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Abstract: Despite recent developments in innovative treatment strategies, stroke remains one of
the leading causes of death and disability worldwide. Stem cell therapy is currently attracting much
attention due to its potential for exerting significant therapeutic effects on stroke patients. Various
types of cells, including bone marrow mononuclear cells, bone marrow/adipose-derived stem/stromal
cells, umbilical cord blood cells, neural stem cells, and olfactory ensheathing cells have enhanced
neurological outcomes in animal stroke models. These stem cells have also been tested via clinical
trials involving stroke patients. In this article, the authors review potential molecular mechanisms
underlying neural recovery associated with stem cell treatment, as well as recent advances in stem
cell therapy, with particular reference to clinical trials and future prospects for such therapy in
treating stroke.
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1. Introduction

Besides the rapidly expanding use of thrombectomy as a remedy for acute ischemic stroke [1],
few drugs that can effectively recover its sequelae have been developed. Lately, stem cell therapy
has been recognized as a promising strategy that functionally enhances recovery from ischemic
stroke. Thus, a variety of cells, including bone marrow mononuclear cells (BMMNCs) [2–21], bone
marrow/adipose-derived stem/stromal cells (BMSCs/ADMSCs) [4,6,7,22–31], umbilical cord blood
cells (UCBCs) and hematopoietic stem cells [32–37], neural stem cells (NSCs) [34,36,38–43], olfactory
ensheathing cells (OECs) [38], and fetal porcine cells [44], have been explored as candidate donors.
Animal studies have indicated that such cells may ameliorate the neurological deficits that follow
cerebral stroke, and some have been tested in clinical trials with somewhat favorable results. However,
many issues, such as the need to develop techniques that maximally enhance the effects of cell therapy
on stroke, remain unresolved, and require clarification [45–48]. These issues relate to optimal cell types,
cell doses, transplantation routes, and candidate patient types (Figure 1). In addition to the refinement
of scientific aspects, cell therapy requires an assessment from a commercial point of view, to be
successfully distributed as a new therapeutic method. Cell therapy requires the implementation of
good manufacturing practice (GMP) grade production method at a reasonable cost for production,
preservation, and transfer of the cells. Here, the authors review potential mechanisms underlying stem
cell-associated neural recovery, the current status of clinical trials, and future prospects for utilizing
cell therapy against ischemic stroke.
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Figure 1. Unsolved issues regarding stem cell treatment for ischemic stroke. The most effective
and safest method of stem cell therapy has not been established. The challenges include the choice
of cell, cell dose, transplantation routes, and patient type. ES cell: embryonic stem cell, iPS: induced
pluripotent stem cell.

2. Pathophysiology of Ischemic Stroke and Therapeutic Targets

To coordinate bodily processes, the brain requires approximately 20% of the entire cardiac output
of glucose and oxygen, which is equivalent to only 2% of total body weight [49,50]. As the brain stores
little or no energy on its own, disruption of the energy supply, even for a short duration, may lead
to catastrophic damage. Ischemic stroke is often caused by the occlusion of a single blood vessel,
which subsequently affects its downstream branches via deprivation of glucose and oxygen. Although
brain arteries possess a network of collateral vessels that compensate by ensuring the delivery of blood,
it is often insufficient to rescue the whole ischemic area, as a result of which ischemic areas closer
to the occluded vessel become more susceptible to receiving less blood. Theoretically, an affected
brain may be divided into two different damaged areas, namely the ischemic core and the penumbra.
Because the blood flow in the ischemic core is lower than the threshold required for cell survival, its
cells are irreversibly damaged and die due to necrosis, for which there is no rescue. In contrast, blood
flow at the penumbra is too low to support neurological functions but provides the minimal energy
required for preventing cells from immediate death, allowing the brain cells to recover if blood flow
is restored in time [51]. Therefore, current treatment strategies for stem cell transplantation involve
rescuing the penumbra before it dies, or regaining a new neuronal network via cell transplantation [52].
The ischemic cascade in the penumbra progresses with time. Events including the depletion of
adenosine triphosphate (ATP); disturbance of ionic concentrations of sodium, potassium, and calcium,
increased lactate, acidosis, accumulation of oxygen free radicals, the release of excitotoxic glutamate,
and intracellular accumulation of water, may be initiated within minutes to hours following the onset
(acute phase) of stroke. This acute phase may be followed by events such as apoptosis of neuronal cells,
infiltration, and activation of inflammatory cells (neutrophil, monocyte, and microglia), vasogenic
edema, and increase in intracranial pressure, within hours to weeks (subacute phase) [53]. Although
the condition of the brain appears to stabilize during the chronic phase (months to years), recent
findings indicate that inflammation and blood–brain barrier leakage, which are detrimental to brain
recovery, may continue [54–57].
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Currently, standardized treatments, such as thrombectomy and recombinant tissue plasminogen
activator (r-tPA) therapy, are applied during the acute phase (<4.5 h). These treatments aim to
recanalize the occluded vessel and rescue the penumbra. However, it is often difficult to successfully
apply these treatments during short time periods, and reportedly, only 5–10% of all stroke patients
become eligible for such treatment [58]. Stem cell therapy, which is known to be effective in all three
phases, namely acute, subacute, and chronic, reportedly exerts multiple effects on animal models, such
as extending the penumbra period (acute phase), inhibiting unwarranted inflammation (subacute
phase), and initiating neuro/angiogenesis (chronic phase) [59].

