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One sentence summary: The bacterial density at which an antimicrobial’s MIC increases sharply (an MIC advancement-point density) is linked to the
antimicrobial mechanism of action, with the complete MIC-density relationship most often captured by a Gompertz or logistic model.

Editor: Jan-Ulrich Kreft

ABSTRACT

Antimicrobial treatment regimens against bacterial pathogens are designed using the drug’s minimum inhibitory
concentration (MIC) measured at a bacterial density of 5.7 log10(colony-forming units (CFU)/mL) in vitro. However, MIC
changes with pathogen density, which varies among infectious diseases and during treatment. Incorporating this into
treatment design requires realistic mathematical models of the relationships. We compared the MIC–density relationships
for Gram-negative Escherichia coli and non-typhoidal Salmonella enterica subsp. enterica and Gram-positive Staphylococcus
aureus and Streptococcus pneumonia (for n = 4 drug-susceptible strains per (sub)species and 1–8 log10(CFU/mL) densities), for
antimicrobial classes with bactericidal activity against the (sub)species: β-lactams (ceftriaxone and oxacillin),
fluoroquinolones (ciprofloxacin), aminoglycosides (gentamicin), glycopeptides (vancomycin) and oxazolidinones (linezolid).
Fitting six candidate mathematical models to the log2(MIC) vs. log10(CFU/mL) curves did not identify one model best
capturing the relationships across the pathogen–antimicrobial combinations. Gompertz and logistic models (rather than a
previously proposed Michaelis–Menten model) fitted best most often. Importantly, the bacterial density after which the MIC
sharply increases (an MIC advancement-point density) and that density’s intra-(sub)species range evidently depended on
the antimicrobial mechanism of action. Capturing these dependencies for the disease–pathogen–antimicrobial combination
could help determine the MICs for which bacterial densities are most informative for treatment regimen design.
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INTRODUCTION

Effective antimicrobial treatment regimens for bacterial dis-
eases are essential for prudent use of existing antimicrobial
drugs as a limited resource (Toutain, del Castillo and Bousquet-
Mélou 2002; Papich 2014). Antimicrobial treatment regimens
are designed by projecting the pharmacodynamics against the
pathogen population at the infection site using several differ-
ent paramaters, the most common being the antimicrobial’s
minimum inhibitory concentration (MIC) measured in vitro at
a bacterial density of 5.7 log10(colony-forming units (CFU)/mL)
(i.e. 5 × 105 CFU/mL)” (Lees and Shojaee Aliabadi 2002; Toutain,
del Castillo and Bousquet-Mélou 2002; Levison 2004; Mueller,
de la Pena and Derendorf 2004; Garcia 2010; Papich 2014; CLSI
2015). Values of the MIC and other pharmacodynamic param-
eters are assumed to remain constant throughout treatment
(Lees and Shojaee Aliabadi 2002; Blondeau et al. 2004; Levison
2004; Mueller, de la Pena and Derendorf 2004; Toutain and Lees
2004; McClary et al. 2011; Papich 2014). However, pathogen den-
sity (number of viable bacteria per g or mL) at the infection site
varies among pathogen–disease combinations and individuals,
e.g. densities 3–9 log10(CFU/mL) are reported in human soft tis-
sue and intraabdominal infections (Chastre et al. 1995; Konig,
Simmen and Blaser 1998; Smith 2000; Sheppard et al. 2003; Mas-
troeni et al. 2009) and 3.7–8.5 log10(CFU/mL) in cerebrospinal fluid
of humans with meningitis (Feldman 1976). During treatment,
pathogen density at the infection site can fluctuate in response
to the antimicrobial concentration, but overall decreases until
the infection is eradicated by the treatment (also known as the
bacteriological cure) and/or the host immune responses (Read,
Day and Huijben 2011; Ankomah and Levin 2014). Importantly,
an antimicrobial’s MIC changes with the bacterial population
density (Brook 1989; Burgess and Hall 2004; LaPlante and Rybak
2004; Bidlas, Du and Lambert 2008; Udekwu et al. 2009). Account-
ing for the changes could enable optimizing treatment regimens
to maximize the bacteriological cure probability while minimiz-
ing antimicrobial drug use (Regoes et al. 2004; Meredith et al.
2015).

