With the improvement of the voltage level and the miniaturization
of electrical equipment, the electric field intensity of oil-paper insulation increases continuously, and the
corresponding insulation performance requirements become higher. It is generally believed that further
improvement of the oil-paper insulation performance is the key to reducing the insulation failure rate
of electrical equipment.

At present, the research on material performance improvement is a hot issue [4–7], Movahedi
found that the mechanical and tribological behavior of Ni(Al) was reinforced by Al2O3–13% TiO2

nanoparticles [8]. A large number of studies have proved that dispersing nanoparticles into insulating
oil can effectively improve the breakdown voltages and thermal conductivity of the insulating oil.
JC Lee et al. found that Fe3O4 nanoparticles can increase the AC breakdown voltage of insulating oil
from 12 kV/cm to 40 kV/cm [9]. Publication [10] reported that Fe3O4 nanoparticles can significantly
reduce the development speed of streamer propagation under lighting voltage. The velocity of streamer
propagation in insulating oil is 2.08 km/s, while the velocity of streamer propagation in Fe3O4 nanofluids
is only 0.97 km/s. However, the insulating oil in a transformer can be replaced regularly, the service life
of power equipment is critically determined by the oil impregnated paper [11,12]. Therefore, how to
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improve the insulation performance of oil impregnated paper is a key factor in improving the properties
and to prolong the service life of power equipment.

Publication [13] studied the interaction between nanoparticles and insulating paper, the study
found nanoparticles combined with the paper fibers and stayed inside the impregnated paper during
the impregnation process, which will have an important influence on the electrical properties of
the impregnated paper. Publication [14] observed the combination of nanoparticles and insulating
paper through scanning electron microscope (SEM) and found that the DC breakdown voltage and
AC breakdown voltage of nanofluid impregnated paper were both higher than that of insulating oil
impregnated paper. Publication [15] predicted the dielectric properties of nanocellulose-modified
press-paper by the multivariate analysis method. However, comparative and systematic studies on the
influence of nanoparticle size on the breakdown voltages and the dielectric properties of nanofluid
impregnated paper is still an open issue, which is becoming increasingly important when applying
such nanofluid impregnated paper in large power equipment.

This paper aims to explore how the size of Fe3O4 nanoparticles generates the various insulation
performances of nanofluid impregnated paper. Three differently sized Fe3O4 nanoparticles and their
nanofluid impregnated paper were prepared. The breakdown voltages and dielectric properties of
the nanofluid impregnated paper are presented and discussed, and electron trapping measurements
of the impregnation were used to analyze the changes of insulation performance of the nanofluid
impregnated paper.

2. Results and Discussion

The relative permittivity and dielectric loss of nanofluid impregnated paper were measured by
the broadband dielectric spectrum (Concept 80, Novocontrol Technologies GmbH &Co, Cologne,
Germany). Figure 1 shows the frequency dependence between the relative permittivity for FR3
impregnated paper and the three nanofluid impregnated papers. It can be seen that the relative
permittivity of the nanofluid impregnated paper is significantly higher than that of FR3 oil. At 50 Hz,
the relative permittivity of FR3 oil impregnated paper is 3.2, while the relative permittivity of sample
A is 3.5. As is well known, the relative permittivity of Fe3O4 nanoparticles is ca. 80 [16], which is much
greater than that of insulating paper, and this causes the relative permittivity increase for nanofluid
impregnated paper.
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Figure 1. The relative permittivity of FR3 oil impregnated paper and the three different sized nanofluid
impregnated papers.
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One can observe that the sized nanoparticles endow nanofluid impregnated paper with varied
permittivity values. According to Busessem’s analysis [17], the smaller sized nanoparticles usually
possess higher permittivity than the larger ones, because in the process of the growth of nanoparticles,
the energy distribution will cause internal stress changes and this results in a change of relative
permittivity of the nanoparticles. The relative permittivity of nanoparticles decreases with nanoparticle
size increase, and further reduces the relative permittivity of nanofluid impregnated paper.

Figure 2 gives the frequency dependence of the dielectric loss of FR3 oil impregnated paper and
the three nanofluid impregnated papers at different frequencies. The results show that the dielectric
loss of the three different sized nanofluid impregnated papers is significantly higher than that of the
FR3 oil impregnated paper in the low frequency range (<1 Hz). At the same time, the dielectric loss
factor of the nanofluid impregnated paper significantly increases with the Fe3O4 nanoparticle size
increase. Under the action of electric field, the dielectric loss is determined by conductance loss and
polarization loss, if the dielectric conductivity is very small and so can be ignored, the dielectric loss
factor can be expressed as:

tan δ =
(εs − ε∞)ωτ

(εs + ε∞)(ωτ)
2 (1)

where εs is the relative permittivity of the Fe3O4 nanoparticle when the frequency is zero, and ε∞ is
the relative permittivity of the Fe3O4 nanoparticle when the frequency is infinite; ω is the angular
frequency, τ is the polarization relaxation time of the Fe3O4 nanoparticle.
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Figure 2. The dielectric loss of FR3 oil impregnated paper and the three nanofluid impregnated papers.