3. Potential Mechanisms of Stem Cell Therapy

Extensive efforts have been made to elucidate the mode of action underlying the treatment
of ischemic stroke via stem cell transplantation, resulting in the publication of multiple descriptive
reviews [60–64]. Briefly, transplanted cells are known to exert a variety of neuro- and vascular-protective
effects during the various phases of an ischemic stroke. The transplanted cells not only reorganize
the neuronal network but also reduce local and systemic inflammation, support axonal regeneration
and synaptic sprouting, and reduce glial scars. These mechanisms can be sub-categorized into
two distinct types: (i) cell differentiation (cell replacement); (ii) secretion of paracrine factors
(Bystander effect).

3.1. Cell Differentiation

Cell replacement may be achieved via the differentiation of transplanted cells into neuronal or
vascular cells, which compensates for lost functions, or via the direct settlement and development of
neuronal progenitor cells [65,66]. Azizi et al. (1998) examined, ex vivo expanded bone marrow-derived
stem cell settlement in the ischemic brain, and indicated that 20% of human BMSCs transplanted into
a rat brain remained alive 72 d after infusion, and showed neuronal phenotypes [67]. Our group
demonstrated that in vitro chemical induction of BMSCs reduced the expression of mesenchymal cell
lineage genes and enhanced the expression of neural genes associated with the release of trophic
factors [68,69]. An in vivo study revealed that approximately 50% of engrafted stem cells in the ischemic
brain expressed a neuronal phenotype 2 months following cell transplantation [70–72]. The migration
of stem cells to the damaged area is also reported [72]. Intracerebrally injected stem cells express
the CXCR4 receptor, which can bind to stromal cell-derived factor-1 (SDF-1), a chemoattractant. SDF-1
is expressed from the damaged brain and the stem cell uses this CXCR4/SDF-1 axis to migrate to
the damaged regions of the brain. However, whether these transplanted and phenotype-altered cells
actually compensate for the lost neurological network remains unclear [35].

3.2. Bystander Effect of Stem Cells

The secretion of paracrine factors is an important aspect of the functional multipotency of stem
cells, wherein these cells secrete various trophic factors such as cytokines, chemokines, and exosomes,
which ameliorate neuronal damage or regenerate new neuronal circuits [73–75]. In addition to
promoting anti-inflammatory and immunomodulatory effects, these factors induce anti-apoptotic
effects and mobilize endogenous stem cells (NSC))/neural progenitor cells (NPCs) [76]. These factors
are released into the surrounding environment via direct permeation or extracellular vesicles (EV),
and directly ameliorate ischemic damage and down-regulate local as well as systemic inflammation via
peripheral immune organs, such as the spleen and the thymus [77,78]. EVs are membrane structures
of lipid bilayer nanoparticles that transport proteins, lipids, and nucleic acids through endocytosis.
EVs are attracting attention due to their low immunogenicity and high blood-brain barrier (BBB)
permeability, which reduces damage and facilitates recovery. These properties along with its versatility
make EVs promising as vehicles for drug delivery [79]. Recent reports suggest that EVs can ameliorate
ischemic damage through multiple mechanisms including upregulation of angiogenesis, neurogenesis,
and modulation of autophagy after ischemic stroke [80,81]. Besides rescuing damaged brain cells,
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these factors accelerate the regeneration of in-house stem cells. Trophic factors fuel the proliferation
of host neuronal progenitor cells, especially of those located around the subventricular zone (SVZ),
which are normally inactive.

4. Key Aspects of Clinical Trials

4.1. Overview of Clinical Trial Results

A comprehensive search of the clincaltrials.gov database was performed using the search criteria
“ischemic stroke” and “stem cell” on 23/04/2020. A total of 52 results were returned, and the status
“completed” for the trial were then manually screened for its publication, following which PubMed
articles linked to clincaltrials.gov were evaluated for additional information where appropriate. Further
PubMed searches were performed using the terms “ischemic stroke*” and “stem cell” or “neural stem
cell (or NSC),” “mesenchymal stem cell or mesenchymal stromal cell” (or “MSC”), “mononuclear cell
or mononuclear precursor cell” (or “MNC”) and “Schwann cell” (or “SC”), “olfactory ensheathing
or olfactory glia (or OEC)” or “oligodendrocyte precursor (or OPC).” Each article type was then
restricted to “clinical trial” to identify any other published studies that had not been registered on
clinicaltrials.gov. Additional searches were performed to identify case studies where appropriate. Cell
type, cell source, dose, route, timing, patient number, assessment modality, and major outcome were
extracted from the manuscript. Cell doses were re-calculated at 60 kg for each patient if the dose was
only stated in terms of the number of cells per kilogram (cells/kg). A total of 43 published clinical
trials were obtained (Table 1). The trials were categorized into acute (treatment within a week from
stroke onset), sub-acute (treatment between 1 week and 6 months from onset), and chronic (treatment
after 6 months from onset). Some trials contained multiple treatment time points and were divided by
the actual timing of treatment listed in the manuscript.