The term inoculum effect (IE) has been used historically
for the MIC–bacterial density relationships (Brook 1989; Burgess
and Hall 2004; LaPlante and Rybak 2004; Bidlas, Du and Lam-
bert 2008; Kesteman et al. 2009; Singh et al. 2009; Udekwu et al.
2009). It is believed to have been reported first in vitro in 1945
(Kirby 1945) and in vivo in 1952 (Eagle 1952). Currently, the
phenomenon is considered as a bacterial collective antibiotic
tolerance response to antimicrobial exposure (Meredith et al.
2015). The phenomenon is documented in vitro for bacterici-
dal and bacteriostatic antimicrobial drugs in Gram-negative
and Gram-positive bacterial species, including Enterobacteri-
aceae, staphylococci and streptococci (Tilton, Lieberman and
Gerlach 1973; Chantot, Bryskier and Gasc 1986; Bryskier 1998;
Butler 2001; Butler et al. 2001; Thomson and Moland 2001; Tam
et al. 2009; Udekwu et al. 2009). Few mathematical models have
been investigated for reflecting the antimicrobial MIC–bacterial
density relationships. It has been proposed that a Michaelis–
Menten model could reflect these relationships, based on data
for several antimicrobials and one Staphylococcus aureus strain
(Udekwu et al. 2009). We hypothesized it is unlikely that a single
model accurately captures the MIC–density relationships across

pathogen–antimicrobial combinations, and that the variety of
the relationship’s mathematical forms has not been elucidated.
The objective of this study was to compare the MIC–density rela-
tionships and mathematical models capturing those for exem-
plar Gram-negative (Escherichia coli and non-typhoidal Salmonella
enterica subsp. enterica) and Gram-positive (Streptococcus pneumo-
nia and S. aureus) pathogens and focusing on antimicrobials with
bactericidal activity against these (sub)species (which will fur-
ther be abbreviated as species).

MATERIALS AND METHODS

Bacterial isolates

Four isolates from humans and animals of each E. coli, S. enter-
ica subsp. enterica (further—S. enterica), S. aureus and S. pneumo-
niae were used. The isolates were classified as susceptible to the
antimicrobial drugs studied. A convenience sample size (n = 4
isolates per species) was chosen in the absence of prior data on
between-isolate variability in the MIC–bacterial density relation-
ships for the antimicrobials and species. The E. coli and S. enter-
ica isolates were obtained from farm-animal feces during field
studies by the Kansas State University faculty in 2014–16. The
S. enterica isolates were of serotypes Anatum, Bovismorbificans,
Give and Typhimurium (serotyped by the US National Veterinary
Services Laboratories, Ames, IA). The S. aureus isolates obtained
from a skin swab, biopsy and blood samples from domestic ani-
mals in 2016 were provided by the Kansas State Veterinary Diag-
nostic Laboratory. The S. pneumoniae isolates of serotypes 3 and
19A (serotyped by the US Centers for Disease Control and Pre-
vention) were provided by the CDC and obtained from human
blood samples between 2003 and 2009.

Antimicrobials

High purity ceftriaxone, ciprofloxacin, gentamicin, linezolid,
oxacillin and vancomycin forms (Sigma-Aldrich, Inc., St. Louis,
MO, U.S.) were used. Stock drug solutions were prepared
accounting for the form potency. The stock solutions of ceftri-
axone, gentamicin, oxacillin and vancomycin (10 mg/mL) were
prepared by dissolving the drug powder in sterile distilled water;
of ciprofloxacin (10 mg/mL) by dissolving the powder in 0.1 N
hydrochloric acid solution; and of linezolid (10 mg/mL) by dis-
solving the powder in dimethyl sulfoxide. The stock solutions
were aliquoted, stored at −20◦C, and used within 3 months,
except for ciprofloxacin stock solutions, which were stored at
4◦C and used within 2 weeks. Before each experiment, a stock
solution aliquot was diluted to a working solution of desired
drug concentration in sterile distilled water.