From Equation (1), it can be seen when ωτ =
√
εs/ε∞ ≈ 1, the value of tanδ is at the maximum

value. Polarization loss is inversely proportional to frequency and decreases with increasing frequency.
Therefore, in the frequency range of 10−2 to 1 Hz, the dielectric loss of nanofluid impregnated paper is
significantly higher than that of FR3 oil impregnated paper.

During the growth of the nanoparticles, a large number of structural defects and holes are inevitably
generated in the Fe3O4 nanoparticles, appearing more for larger sized nanoparticles. The electrical
conductivity of Fe3O4 nanoparticles increases with size increase, and the high conductivity of Fe3O4

nanoparticles certainly leads to a much-increased dielectric loss for nanofluid impregned paper.
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The AC and DC breakdown voltages of nanofluid impregnated paper samples were measured
in accordance with ASTM D149 and D3755, and the results are shown in Figures 3 and 4. FR3 oil
impregnated paper is recorded as an Fe3O4 nanoparticle 0 ppm nanofluid impregnated paper sample.
The results show that Fe3O4 nanoparticles can significantly increase the breakdown voltage of nanofluid
impregnated paper. The maximum AC breakdown voltage of Fe3O4 nanofluid impregnated paper is
43.2 kV, which is 9.1% higher than that of FR3 oil impregnated paper. The maximum DC breakdown
voltage of Fe3O4 nanofluid impregnated paper samples is 14.2 kV, which is also 10.0% higher than the
DC breakdown voltage of FR3 oil impregnated paper. Comparing the AC and DC breakdown voltage
of the impregnated paper samples, it can be found that within a certain range, the increase of Fe3O4

nanoparticle size will increase the breakdown voltage of the nanofluid impregnated paper samples.
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Thermal stimulation current tests of nanofluid impregnated paper and FR3 nanofluids were carried
out, the trapping parameters of different oil impregnated paper samples were obtained, as shown
in Figure 5.
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According to publication [18], the trap levels of the oil impregnated paper samples were calculated.
The formula for calculating the trap level is given by Equation (2), and the calculation results are shown
in Table 1.

E = A
kTpTi

Tp − Ti
(2)

where Ip and Tp are the current and temperature corresponding to the peak of the the thermally
stimulated current (TSC) curve, and Ii and Ti are the current and temperature corresponding to any
point on the TSC curve. A can be expressed as:

A = a1 +
∑
n=0

(1− an+2
2 e−A)

(n + 1)!
An an

3(−1)n (3)

and the a1 ≡ ln(Ip/Ii), a2 ≡ Ti/Tp, a3 ≡ ∆T/Ti and ∆T = Tp − Ti.

Table 1. TSC peak current and trap depth of the impregnated papers.

Sample Peak Current (pA) Trap Depth (eV) Standard Deviation (eV)

FR3 oil impregnated paper 3.25 0.543 0.026
Nanofluid impregnated paper A 3.37 0.551 0.053
Nanofluid impregnated paper B 4.66 0.640 0.118
Nanofluid impregnated paper C 4.78 0.772 0.093

It can be seen from Table 1 that the trap depth of nanofluid impregnated paper is greater than
that of FR3 nanofluid impregnated. This indicates that the combination of Fe3O4 and paper fibers can
increase the trap depth. It also can be observed that the trap depth of nanofluid impregnated paper
increases as the nanoparticles size increases.

3. Experimental and Characterization

The process of preparation of nanofluid impregnated paper is shown in Figure 6. The nanofluid
impregnated paper was obtained via three main procedures: synthesis of Fe3O4 nanoparticles, synthesis
of Fe3O4 nanofluids, and preparation of impregnated papers.
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3.1. Fe3O4 Nanoparticles

6.48 g of ferric chloride hexahydrate, 21.9 g of sodium oleate, 48 mL of ethanol and 84 mL of
n-hexane were mixed in a three-necked flask. The solution was continuously stirred for 6 h at 60 ◦C
in a water bath, and the upper liquid after standing was retained. To the obtained solution was
added 2.1 g of iron oleate, 10 mL of octadecene, 0.64 mL of oleic acid. In a nitrogen atmosphere,
the mixture solution was heated to 200 ◦C for 2 h, with continued increase of temperature to 320 ◦C for
24, 48, and 72 h, respectively to realize Fe3O4 nanoparticles with varied sizes. After cooling down to
room temperature, the nanoparticles were subsequently centrifuged and washed several times with
ethanol and cyclohexane before drying in air at 70 ◦C.

3.2. Fe3O4 Nanofluids

The three Fe3O4 nanoparticles obtained at different reaction times were dispersed into FR3 oil by
ultrasonic treatment for 30 min. The ®FR3 oil was used as received [19]. Three nanofluids and the FR3
oil were dried at 85 ◦C under 50 Pa for 72 h to remove moisture.