The methodologies differed widely between trials as well as countries that the trials were executed
in (Table 1). Autologous BMMNCs account for the largest portion of cells, followed by autologous bone
marrow stem/stromal cells. Small amounts of other sources of cells, such as UCBCs and adipose-derived
stem/stromal cells, or neuronal progenitor cells, are also used. Cell doses, which differed widely, ranged
between 1 × 106 to 1 × 109, while transplantation routes consisted of intravenous (IV), intraarterial
(IA), intrathecal or intracerebroventricular (IT), and intracerebral (IC) routes. Intravascular routes
(IV and IA) appear to offer higher cell numbers (up to 109 cells) than those of IC transplantation (106-7)
(Figure 2). This is because IC transplantation limits the amount of cells that can be transplanted to
avoid a mass effect on the brain, whereas intravascular transplantation does not. IV transplantation
appears to be preferable in the acute to sub-acute phase, while IC or IT transplantation is mostly
performed during the chronic phase. A majority of these trials were of a preliminary nature and control
groups were not set up, whereas some trials did set up control groups consisting of unblinded or
blinded patients. All but one study reported no detrimental effects due to cell therapy, while the single
study that did, used xenogeneic fetal porcine cells and reported that cell transplantation exerted
a negative effect causing seizures and motor function aggravation, which led to the termination of
the trial. Although assessment modalities also differed widely between trials, modified Rankin Scale
(mRS), National Institute of Health Stroke Scale (NIHSS), and Barthel index were commonly applied.

clincaltrials.gov
clincaltrials.gov
clinicaltrials.gov
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Table 1. Published clinical trials using stem cells for ischemic stroke.

Reference
Number Country Cell Type Cell Source Dose Route Transplant

Timing

Treated
Patient

Number
(Control)

Assessment
Modality Major Outcome

Acute

[16] USA Autologous BMMNC 4–6 × 108 IV 1–3 D 10 BI, mRS,
NIHSS

showed good
neurological recovery

[25] USA Allogeneic BMSC 1.2 × 109 IV 1–2 D 65 (58) mRS, NIHSS,
BI

No difference for neurological
recovery (primary endpoint), but

earlier timing (24–36 h) may
be beneficial

[35] USA Allogeneic UCBC 1.2 × 106 (CD34+) IV 3–9 D 10 mRS, NIHSS Safe

[10] Brazil Autologous BMMNC 5–60 × 107 IA 3–10 D 20 mRS, NIHSS 30% of the patients showed
satisfactory clinical outcome

[12] Spain Autologous BMMNC 1.6 × 108 IA 5–9 D 10(10) mRS, BI,
NIHSS

No difference in
neurological function

[9] Brazil Autologous BMMNC 3 × 107 IA 9 D 1 SPECT Brain/liver/spleen uptake at 8 h

[32] UK Autologous CD34+ (BM) 1–3 × 106 IA 1 W 5 mRS, NIHSS Good recovery was observed

[36] China Allogeneic UCBC & NPC
3 × 107 (UC: IV), 1.5 ×
107 (UC: IT), 1.8 × 107

(NPC: IT)
IV &IT 1 W 1 NIHSS, BI,

mRS
Showed some degree of
neurological recovery

Sub-Acute

[13] India Autologous BMMNC 2–19 × 108 IV 2–4 W 11 NIHSS, BI,
mRS, PET

Favorable outcomes were mostly
found in early treatment group

[5] India Autologous BMMNC 5 × 107 IV 3–4 M 1(3) FM, mBI Safe

[15] Brazil Autologous BMMNC 2–5 × 108 IV 1–3 M 5 NIHSS

Cells in brain were scarce (1%),
IV (21%) showed high cell

distribution in lung compared
with IV (7%)

[14] India Autologous BMMNC 2.8 × 10e7 IV 18 D 59(59) BI, mRS,
NIHSS, PET

No significant recovery
compared with control
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Table 1. Cont.