Determination of antimicrobial MIC for different
bacterial densities

Each isolate was incubated overnight at 37◦C on tryptic soy
agar with 5% sheep blood (BAP, RemelTM, Lenexa, KS, USA). For
an isolate of E. coli, S. enterica or S. aureus, bacterial colonies
from the BAP plate were suspended in 9 mL of cation-adjusted
Mueller-Hinton broth (Ca-MHB, BBLTM, Sparks, MD, USA) to visu-
ally match the 0.5 McFarland turbidity standard. The suspension
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was serially diluted in Ca-MHB to each of the expected bacterial
densities 108, 5 × 107, 107, 106, 105, 104, 103 and 102 CFU/mL. The
densities were confirmed by serially diluting an aliquot of each
of the 108, 105 and 102 dilutions in a sterile 0.9% saline solution,
directly plating the dilutions in duplicate on BAP, incubating the
plates at 37◦C aerobically for 18–24 h (until colonies were visi-
ble) and counting the bacterial colonies (Regoes et al. 2004). For
an isolate of S. pneumoniae, bacterial colonies from the BAP were
suspended to the expected bacterial density ∼1 × 108–5 × 108

CFU/mL in 9 mL of Ca-MHB with 5% (v/v) lysed horse blood (Inno-
vative Research, Inc., Novi, MI, USA). (For each S. pneumoniae iso-
late, a preparatory experiment was performed to determine the
required colony number.) The suspension was serially diluted in
Ca-MHB with 5% (v/v) lysed horse blood to the expected densi-
ties 108 to 102 CFU/mL, as for the other bacterial species, and the
densities similarly confirmed.

A sterile 96-well plate (Corning, Inc., Lowell, MA, USA) was
used for one bacterial isolate and one starting drug concentra-
tion. A plate row (12 wells) was used for one bacterial density;
each well in the row contained 100 μL of the isolate suspension
of that density. Eight rows each contained the isolate suspen-
sion of one of the 108, 5 × 107, 107, 106, 105, 104, 103, and 102

CFU/mL densities. The starting drug concentrations (in different
plates) were 1500, 1000, 25 and 20 mg/L for all the antimicrobials
and species, except linezolid for which those were 1000, 500, 50
and 40 mg/L for S. aureus and S. pneumoniae. Of the starting drug
concentration solution, 100 μL was loaded into each well in
column 1, the bacterial and antimicrobial solutions in column 1
pipetted 10 times, after which 100 μL of each well were loaded
from column 1 to column 2 and the pipette tips replaced; this
was repeated for columns 2–11. Thus, each starting drug con-
centration and 10 of its sequential 2-fold dilutions were tested
against each density of the bacterial isolate. Column 12 was
the positive control of visible isolate growth in the absence of
antimicrobial. The plates were incubated at 37◦C aerobically for
18–24 h; the MIC for each density of the isolate was read as the
lowest drug concentration inhibiting visible population growth
from that density. The experiment for each isolate and each of
four starting drug concentrations was performed in duplicate
on different dates. For each density of the isolate, if the dupli-
cate MIC readings were within one 2-fold drug dilution apart,
the lowest reading was the result recorded. If the duplicate MIC
readings were further apart, a third replicate was performed
and the lowest MIC of the readings within one 2-fold drug
dilution apart from two of the three replicates was the result
recorded.

Mathematical modeling of antimicrobial MIC–bacterial
density relationships

The experimental data were transformed to log2(MIC) and
log10(CFU/mL) to enable a comparative evaluation of the MIC–
density relationship forms (Figs 1 and 2). Each of six candidate
non-linear models was fitted to the transformed data for a repre-
sentative isolate for each of the antimicrobial–bacterial species
combinations. This included the Michaelis–Menten model pro-
posed earlier based on data for several antimicrobials and one S.
aureus strain (Udekwu et al. 2009). Each model had at most four
parameters to capture the log2(MIC) vs. log10(CFU/mL) curves.
Candidate models with more parameters (e.g. see (Andrews
1968; Muhammad et al. 2017)) were not considered, to avoid
model overfitting given the limited number of observations per
individual antimicrobial–bacterial species combination.

