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Abstract

Background: Congenital anomalies of the kidneys and urinary tract (CAKUT) are
the most common cause of chronic kidney disease among children and adults
younger than 30 yr. In our previous study, whole-exome sequencing (WES) identi-
fied a known monogenic cause of isolated or syndromic CAKUT in 13% of families
with CAKUT. However, WES has limitations and detection of copy number varia-
tions (CNV) is technically challenging, and CNVs causative of CAKUT have previ-
ously been detected in up to 16% of cases.
Objective: To detect CNVs causing CAKUT in this WES cohort and increase the diag-
nostic yield.
sevier B.V. on behalf of European Association of Urology. This is an open access article
mmons.org/licenses/by-nc-nd/4.0/).
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Design, setting, and participants: We performed a genome-wide single nucleotide
polymorphism (SNP)-based CNV analysis on the same CAKUT cohort for whom
WES was previously conducted.
Outcome measurements and statistical analysis: We evaluated and classified the CNVs
using previously published predefined criteria.
Results and limitations: In a cohort of 170 CAKUT families, we detected a pathogenic
CNV known to cause CAKUT in nine families (5.29%, 9/170). There were no compet-
ing variants on genome-wide CNV analysis or WES analysis. In addition, we iden-
tified novel likely pathogenic CNVs that may cause a CAKUT phenotype in three
of the 170 families (1.76%).
Conclusions: CNV analysis in this cohort of 170 CAKUT families previously exam-
ined via WES increased the rate of diagnosis of genetic causes of CAKUT from
13% on WES to 18% onWES + CNV analysis combined. We also identified three can-
didate loci that may potentially cause CAKUT.
Patient summary: We conducted a genetics study on families with congenital
anomalies of the kidney and urinary tract (CAKUT). We identified gene mutations
that can explain CAKUT symptoms in 5.29% of the families, which increased the
percentage of genetic causes of CAKUT to 18% from a previous study, so roughly
one in five of our patients with CAKUT had a genetic cause. These analyses can help
patients with CAKUT and their families in identifying a possible genetic cause.

� 2022 The Authors. Published by Elsevier B.V. on behalf of European Association of
Urology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Congenital anomalies of the kidney and urinary tract
(CAKUT) are the most prevalent cause of chronic kidney dis-
ease (CKD) in the first three decades of life [1]. CAKUT can
present as an isolated renal condition or as part of a clinical
syndrome [2–6]. Despite large differences in clinical mani-
festation, these conditions probably share a pathogenic ori-
gin in dysregulation of renal morphogenesis [6,7].

We hypothesized that a large proportion of human
CAKUT cases may be caused by variants in distinct single
monogenic genes. Previous supporting evidence for this
hypothesis includes (1) familial occurrence of CAKUT;
(2) the presence of CAKUT as part of the phenotypic
manifestation of knownmonogenic, multiorgan syndromes;
(3) the presence of monogenic mouse models with CAKUT;
(4) the congenital nature of CAKUT; and (5) the knowledge
that specific master genes govern renal morphogenesis
[2,8,9]. To date, 40 monogenic causes of isolated CAKUT
and 232 monogenic causes of syndromic CAKUT have been
identified [3,4,10–17] (Supplementary Tables 1 and 2).

In a previous study, we used whole-exome sequencing
(WES) analysis to determine the proportion of individuals
with CAKUT for whom a causative variant could be identi-
fied in a cohort of 232 families with CAKUT [18]. We found
that in 13% of the families, CAKUT could be attributed to one
of the known monogenic genes for isolated or syndromic
CAKUT [18].

WES has limitations and detection of the presence of a
copy number variation (CNV) is technically challenging
[19,20]. Genetic causation may also be represented by
pathogenic CNVs in addition to point variants or small
insertions or deletions. In a previous study, known patho-
genic CNVs were detected in up to 10.5% of patients with
CAKUT [21].
Here we performed a genome-wide CNV analysis on the
same cohort of 232 families with CAKUT in whom we previ-
ously conducted WES analysis [18]. Of the 232 families, 170
had DNA amounts and quality sufficient to perform CNV
analysis, among which we detected a pathogenic CNV as
the likely cause of CAKUT in nine families (5.29%). This
increased the diagnostic rate for genetic causes of CAKUT
from 13% on WES alone [18] to 18% on WES + CNV analysis
combined.
2. Patients and methods

2.1. Human subjects

This study was approved by the institutional review board (IRB) of Bos-

ton Children’s Hospital as well as the IRBs of institutions where we

recruited families. All patients with CAKUT were referred to us by their

pediatric nephrologist or urologist, who made the clinical diagnosis of

CAKUT on the basis of renal imaging studies.

CAKUT is defined as demonstration of any abnormality of number,

size, shape, or anatomical position of the kidneys or other parts of the

urinary tract that included at least one of the following: renal agenesis,

renal hypoplasia/dysplasia, multicystic dysplastic kidneys,

hydronephrosis, ureteropelvic junction obstruction, hydroureter, vesi-

coureteral reflux, ectopic or horseshoe kidney, duplex collecting system,

ureterovesical junction obstruction, epispadias/hypospadias, posterior

urethral valves, or cryptorchidism [22]. Syndromic CAKUT is defined as

a condition that affects multiple body systems with CAKUT.