Reference
Number Country Cell Type Cell Source Dose Route Transplant

Timing

Treated
Patient

Number
(Control)

Assessment
Modality Major Outcome

Acute

[20] Japan Autologous BMMNC 2.5–3.4 × 108 IV 7–10 D 12 mRS, NIHSS,
SPECT, PET

Better NIHSS (but not mRS, BI)
recovery compared with

historical control

[22] Korea Autologous BMSC 1 × 108 IV 1–2 M 5 (25) BI, mRS,
NIHSS

Cell treatment group showed
better neurological recovery

than control

[28] Korea Autologous BMSC 1 × 108 IV 2 M 16(36) mRS, Survival Better recovery, less mortality
for 5 years

[26] Japan Autologous BMSC 0.8–1.5 × 108 IV 1–4 M 12 NIHSS Recoveries were mainly seen 0–1
W from transplantation

[24] China Autologous BMSC 3 × 108 IV 1 M 12 (6) mRS, NIHSS,
BI

No neurological difference
compared with control

[27] France Autologous BMSC 1 or 3 × 108 IV 1–2 M 16(15) NIHSS, mRS,
BI

No overall change, but motor
functional evaluations

indicated improvement

[36] China Allogeneic UCBC & NPC 1.2 × 108 (UC) IV 2 & 3 M 2 NIHSS, BI,
mRS

Showed some degree of
neurological recovery

[2] Brazil Autologous BMMNC 1–5 × 108 IA 2–3 M 6 SPECT Cells were found in the brain
after 2 h, but not after 24 h

[3] Brazil Autologous BMMNC 1–5 × 108 IA 2–3 M 6 NIHSS,
SPECT

Safe, but cells could not be seen
24 h after injection in 4 out

of 6 patients

[15] Brazil Autologous BMMNC 1–5 x 108 IA 1–3 M 7 NIHSS

Cells in brain were scarce (1%),
IA (41%) showed high cell

distribution in liver compared
with IV (13%)
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Table 1. Cont.

Reference
Number Country Cell Type Cell Source Dose Route Transplant

Timing

Treated
Patient

Number
(Control)

Assessment
Modality Major Outcome

Sub-Acute

[11] Egypt Autologous BMMNC 1 × 106 IA 2–4 W 21(18) NIHSS, mRS,
BI,

IA treatment did not improve
neurological recovery compare

with control

[8] India Autologous BMMNC 5 × 108 IA 1–2 W 10 (10) BI, NIHSS,
mRS

Good recovery was observed in
treatment group (P = 0.06)

[17] USA Autologous BMMNC (ALD) 3 × 106 IA 2–3 W 29 (17) mRS, NIHSS,
BI

No statistical difference
compared to control

[34] China Allogeneic UCBC & NPC 2 × 107 IA 11–22 D 3 mRS Showed neurological recovery in
2 out of 3 patients

[42] Russia Allogeneic Fetus neuronal
cell 2 × 108 IT 4 M 1 Karnovskii

score
Cell treatment showed 33%

increase in Score

[36] China Allogeneic UCBC & NPC
3 × 107 (UC: IV), 1.5 ×
107 (UC: IT), 1.8 × 107

(NPC: IT)
IV & IT 2 W 1 NIHSS, BI,

mRS
Showed some degree of
neurological recovery

Chronic

India Autologous BMMNC 6–7 × 107 IV 5–14 M 20(20) FM, mBI,
Ashworth

No difference compared
with control

[21] India Autologous BMMNC 5 × 107 IV 6–15 M 11(9) FM, mBI Significant improvement in mBI,
but not in FM

[4,5] India Autologous BMSC 5–6 × 107 IV 8–12 M 6(6) BI, FM,
Ashworth

No significant difference
compared with control up

to 4 years

[29] USA Allogeneic BMSC (hypoxia
treated) 1 × 108 IV 7 M-25 Y 36 NIHSS, BI

Significant recovery was
observed compared

with baseline

[7] India Autologous BMSC/BMMNC 5-6 × 107 IV 3 M-2 Y 20(20) FM, mBI mBI showed
significant improvement
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Table 1. Cont.

Reference
Number Country Cell Type Cell Source Dose Route Transplant

Timing

Treated
Patient

Number
(Control)

Assessment
Modality Major Outcome

Chronic

[18] India Autologous BMMNC 6 × 107 IT 4 M-12 Y 14 FIM Showed recovery, but this study
included hemorrhagic stroke

[37] China Autologous CD34+
(peripheral) 1–3 × 107 IT 1–7 Y 8 NIHSS, BI

Patients showed recovery, but
this may have been due to

natural history

[42] Russia Allogeneic Fetus neuronal
cell 2 × 108 IT 8 M-1.5 Y 6 (6) Karnovskii

score
Cell treatment groups showed

better recovery

[23] USA Autologous ADSC (no
culture) N.D. IT (ICV) 1 Y 1 N.D. Stable

[19] Cuba Autologous BMMNC 1–5 × 107 IC 3–5 Y 3 BI, NIHSS,
SSS

Recovery compared with
pre-operation was found

[33] Taiwan Autologous CD34+
(peripheral) 3–8 × 106 IC 6 M-5 Y 15(15) NIHSS, ESS,

mRS Statistically significant recovery

[30,31] USA Allogeneic BMSC (Gene
modified) 2.5, 5, 10 × 106 IC 7–36 M 18 ESS, NIHSS,