The investigated six models are detailed below. We defined
y = log2(MIC) and x = log10(CFU/mL) bacterial density.

A Michaelis–Menten model was formulated by:

y = a × x
x + b

+ c (1)

where

a + c—projects maximum y at high bacterial densities;
b—projects x at which a half maximum y ((a + c) × 0.5) is

reached;
c—projects minimum y at low bacterial densities.

The Michaelis–Menten models, however, do not reproduce
sigmoid curves, such as those observed for the log2(MIC) vs.
log10(CFU/mL) relationships (Figs 1 and 2). The Hill-function
models, which are also used to describe antimicrobial phar-
macodynamics against bacterial populations, can capture such
behavior (Goutelle et al. 2008; Czock et al. 2009; Stefan and Le
Novere 2013). Assuming the Hill coefficient value > 0, a Hill-
function model was formulated by:

y = a × xb

xb + c
+ d (2)

where

a + d—projects maximum y at high bacterial densities;
b—reflects steepness (steepness of an increase in y with an

increase in x) and shape of sigmoid function;
c—projects xb at which a half maximum y ((a + d) × 0.5) is

reached;
d—projects minimum y at low bacterial densities.

A logistic model can also capture a sigmoid curve and was
formulated by:

y = a
b + exp (−c × x)

+ d (3)

where

a
b + d—projects maximum y at high bacterial densities;
b—represents a shift for the location of exp(−c × x) at which a

half maximum y (( a
b + d) × 0.5) is reached;

c—reflects steepness of sigmoid function;
d + a

b+1 —projects minimum y at low bacterial densities.

Depending on the sigmoid curve shape, a Gompertz model
might better capture the shape than Hill or logistic models
(Keller et al. 2002; Peleg and Corradini 2011). A Gompertz model
was formulated by:

y = a × exp [−b × exp (−c × x)] + d (4)

where

a + d—projects maximum y at high bacterial densities;
b—represents a shift for the location of ln(2)

exp(−c×x) at which a half
maximum y ((a + d) × 0.5) is reached;

c—reflects steepness of sigmoid function;
d + a × exp(−b)—projects minimum y at low bacterial densities.
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Figure 1. Experimental data on the antimicrobial’s minimum inhibitory concentration (MIC) dependency on the bacterial density for Gram-negative Escherichia coli

(n = 4 isolates except for ceftriaxone n = 8 isolates) and non-typhoidal Salmonella enterica subsp. enterica (n = 4 isolates). Each symbol is used to denote a distinct isolate
of the bacterial species.
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Figure 2. Experimental data on the antimicrobial’s minimum inhibitory concentration (MIC) dependency on the bacterial density for Gram-positive Staphylococcus

aureus (n = 4 isolates) and Streptococcus pneumoniae (n = 4 isolates). Each symbol is used to denote a distinct isolate of the bacterial species.
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A von Bertalanffy model can also capture a sigmoid curve
(Fabens 1965; Maino and Kearney 2017) and was formulated by:

y = a × [1 − exp (−b × x)]c + d (5)

where

a + d—projects maximum y at high bacterial densities;
b—reflects steepness of sigmoid function;
c—reflects shape of sigmoid function;
d—projects minimum y at low bacterial densities.

Exponential models are used for the bacterial population
growth (Karslake et al. 2016). We included a bi-exponential
model defined as a multilinear approximation of an exponen-
tial function:

y = a × exp (−b × x) + c × exp (−d × x) (6)

where

a + c—projects minimum y
b and d—adjust steepness of sigmoid function in approaching

maximum y (i.e. control x at which the maximum y is pro-
jected).

Each model was fitted using the least-squares method
by regressing y on x for a representative isolate for the
antimicrobial-bacterial species combination, with the ‘trust-
region’ algorithm that efficiently handles large sparse and small
dense problems in searching the parameter space (Shultz, Schn-
abel and Byrd 1985). Model parameter values minimizing the
mean squared error between the predicted and observed y val-
ues across the bacterial densities tested were estimated; model
iterations were terminated if the tolerance < 1 × 10−10 change
in the mean squared error between successive iterations was
met or after 500,000 iterations. No boundaries were imposed on
the parameter values except for keeping the value positive or
negative per model structure. Using the estimated parameter
values, the model projections were generated for the bacterial
densities 101–1012 (CFU/mL). Relative fit of the six models (with
the parameter values estimated as above) to the representative-
isolate data was evaluated with the adjusted coefficient of deter-
mination R2 (a larger adjusted R2 indicated a better model fit)
and Akaike’s information criterion (AIC) obtained using the log-
likelihood function penalized by the number of parameters (a
smaller AIC indicated a better model fit).