2.2. Genotyping and CNV calling

Genomic DNA was isolated from peripheral blood lymphocytes. SNP

genotyping was performed on all cases using the Infinium Expanded

Multi-Ethnic Genotyping Array (MegaEx; Illumina, San Diego, CA,

USA). CNV analysis was performed as previously described using the

same set of population controls encompassing 21 498 individuals with

no reported disease association to nephropathy and developmental dis-
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orders [23]. In brief, raw genotyping data were preprocessed with Illu-

mina GenomeStudio v2011 to obtain intensity data that included

probe-level logR-ratio and B allele frequency (BAF) values. Cases with

a mismatched self-declared gender and estimated genotyped gender

were removed from further analysis. CNV calling was initially performed

on hg18 assembly coordinates and subsequently converted to the hg19

assembly coordinates using UCSC liftOver tool (https://genome.ucsc.

edu/cgi-bin/hgLiftOver). PennCNV (version 2011-05-03) [24] was used

to identify CNVs using the -test, -confidence, and -minconf 30 parameters

in the detect_cnv.pl function, retaining high-quality CNVs with a mini-

mum confidence score of 30 for downstream analysis only.

2.3. CNV analysis and classification

CNVs were classified as pathogenic (GD-CNV) or likely pathogenic (can-

didate GD-CNV) on the basis of previously reported criteria [23]. In brief,

regions within predicted CNV boundaries were annotated with RefSeq

(https://www.ncbi.nlm.nih.gov/refseq), annotated with known syn-

dromic CNVs [23] curated from the Database of Chromosomal Imbalance

and Phenotype in Humans Using Ensembl Resources (DECIPHER) [25,26]

and the International Standards for Cytogenomic Arrays (ISCA) databases

[27], and annotated with genes causing kidney disease and CAKUT

curated from the Online Mendelian Inheritance in Man (OMIM, https://

www.omim.org/) and the Mouse Genome Informatics (http://www.in-

formatics.jax.org/) databases [23].

As previously described, a CNV was defined as pathogenic if it over-

lapped at least 70% of a known syndromic CNV [23] or as likely patho-

genic when a large CNV of at least 100 kb intersected an exon,

occurred in less than 0.02% of population controls, and did not overlap

(<70%) a clinically interpreted benign or likely benign CNV in the ISCA

database. The following additional criteria were also included: (1) CNV

boundaries overlapped at least 70% with a reported pathogenic or likely

pathogenic CNV in the ISCA database, (2) intersected a causative

autosomal-dominant gene for CAKUT in humans or mice, and/or (3)

was the reciprocal of a known GD-CNV (coordinates with �70% overlap)

[23]. A flowchart of CNV analysis and evaluation is depicted in Figure 1.

3. Results

3.1. Patient characteristics

A total of 488 individuals with CAKUT (319 affected, 169
reportedly unaffected) from 232 different families were
previously enrolled in our study of WES in CAKUT [18]. Of
these 232 CAKUT families, 170 had sufficient DNA samples
to perform CNV analysis. We performed SNP microarray
and CNV analysis in one individual (proband) for each
family.

The cohort of 170 families had a diverse spectrum of
CAKUT phenotypes; 116 families (68%) had isolated CAKUT
and 54 families (32%) had syndromic CAKUT. The clinical
characteristics of the cohort are summarized in Table 1.

3.2. Identification of known pathogenic CNVs in families
with CAKUT

Genome-wide CNV analysis identified a pathogenic CNV
known to cause CAKUT (GD-CNV) in nine of the 170 families
(5.29%). Details of the pathogenic CNVs and clinical features
are outlined in Table 2. The logR ratio and B allele frequency
graph for each CNV are presented in Supplementary Fig-
ure 1. In particular, for each patient there was no competing
CNV that can be attributed to a cause of the CAKUT presen-
tation. Likewise, there was no competing variant detected
via WES analysis that may otherwise explain the cause of
the CAKUT.

Among these nine pathogenic CNVs, seven were large
deletions and two were large duplications (Table 2). Two
patients were identified as having DiGeorge syndrome (also
known as 22q11 deletion syndrome), and RCAD deletion
(renal cysts and diabetes) was detected in two patients. A
22q11 duplication was detected for one patient (Table 2).
3.3. Identification of novel likely pathogenic CNVs in families
with CAKUT

Identification of likely pathogenic CNVs (‘‘novel’’ CNVs) was
performed using the previously described criteria [23]
(Fig. 1). We identified likely pathogenic CNVs that may
cause a CAKUT phenotype in three of the 170 families
(1.76%; Table 3). Details of the likely pathogenic CNVs and
clinical features are outlined in Table 3, while the logR ratio
and B allele frequency graph for each CNV are presented in
Supplementary Figure 2.