FM

Neurological recovery (ESS,
NIHSS, F-M test) was observed

up to 2 years

[41] USA Allogeneic Fetus neuronal
cell

2 × 106 (n = 8) or 6 ×
106 (n = 4)

IC 7 M-5 Y 12 BI, ESS,
NIHSS

6 x 106 showed better recovery
than 2 x 106

[39] UK Allogeneic Fetus neuronal
cell 2, 5, 10, 20 × 106 IC 1–4 Y 11 NIHSS, BI,

Ashworth
Neurological recovery (median

NIHSS of 2) was observed

[43] UK Allogeneic Fetus neuronal
cell 2 × 107 IC 2M-1 Y 23 ARAT Upper limb function recovered

from baseline

[40] USA Allogeneic Fetus neuronal
cell 5, 10 × 106 IC 1–6 Y 18(4) ESS, NIHSS,

FM, ARAT

No difference for neurological
recovery (primary endpoint), but

showed partial recovery
in some tests

[38] China Allogeneic OEC 1 × 106 IC 3 Y 1 BI Recovery in speech and gait

[38] China Allogeneic OEC & NPC 1 × 106 & 2 × 106 IC 5 Y 1 BI Recovery in motor function
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Table 1. Cont.

Reference
Number Country Cell Type Cell Source Dose Route Transplant

Timing

Treated
Patient

Number
(Control)

Assessment
Modality Major Outcome

Chronic

[44] USA Xenogeneic Fetal Porcine
cell 2 × 107 IC 1.5–10 Y 5 BI, RS, NIHSS

Slight recovery, but 2 patients
exhibited adverse events (seizure

and motor deficit)

[38] China Allogeneic OEC & NPC 1 × 106 & 2 × 106 IC & IT
(NPC) 1–20 Y 4 BI Recovery in gait

[36] China Allogeneic UCBC & NPC
3 × 107 (UC: IV), 1.5 ×
107 (UC: IT), 1.8 × 107

(NPC: IT)
IV & IT 10 M & 2 Y 2 NIHSS, BI,

mRS
Showed some degree of
neurological recovery
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Figure 2. The relationship between cell types, dose, and patient characteristics in clinical trials. Note
that intravenous transplantation is preferred in the acute phase, while intracerebral transplantation is
preferred in the chronic phase. MNC: CD34: CD34 positive hematopoietic stem cells derived from
mononuclear cells, MSC: Mesenchymal stem/stromal cell, NSC: Neural stem/progenitor cell, OEC:
Olfactory ensheathing cell. The number represents the approximate amount of cells transplanted per
patient (cells/body).

4.1.1. The Acute Phase of Stroke

Cell transplantation within a week from the onset of a stroke is defined in this review
as treatment during the acute phase. Because it is difficult to expand autologous mesenchymal
stem cells under ex-vivo conditions within this time frame, BMMNCs or allogenic cells were
selected [9,10,12,16,25,32,35,36]. The trials used IV or IA transplantation and did not use IC injections.
Spontaneous recovery strongly influenced the final result within this time frame, and thus should be
taken into consideration when assessing results. While the smaller, early phase studies that did not set
up control groups reported good clinical recovery, two studies of IV and IA transplantation that used
control patients reported an absence of statistical difference between functional recovery and control
groups [12,25]. However, referring to their post-hoc analysis, one study declared that patients who
received cells between 24 and 36 h (trial inclusion 24–48 h) showed a significant improvement in motor
recovery one year following treatment [25]. This indicated that patients receiving their BMSCs early
via IV injection benefited from the treatment. Currently, studies using these cells under new time
course (24–36 h) conditions are ongoing in Japan [82].

4.1.2. The Sub-Acute Phase of Stroke

Cell transplantation after a week for up to 6 months is considered to be sub-acute
treatment [2,3,5,8,11,13–15,17,20,22,24,26–28,34,36,42]. In addition to BMMNCs, autologous BMSCs
are used for ex-vivo expansion within a time frame of approximately 1 month. IV or IA transplantation
accounts for the majority of trials, while IT transplantation has also been reported. The results of
these studies are mostly similar to the favorable results reported in the acute phase of trials using
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small samples, while larger randomized trials showed heterogeneous efficacy [8,11,14,17,22,24,27,28].
A large trial performed by Prasad et al. included 118 patients, half of which received approximately 3
× 107 autologous BMMNCs between 7 and 10 d following the insult [14]. This phase II multicenter,
parallel-group, randomized accessor blinded trial revealed that, although IV infusion of BMMNCs was
safe, it did not exert any beneficial effects (BI) on stroke outcome. Lee et al. reported that IV injection
of 1 × 108 BMSCs resulted in better recovery and reduced mortality for up to 5 years from treatment
initiation, compared with randomized controls [28], whereas Jaillard et al. did not report an overall
benefit [27]. Differences in cell processing procedures, patient types, and timing make arriving
at a specific conclusion much more difficult. The results of IA treatments also differed between trials.
Bhatia reported a good trend (P = 0.06) of recovery via IA transplantation of autologous BMMNCs [8],
while others did not report a difference [11,17]. A recent report by Savitz et al. discussed a new aspect
regarding logistics [17]. Autologous stem cells are mainly processed at the transplantation site and do
not require cell preservation while transferring. However, it is impossible to make these commercially
available unless a cell preservation and logistics process is developed for wide commercial distribution.
They reported that bone marrow extracted from the patient was transferred to a sorting facility,
and shipped back to the hospital for transplantation. These procedures are considered very important
for cell transplantation purposes especially when using autologous stem cells.