The density x at which there was the maximum positive
change in the y slope was considered as the model-based esti-
mate of the MIC advancement-point density (AP). It was iden-
tified using the curvature (Sternberg 2012; Stewart 2015) of the
projected y vs. x curve, defined as:

C (x) =
∣∣y′′ (x)

∣∣
(
1 +

(
y′(x)2

)) 3
2

(7)

From which the AP estimate was:

AP = max
all densities x

C (x) (8)

The curvature equations for the six models are included in
the online supplementary material. The modeling was imple-
mented in MATLAB R©R2019b (MathWorks Inc., Natick, MA, USA).

Because of the limited number of isolates (n = 4) tested per bac-
terial species, statistical evaluations of the intra-species vari-
ability and relative magnitudes of the intra- vs. inter-species
variabilities in the MIC–density relationships within or between
antimicrobials were not performed.

RESULTS AND DISCUSSION

We determined and compared the MIC–bacterial density rela-
tionships for two Gram-negative (E. coli, non-typhoidal S. enter-
ica) and two Gram-positive (S. aureus, S. pneumoniae) bacte-
rial species and bactericidal antimicrobials from these drug
classes: β-lactams (oxacillin and ceftriaxone), fluoroquinolones
(ciprofloxacin), aminoglycosides (gentamicin) and glycopeptides
(vancomycin) (Kohanski et al. 2007; Lobritz et al. 2015). We added
the bacteriostatic oxazolidinone linezolid as one of newest
antimicrobials introduced to tackle infections by strains resis-
tant to older antimicrobials (Dresser and Rybak 1998; Swaney
et al. 1998). For an antimicrobial, the MIC–density relationship
curve varied among the bacterial species; likewise, for a species,
it varied among the antimicrobials (Figs 1 and 2). These results
agreed with earlier in vitro data, e.g. for Haemophilus influen-
zae type b isolates a stronger IE is observed for the β-lactams
penicillin and ampicillin than for chloramphenicol (Feldman
1976). For a S. aureus strain, the IE is strongest for the β-lactam
oxacillin, followed by the aminoglycoside gentamicin, and low-
est for the glycopeptide vancomycin and oxazolidinone line-
zolid (Udekwu et al. 2009). Based on our results, for a given
antimicrobial–species combination, the MIC–density relation-
ship could be similar across isolates (n = 4 tested per combina-
tion) classified as susceptible to the antimicrobial (Figs 1 and 2,
Table 1).

Mathematical modeling of antimicrobial MIC–bacterial
density relationships

Six mathematical models were compared in fitting the MIC–
density relationship curve for a representative isolate for each
of the antimicrobial–bacterial species combinations (the model
parameter values and fit statistics are given in Supplementary
Table S1, see the online supplementary material). The candi-
date models were chosen based on the observed log2(MIC) vs.
log10(CFU/mL) curves (Figs 1 and 2), and were based on the expo-
nential, logistic, Gompertz, von Bertalanffy, Hill and Michaelis–
Menten functions. The logistic model most often fitted best
or close to best to the observed relationship curves, followed
closely by the Gompertz and von Bertalanffy models (Figs 3
and 4, and Supplementary Table S4, see online supplementary
material). However, the MIC’s AP estimates obtained by the cur-
vature analysis of the curves projected from the fitted models
were most often within the observed AP ranges (Table 1) for the
Gompertz model (Supplementary Table S4). The model fit and
predictive performance for antimicrobials with different mech-
anisms of action and individual bacterial species are detailed
in Supplementary Tables S2 and S3, respectively, see the online
supplementary material.