3.3. Impregnated Paper

Insulating paper was cut into 5 × 10cm strips, then the insulating paper strips were dried under
50 Pa at 90 ◦C for 72 h. After drying, the insulating paper strips were removed in FR3 oil and the
three kinds of nanofluids, and immersed at 70 ◦C for 48 h under 50 Pa. Then the FR3 insulating oil
impregnated paper and the three kinds of nanofluid impregnated paper were obtained. The three
nanofluid impregnated papers were tagged as sample A, B, and C, respectively.

The morphologies of the three different nanofluid impregnated papers prepared by adding
different Fe3O4 nanoparticle were characterized by transmission electron microscopy (TEM, JEM-2100F,
Japan Electronics Ltd., Tokyo, Japan), and the results are shown in Figure 7a–c. The high magnification
TEM images (inset in top right) clearly show the Fe3O4 nanoparticle size. It can be seen that the prepared
nanoparticles are monodispersed nearly spherical particles, and each nanoparticle is composed of
two distinct regions. The darker core is composed of Fe3O4 crystals, and the surrounding layer is a
low-density shell of oleic acid surfactant. Covalent binding between oleic acid and Fe3O4 crystals
prevents agglomeration of the Fe3O4 nanoparticles.
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The X-ray diffraction (XRD) pattern was obtained by using a powder X-ray diffraction meter
equipped with a rotating anode and a Cu-Kα radiation source. The scan step was 0.02◦. Figure 8 shows
the XRD spectrum of a typical Fe3O4 nanoparticle according to [20] and the three Fe3O4 nanoparticles
prepared by the different reaction times. According to JCPDS card number 65-3107, the 2θ values of
30.1◦, 35.5◦, 43.1◦, 56.9◦, and 62.6◦ are signatures of (220), (311), (400), (511), and (440) crystal face
for Fe3O4 nanoparticle, respectively. At the same time, it can be seen from the figure that Fe3O4

nanoparticles show a huge amorphous peak near 20◦, of the oleic acid surfactant coated on the surface
of Fe3O4, this peak represents the oleic acid surfactant coated on the Fe3O4 nanoparticle.
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In order to further analyze the bonding between Fe3O4 nanoparticles and paper fibers, the FR3
impregnated paper and nanofluid impregnated paper were tested by attenuated total reflection Fourier
infrared spectroscopy (ATR-FTIR, Nicolet, Thermo Electron Corporation, Franklin, TN, USA), and the
results are shown in Figure 9. In the spectrum, symmetric and asymmetric vibration peaks of –CH2 and
–CH bands appear at 2847, 2920, 1452, 1375 cm−1, respectively, and the stretching vibration absorption
of C=O band at 2352 cm−1 appears in the spectrum. These indicate the presence of insulating oil
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molecules or oleic acid in the paper fiber. It is worth noting that, a new absorption band of an
O–H group 868 cm−1 appears in the nanofluid impregnated paper, indicating the bonding of Fe3O4

nanoparticle onto the surfaces of the paper fiber.
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The surface morphology of FR3 oil impregnated paper and Fe3O4 nanofluid impregnated paper
were observed by ESEM (Quattro S, Thermo Fisher Scientific Inc., Waltham, MA, USA), as shown in
Figure 10. It can be seen that the surface of the FR3 nanofluid is smooth without any significant particle
protrusions. However, a large number of nanoparticles can be observed on the surface of the Fe3O4

nanofluid impregnated paper. When the image is magnified to 16,000 times, as shown in Figure 5C,
it can be clearly seen that the nanoparticles are agglomerated to each other and bonded tightly to the
paper fiber.
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4. Conclusions

Fe3O4 nanoparticles and insulating paper fibers were combined through O–H bond linkage to
form nanofluid impregnated paper. The AC and DC breakdown voltages of nanofluid impregnated
paper are 9.1% and 10.0% higher than that of FR3 oil impregnated paper, respectively. In a certain
range, the increase of Fe3O4 nanoparticles size will be beneficial to improve the insulation performance
of the nanofluid impregnated paper.

The relative dielectric constant and dielectric loss of nanofluid impregnation are both higher than
that of FR3 oil impregnated paper. When the Fe3O4 nanoparticle size is 42 nm and test frequency is
50 Hz, the relative dielectric constant and dielectric loss for nanofluid impregnated paper are 3.5 and
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0.3%. Meanwhile, with Fe3O4 size increase, the relative dielectric constant of nanofluid impregnated
paper decreases, and the dielectric loss increases.

The TSC results show that the Fe3O4 nanoparticles will significantly increase the trap depth of
nanofluid impregnated paper, and the trap depth increases with the increase of nanoparticle size.
The increase in the depth of the trap makes it more difficult for free charges to escape the bondage of
the trap, thereby increasing the insulation performance of the nanofluid impregnated paper.
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