4.1.3. The Chronic Phase of Stroke

Initiating treatment 6 months after an ischemic stroke is considered as treatment during the chronic
phase [4–7,18,19,23,29–31,33,36–44,66]. Currently, no effective treatments are available for this phase,
and thus the establishment of an effective treatment process is highly anticipated. Interestingly, IC
or IT injections account for most transplantation routes within this time frame. However, only one
study investigating IC transplantation had used control patients, and this study reported that IC
transplantation of CD34 positive hematopoietic cells initiated marked neurological recovery compared
with that of the control [38]. Although the number of patients screened was small (N = 6 each),
IT injection resulted in better recovery compared with that of the control [42]. The results of IV
transplantation varied between trials, where some studies reported significant recovery compared with
that of the control [5,7], while others did not [4,6,21]. Randomized clinical trials using larger patient
samples are currently ongoing (NCT02448641, NCT02448641) and the results are expected soon.

5. Unsolved Issues Associated with Optimal Treatment

5.1. Stem Cell Types

Many stem cell types, including mononuclear cells (MNCs), MSCs, OECs, and NSCs have been
intensively examined as promising sources and tested via clinical trials, as previously mentioned. Some
cells use gene-modification processes to enhance the release of trophic factors and survival [30,31].
Autologous cells (MNCs, MSCs, OECs) possess the advantage of being associated with a low risk
for post-transplant rejection and allergies, whereas allogenic cells (MSCs, NSCs) are considered to be
advantageous due to easier accessibility resulting from large-scale manufacturing and availability
of standardized stocks. Clinical trials discussed here show a trend of moving from autologous
to allogeneic cells, which aims for large-scale manufacturing for commercial purposes. Prior to
distributing an available cell source for commercial purposes, several factors such as safety, efficiency,
cost, and feasibility of manufacturing on a large scale, must be taken into consideration. Recent
reports indicate that MSCs from the same bone marrow may express different functional and molecular
phenotypes if produced using different facilities and methods [83]. This is indicative of the difficulties
encountered in maintaining consistent quality during cell preparation. Several basic studies have
compared the efficacy of different cell sources as treatments [84,85]. However, each stem cell type
comes with its own benefits and drawbacks, and at present, which cell type represents the most
beneficial treatment remains unclear.
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5.1.1. MNCs

An advantage associated with MNCs is that these may be obtained from patients without resorting
to ex-vivo expansion. Approximately, 1 × 108 MNCs can be obtained from 50 mL of bone marrow,
and transplanted immediately following isolation [83]. Therefore, this cell type is widely used in
the acute and subacute phases, that nearly half of the trials used bone marrow-derived mononuclear
cells (Table 1). However, a disadvantage associated with using MNCs is that MNCs only contain very
small amounts of MSCs (0.1–0.01% of MNCs), which, according to some researchers, casts doubts
regarding its efficacy.

5.1.2. Hematopoietic Stem Cells (CD34 Positive)

Hematopoietic stem cells, expressing CD34, which are obtained from both bone marrow
and peripheral blood are also frequently used. These cells, which have a long history of being
harvested and used to treat hematological disorders under clinical conditions, are considered safe
for clinical use. These cells show a strong capacity for angiogenesis, as witnessed in diseases such
as myocardial infarction and limb ischemia [86–88], and show potential for reorganizing the vascular
network in the brain [89]. An advantage of using these cells is that ex-vivo cell expansion, which requires
time and effort, is not required. However, these cells show limited capacity for neuronal differentiation
and are thus unable to complete the complex restoration process needed to repair ischemic stroke-related
damage. These cells tend to accumulate during inflammation, and may not reach the brain when other
organs, such as heart and lung, are inflamed [90].