The ‘classical’ microbiological methods used did not allow
reproducible (within one 2-fold drug dilution) MIC measure-
ments at the densities beyond ∼8.5–8.7 log10(CFU/mL). We con-
juncture that similar goodness-of-fit of multiple models to a
log2(MIC) vs. log10(CFU/mL) curve was due to the limited obser-
vation of the relationship curve. The models captured the
curve’s observed part; it is uncertain which model would capture
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Table 1. Location and between-isolate range of the antimicrobial’s MIC advancement-point bacterial density (AP), after which the MIC sharply
increased, observed for each of the antimicrobial–bacterial (sub)species combinations.

The antimicrobial drug MIC’s AP observed across n = 4 isolates of the bacterial (sub)species,
log10(colony forming units (CFU)/mL)

Mechanism of antibacterial action:
antimicrobial drug Escherichia coli

Non-typhoidal Salmonella
enterica subsp. enterica

Staphylococcus
aureus

Streptococcus
pneumoniae

Inhibiting cell-wall synthesis:
Ceftriaxone 5.2–6.3 (range 1.1) 6.2–7.3 (range 1.1) 6.4–7.6 (range 1.2) 5.0–6.5 (range 1.5)
Oxacillin 3.2–4.1 (range 0.9) 3.5–5.5 (range 2.0)
Vancomycin 4.5–7.4 (range 2.9)
Inhibiting DNA replication:
Ciprofloxacin 3.0–5.7 (range 2.7) 3.3–5.2 (range 1.9) 2.2–4.0 (range 1.8)
Inhibiting protein synthesis:
Gentamicin 4.6–5.5 (range 0.9) 4.4–5.0 (range 0.6) 6.7–7.6 (range 0.9) 2.1–2.8 (range 0.7)
Linezolid 4.6–5.7 (range 1.1) 2.2–2.9 (range 0.7)

the relationship for a wider density range. This is demonstrated
theoretically by the model predictions for the densities 101–1012

(CFU/mL) in Figs 3 and 4. Identifying mathematical models that
capture the MIC–bacterial density relationship could reveal the
relationship’s clinically important specifications, including the
density after which the MIC increases sharply, which we term
the MIC AP, the steepness of the subsequent MIC increase, and
whether and at which density an inflection (deceleration in the
MIC increase) occurs or the MIC levels-off. For example, pre-
dictions of two ‘best-fit’ models for higher-than-tested bacte-
rial densities diverged in some (Fig. 4A, C and D) but not in
other (Figs 3C and 4J) cases. The divergent predictions showed
the oxacillin MIC would increase steeper at high densities of S.
aureus or S. pneumoniae (Fig. 4C and D), or the gentamicin MIC
would level-off at a higher value for S. pneumoniae (Fig. 4F), if the
relationship follows an exponential rather than logistic model.
A ceiling prediction example is that the gentamicin MIC for S.
aureus was projected to level-off from ∼8 log10(CFU/mL) (Fig. 4E)
but the ceftriaxone MIC to not level-off until >12 log10(CFU/mL)
(Fig. 4A).

Location and intra-bacterial species range of the
antimicrobial MIC’s AP

Antimicrobial treatment regimens are currently designed utiliz-
ing the MIC for the density 5.7 log10(CFU/mL). Such a regimen
would likely achieve bacteriological cure only if these conditions
are true: (i) the antimicrobial MIC’s AP across the antimicrobial–
susceptible pathogen strains is > 5.7 log10(CFU/mL) (e.g. 6–8
log10(CFU/mL) for the β-lactam ceftriaxone in E. coli, S. enterica
and S. aureus, Figs 1A and B and 2A); and (ii) the pathogen den-
sity at the infection site(s) is below the AP. A regimen designed
utilizing the MIC for the density 5.7 log10(CFU/mL) would less
likely achieve bacteriological cure if the MIC’s AP is lower (e.g.
for gentamicin in E. coli and S. enterica, Fig. 1E and F, and linezolid
in S. aureus, Fig. 2I) and the pathogen density at the infection
site(s) reaches the AP. The full MIC–density curve and AP have
not been considered in the design and interpretation of in vivo
experiments. For example, that clinical efficacy of a β-lactam
treatment regimen for an experimental infection is apparently
not sensitive to the inoculum density for E. coli or Klebsiella spp.
(Craig, Bhavnani and Ambrose 2004) but is sensitive for Strepto-
coccus pyogenes (Stevens, Yan and Bryant 1993) could be because
the AP densities differ for these antimicrobial–bacterial species
combinations (i.e. whether the compared inocula densities were