5.1.3. MSCs

The nomenclature of MSCs (stromal or stem cells) is convoluted. The International Society for Cell
& Gene Therapy (ISCT) Mesenchymal Stromal Cell Committee has established the minimal criteria that
are required for a cell to qualify as a mesenchymal stromal cell: (i) plastic-adherence; (ii) CD73, CD90,
and CD105 expression; 3) absence of expression of hematopoietic and endothelial markers CD11b,
CD14, CD19, CD34, CD45, CD79a, and HLA-DR; (iv) capable of in vitro differentiation into adipocyte,
chondrocyte, and osteoblast lineages [91,92]. However, it was later observed that some cell-surface
markers displayed an ability to be reversibly upregulated or downregulated according to cell culture
conditions [93–95]. The use of “stromal” and “stem” to describe MSCs is almost equivalently found
in the literature, and the ISCT suggests that “mesenchymal stromal cell” should be used to describe
bulk unfractionated populations, which include fibroblasts, myofibroblasts, and stem/progenitor cells,
whereas “mesenchymal stem cell” should be used for purified stem/progenitor cells [96]. An abundance
of preclinical evidence indicates that MSCs possess an ability to ameliorate tissue damage and facilitate
functional recovery via multiple processes, including immunomodulation, pro-angiogenic signaling,
neurotrophic factor secretion, and neural differentiation [70,71,97,98]. MSCs can be harvested from
bone marrow, abdominal fat tissue, teeth, umbilical cord blood, and Wharton’s Jelly. MSCs have
several advantages over other stem cells due to well-established harvesting methods, low risk for
tumorigenicity, and the absence of ethical issues [64]. MSCs possess a unique immune tolerance,
where even allogenic MSCs, which do not show immunological rejection responses, are approved for
graft vs host disease (GvHD) treatment in many countries [99]. Gene modification of BMSCs has also
been reported. SanBio developed SB623 cells through transient transfection of a plasmid containing
the human Notch-1 intracellular domain [100]. This cell showed better neuroprotective properties,
via higher trophic factor secretion, stronger anti-inflammatory effect, and neuro-/angiogenesis. They
recently reported that SB623 was associated with a rate of recovery from chronic traumatic brain injury,
which was statistically significant (unpublished data).
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5.1.4. NSCs

NSCs are multipotent progenitor cells capable of integrating with the host brain by transforming into
neural cells, oligodendrocytes, and astrocytes [101,102]. These cells survive in the host brain and exhibit
neuroprotective effects through extending processes, expressing neurotransmitters, and forming functional
synapses [103,104]. Although these cells are mostly found during the development of the fetal CNS,
they are also present in a limited number of other regions of the adult brain, such as the subventricular
zone next to the cerebral lateral ventricle [105]. Although NSCs appear to be ideal for refilling lost
neuronal networks, the cells need to be harvested from the fetus, which poses ethical issues and there
is the possibility of immune rejection by the host. Other potential concerns include whether NSCs can
initiate angiogenesis, differentiate to vascular structures, since brain reconstruction requires other cell
types including vascular cells, such as endothelial cells, and remain pluripotent after adulthood.

5.1.5. OECs

OECs surround olfactory neurons, and function as scavengers of pathogens and debris around
the border between the CNS and the nasal mucosa. Additionally, they reportedly express neurotrophic
factors that facilitate olfactory regeneration. OECs can be harvested from the nasal mucosa and the olfactory
bulb. These cells secrete neurotrophic factors, such as the stromal cell-derived factor 1-a (SDF-1 a),
and the brain-derived neurotrophic factor (BDNF), which promote neuronal regeneration [106,107]. These
cells have been extensively examined in relation to spinal cord injury, but investigating its usefulness
in treating ischemic stroke has just started [108–111]. Data indicating its potential or detrimental nature
are scant.

5.1.6. Other Cell Types

Embryonic stem (ES) cells and induced pluripotent stem (iPS) cells have also been examined
in preclinical studies [112–114]. Their pluripotency is an attractive characteristic in relation to its
usefulness in treatment. However, data regarding clinical trials of these cells are currently unavailable
due to factors associated with ethics and tumorigenicity.

5.2. Cell Dose and Route

IV transplantation has the advantage of showing the lowest invasiveness, thereby allowing multiple
injections. The method also does not require special equipment for transplantation. However, despite
its efficacy, small amounts of cells are often found in the damaged lesion, and most cells are trapped
in the lungs [71]. The bystander effect exerted by neurotrophic factors resulting in the amelioration
of apoptosis and inflammation are considered as the main therapeutic mechanisms underlying IV
transplantation. This is useful in the acute phase of ischemic stroke, but may not be beneficial in
the chronic phase during which cell damage and inflammation are mostly settled. The IA approach is
considered superior to IV administering in delivering more cells to the lesion. However, recent reports
have indicated that this method is not effective for cell engraftment in the brain [2,3,15]. Additional
ischemic damage caused by cell clusters clogging the arteries is a drawback of this method [17]. IT
application, which can deliver a large number of cells to the subarachnoid space, is less invasive
relative to IC transplantation. However, the rate of cell engraftment is unclear, and complications, such
as hydrocephalus and liquorrhea, may arise. The IC approach of directly administering cells achieves
the highest level of cell engraftment but requires invasive surgery, and the risk of additional brain
damage being caused by injection needles should not be underestimated [115].