below and/or above the MIC’s AP for each combination). For illus-
tration, the ceftriaxone MIC’s AP for S. enterica (Fig. 1B) is ≥1
log10(CFU/mL) higher than for S. pneumoniae (Fig. 2B).

Both how consistent the MIC’s AP location was among
bacterial species and its intra-species between-isolate range
apparently depended on the antimicrobial’s mechanism of
action (Figs 1 and 2, Table 1). The AP location was relatively
consistent across the species for an antimicrobial that disrupts
bacterial cell-wall synthesis (for the mechanisms see (Waxman,
Yocum and Strominger 1980; Waxman and Strominger 1983;
Watanakunakorn 1984; Espedido and Gosbell 2012)). For the
β-lactam ceftriaxone the AP was at medium-to-high densities
(5.2–6.3 log10(CFU/mL) in E. coli, 6.2–7.3 log10(CFU/mL) in S. enter-
ica, 6.4–7.6 log10(CFU/mL) in S. aureus, and 5.0–6.5 log10(CFU/mL)
in S. pneumoniae) (Table 1). For the β-lactam oxacillin, the location
was at lower densities (3.2–4.1 log10(CFU/mL) in S. aureus and
3.5–5.5 log10(CFU/mL) in S. pneumoniae). The AP location was also
relatively consistent across the species for the fluoroquinolone
ciprofloxacin that inhibits bacterial DNA replication (Sanders
1988; Hooper 1999; Espedido and Gosbell 2012), and was at lower
densities (3.0–5.7 log10(CFU/mL) in E. coli, 3.3–5.2 log10(CFU/mL)
in S. enterica, and 2.2–4.0 log10(CFU/mL) in S. pneumoniae). In
contrast, the AP location varied widely among the species for
the aminoglycoside gentamicin and oxazolidinone linezolid
which inhibit bacterial protein synthesis (Mingeot-Leclercq,
Glupczynski and Tulkens 1999; Livermore 2003; Espedido and
Gosbell 2012). The gentamicin MIC’s AP occurred at 4.6–5.5
log10(CFU/mL) in E. coli and 4.4–5.0 log10(CFU/mL) in S. enterica,
while it occurred at 6.7–7.6 log10(CFU/mL) in S. aureus and 2.1–2.8
log10(CFU/mL) in S. pneumoniae. The linezolid MIC’s AP occurred
at 4.6–5.7 log10(CFU/mL) in S. aureus but at 2.2–2.9 log10(CFU/mL)
in S. pneumoniae.

In terms of the intra-bacterial species range of the MIC’s
AP among isolates (n = 4 tested) (Figs 1 and 2, Table 1),
comparatively wide ranges were observed for antimicrobials
disrupting bacterial cell-wall synthesis. For the β-lactam cef-
triaxone the range was 1.1–1.5 log10(CFU/mL) in E. coli, S.
enterica, S. aureus and S. pneumoniae; and for vancomycin in
S. aureus it was 2.9 log10(CFU/mL). For example, the range
of 1.5 log10(CFU/mL) corresponds to the ceftriaxone MIC’s AP
from 5.0 to 6.5 log10(CFU/mL) across S. pneumoniae isolates.
For ciprofloxacin that inhibits bacterial DNA replication, the
MIC’s AP ranges were also wide (2.7 log10(CFU/mL) in E. coli, 1.9
log10(CFU/mL) in S. enterica, and 1.8 log10(CFU/mL) in S. pneu-
moniae) (Table 1). In contrast, the AP ranges intra-species were
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Figure 3. Predictions of candidate mathematical models of the log2(MIC) vs. log10(CFU/mL) density relationship curve for each tested antimicrobial for a representative
isolate of Gram-negative Escherichia coli or non-typhoidal Salmonella enterica subsp. enterica. In each panel, the experimental data for the representative isolate for the
bacterial (sub)species and antimicrobial combination are shown by black circles. Each of six candidate models was fitted to the data using the least-squares method.

Best-fit parameter values for each of the six models were estimated and used to make the model predictions of log2(MIC) for 1–12 log10(CFU/mL) bacterial densities.
The predictions are shown by lines: blue—von Bertalanffy, dark green—Gompertz, red—logistic, pink—Hill, gray—Michaelis–Menten and cyan—exponential model.
The line increment indicates the relative fit of the six models (each with best-fit parameter values) to the data for the representative isolate. Specifically, predictions
of the model with highest adjusted R2 are shown by a solid line; predictions of the other models are shown in order of decreasing adjusted R2 of the model by long

dashed, short-long dashed, short dashed, dashed-dotted-dotted, and dotted lines. The cross shows the MIC advancement-point density estimated using the curvature
analysis of the predicted curve for each of the three models with highest adjusted R2; the cross is of the same color as the line showing the curve predicted by the
model.
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Figure 4. Predictions of candidate mathematical models of the log2(MIC) vs. log10(CFU/mL) density relationship curve for each tested antimicrobial for a represen-
tative isolate of Gram-positive Staphylococcus aureus or Streptococcus pneumoniae. In each panel, the experimental data for the representative isolate for the bacterial

(sub)species and antimicrobial combination are shown by black circles. Each of six candidate models was fitted to the data using the least-squares method. Best-fit
parameter values for each of the six models were estimated and used to make the model predictions of log2(MIC) for 1–12 log10(CFU/mL) bacterial densities. The
predictions are shown by lines: blue—von Bertalanffy, dark green—Gompertz, red—logistic, pink—Hill, gray—Michaelis-Menten and cyan—exponential model. The
line increment indicates the relative fit of the six models (each with best-fit parameter values) to the data for the representative isolate. Specifically, predictions of the

model with highest adjusted R2 are shown by a solid line; predictions of the other models are shown in order of decreasing adjusted R2 of the model by long dashed,
short-long dashed, short dashed, dashed-dotted-dotted, and dotted lines. The cross shows the MIC advancement-point density estimated using the curvature analysis
of the predicted curve for each of the three models with highest adjusted R2; the cross is of the same color as the line showing the curve predicted by the model.
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narrow, <1 log10(CFU/mL), for antimicrobials inhibiting bacterial
protein synthesis. For the aminoglycoside gentamicin the range
was 0.6–0.9 log10(CFU/mL) in E. coli, S. enterica, S. aureus and S.
pneumoniae. For the oxazolidinone linezolid, the range was 1.1
log10(CFU/mL) in S. aureus and 0.7 log10(CFU/mL) in S. pneumo-
niae.

The differences in the overall location and intra-species
range of the MIC’s AP among antimicrobials with different
modes of action could relate to IE mechanisms. For example,
for antimicrobials disrupting bacterial cell-wall synthesis, the
IE is attributed to reduced availability of the target membrane
proteins due to a reduced population growth (Stevens, Yan and
Bryant 1993) and to accumulation of drug-degrading enzymes
(Craig, Bhavnani and Ambrose 2004) at high bacterial densities.
For antimicrobials inhibiting bacterial protein synthesis, the IE
is attributed to a population growth instability due to the drug-
induced ribosome degradation (Tan et al. 2012). Drug loss due to
binding to non-target bacterial structures is proposed as a gen-
eral mechanism of the IE (Udekwu et al. 2009).

Our results suggest that clinical significance of the IE in a bac-
terial pathogen likely systematically varies among antimicro-
bial drug classes depending on the mechanism of action, which
determines the MIC’s AP and its intra-bacterial species vari-
ability. We observed this for bacterial strains susceptible to the
antimicrobials. Mathematical models of the MIC–bacterial den-
sity relationships could capture such clinically relevant specifi-
cations as the MIC’S AP density and steepness and ceiling of the
subsequent MIC increase. Such models should be considered for
optimizing antimicrobial treatment regimens.
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