As previously mentioned, IV and IA transplantations, using a large number of cells ranging
up to 10e9 cells, are preferred in the acute and sub-acute phases, whereas, in the chronic phase,
IC transplantation with a smaller cell dose of 107 cells is preferred. Interestingly, most IV/IA
transplanted stem cells are not found in the brain but the other organs, such as lungs, spleen,
and bladder [2,3,9,15]. Rosado-de-Castro et al. transplanted technetium-99m labeled BMMNCs
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intravenously and intra-arterially into sub-acute stroke patients, and found that only 0.6–0.9 % of cells
were present in the brain 2–24 h after transplantation [15]. They reported that the IA transplantation
group had higher radioactive counts in the liver (2 h: 40% and 24 h: 47%) and spleen (2 h: 6% and 24 h:
7%), and low counts in the lungs (2 h: 7% and 24 h: 4%), compared to IV transplantation (liver 14%
and 19%, spleen 2% and 3%, and lung 21% and 7%, respectively). According to this result, intravenously
and intra-arterially transplanted cells are distributed differently soon after transplantation, following
which intravenously transplanted cells are found in the lung, while intra-arterially transplanted cells
are in the liver. This result is similar to other reports that intra-arterially transplanted technetium-99m
labeled BMMNCs, which were found in the brain 2 h after ischemia with the main uptake occurring
in the liver, lungs, spleen, kidneys, and bladder. After 24 h, the cells were hardly distinguishable in
the brain, while uptake was still observed in the other organs [2]. These results indicate that cells that
are transplanted intravenously or intra-arterially are unable to stay in the brain for a long time. We have
recently revealed that intracerebrally injected iron labeled BMSCs can migrate, settle in the ischemic
area, and survive for more than 2 years (unpublished data) [116].

5.3. Patient Characteristics and Outcome Measure

It is difficult to estimate which pathological aspect (timing, stroke type, comorbidity disease)
of a patient will most benefit from stem cell treatment, via the use of animal models. Clinical trials
involving a large number of patients or real-world data are required to resolve this issue. Outcome
evaluation needs to be adequately refined to accurately monitor the results of clinical trials. mRS,
NIHSS, and BI are often used in clinical trials, but mRS is too broad-based to detect small differences,
while NIHSS is mostly intended for acute assessment of patients.

6. Future Directions

While the results of the clinical trials are promising, there are other factors such as regulatory
approval and the overall cost to be considered for the widespread use of stem cells in the treatment of
ischemic stroke. The key is to achieve a balance between the quality of cells produced and the costs
involved, two apparently conflicting parameters.

6.1. Producing Good Cells (GMP Grade)

Most of the clinical trials, especially those using autologous cells, were performed completely
within a single hospital, where cell preparation was also done on-site. Some clinical trials mentioned
about the GMP grade cell production, while the others did not. GMP is a system for ensuring
quality controlled drug production to minimize the risks. It covers all aspects of production such
as the handling and checking of materials, producing drugs according to the standard operating
procedures (SOP), appropriate packing of drugs, and delivery management. Following GMP is
time-consuming and costly, however, the cells will not qualify for drug use in many countries unless
GMP is followed. The problem with this is that each country possesses its own GMP requirement.
Pharmaceutical companies need to fulfill the requirement of the country where drug production will
be carried out. Many regulatory agencies are working together to develop a set of common rules for
drug approval, and this policy can help achieve faster drug development and approval in the future.

6.2. Producing Cells at Low Cost

Many clinical trials are executed as an investigator-oriented trial, where government or public
funds are used for cell production. Cell preparation can be very expensive and to normalize stem cells
as a standard treatment method, the cost needs to be minimized. Current cell expanding procedures
requires the expertise of experienced technicians. Allogeneic stem cells are suitable for bulk production
using automated cell producing machines; however, there is a need for innovative technology when it
comes to autologous stem cells, which are made-to-order and are difficult to be adapted for automated
production. Cell logistics are another key issue. Stem cells differ from ordinary low-molecular
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drug compounds in that stem cell efficacy is dependent on viability, which means that adequate cell
preservation is mandatory. Cryopreservation and shipping of stem cells are often adopted in the clinical
trials, but the reagent for cryopreservation contains DMSO, a possible toxic reagent, and shipping under
extremely low temperature (using liquid nitrogen) is costly. Therefore, the production and transfer of
stem cells at an affordable cost require further optimization.

7. Conclusions

Stem cell therapy is expected to ameliorate the sequelae of those ischemic stroke patients who
have reached the acute phase, a stage at which no proven treatment is currently available. The results
of clinical trials are promising, in the sense that most methods used for stem cell transplantation appear
to be safe. It seems that intravenous or intra-arterial transplantation is preferred in the acute phase,
where the aim is to ameliorate systemic and local inflammation and cell engraftment is not required.
Alternatively, intracerebral transplantation is preferred in the chronic phase, where cell engraftment is
considered the objective of cell therapy. However, optimal parameters including the choice of cell type,
cell dose, and patient characteristics remain elusive and further research is needed for maximizing
the effects of the proposed methods. To achieve this, it is expected that the integration of pre-clinical
and clinical research will take place in the near future.
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