Similar to the identification of pathogenic CNVs, the
likely pathogenic CNVs identified were unique to each fam-
ily, with no competing genetic explanation. All of the three
CNVs identified are duplications; details of these likely
pathogenic CNVs are outlined in Table 3.
4. Discussion

We identified known pathogenic CNVs in 5.29% of families
with CAKUT, and likely pathogenic CNVs in 1.76% (Table 1,
Table 2, and Supplementary Table 3). Owing to the known
nature of variable expressivity, we used broad CAKUT as
the phenotype in this study, which is more heterogeneous
and includes any abnormality of the number, size, shape,
or anatomical position of the kidneys or other parts of the
urinary tract [22].

Another paper using broad CAKUT as the phenotype [23]
identified known pathogenic CNVs in 4.0% of families with
CAKUT and likely pathogenic CNVs in 1.7% [23], which is
similar to our study.

Sanna-Cherchi et al. [21] limited the CAKUT phenotypes
to renal aplasia, agenesis, hypoplasia, and dysplasia (re-
ferred to together as renal hypodysplasia), and identified
known pathogenic CNVs in 10.5% of patients, and likely
pathogenic CNVs in 6.1%. Verbitsky et al. [28] limited the
phenotypes to vesicoureteral reflux, and identified known
pathogenic CNVs in 2% of patients, and likely pathogenic
CNVs in 0.92%. The difference in CNV detection can be
attributed to the difference in the inclusion criteria.

Of note, individuals B26-21 and B630-21 had the same
pathogenic SNV at chr17:34815551-36249430 (hg19),
known as RCAD deletion. This 1.4-Mb deletion is consistent
with the known recurrent deletion at chromosome 17q12
[29,30]. The two individuals each carry other different
nonpathogenic/non-likely pathogenic CNVs, and thus they
are not likely to be from the same family or have a sample
or technical error. Calls for the proximal and distal break-
points are based on the first and last SNPs showing the
CNV, respectively. The exact CNV breakpoints can sit between

https://genome.ucsc.edu/cgi-bin/hgLiftOver
https://genome.ucsc.edu/cgi-bin/hgLiftOver
https://www.ncbi.nlm.nih.gov/refseq
https://www.omim.org/
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Fig. 1 – Flowchart of CNV evaluation and classification. The flowchart illustrates the CNV evaluation algorithm, which is based on Verbitsky et al [23]. LogR
ratio and B allele frequency evaluations are based on Peiffer et al [31]. Blue boxes indicate pathogenic CNVs known to cause CAKUT phenotype (GD-CNVs).
Yellow boxes indicate the process for filtering out CNVs not known to cause CAKUT phenotype (non-GD-CNVs) to likely pathogenic CNVs. Red boxes indicate
likely pathogenic CNVs. The proportions in black bold font represent the percentages of the number of the CNV calls in that box compared to the original total
CNV calls (n = 1096). The proportions in red bold font represent the percentages of the number of families/individuals with pathogenic or likely pathogenic
CNVs compared to the total families/individuals (n = 170). CAKUT = congenital anomalies of the kidneys and urinary tract; CNV = copy number variation; GD-
CNVs = genomic disorder-copy number variation (pathogenic CNVs known to cause CAKUT phenotype); ISCA = International Standards for Cytogenomic
Arrays (http://www.iscaconsortium.org/); RefSeq = NCBI Reference Sequence Database (https://www.ncbi.nlm.nih.gov/refseq/).
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the SNP called and the next SNP,which can vary froma fewkb
or less to more, depending on the density of the array at this
area. Therefore, even if the calls for the two CNVs look the
same, the exact breakpoints may not be identical.

The unique point of our study is that we used the same
cohort previously analyzed via WES [18] in a new analysis
via CNVs.
In our previous study using WES technology, we found
that CAKUT could be attributed to one of the known mono-
genic genes for isolated or syndromic CAKUT in 13% of the
families [18]. In this study, using CNV analysis we identified
an additional 5.29% of families whose CAKUT could be
attributed to a monogenic cause. Therefore, CNV analysis
increased the diagnostic rate for genetic causes of CAKUT

http://www.iscaconsortium.org/
https://www.ncbi.nlm.nih.gov/refseq/


Table 1 – Clinical characteristics of the 170 individuals (from 170
families) with CAKUT who underwent evaluation of copy number
variation

Parameter Result, n
(%)

Gender, n (%)
Female 58 (34)
Male 111 (65)
Unknown 1 (<1)
Total 170 (100)

Extrarenal manifestations
Yes 54 (32)
No 116 (68)
Total 170 (100)

Reported consanguinity
Yes 35 (21)
No 135 (79)
Total 170 (100)

Homozygosity on mapping �60 Mbpa

Yes 31 (18)
No 129 (76)
Not enough single-nucleotide polymorphisms to
generate a map

10 (6)

Total 170 (100)
CAKUT phenotype
Unilateral CAKUT 71 (42)
Bilateral concordant CAKUT 59 (35)
Bilateral discordant CAKUT 22 (13)
Undefined CAKUT phenotype 7 (4)
Isolated posterior urethral valve or epispadias/
hypospadias

2 (<1)

Posterior urethral valve with additional CAKUT 9 (5)
Total 170 (100)

CAKUT = congenital anomalies of the kidneys and urinary tract
a In addition to self-reports of consanguinity, we used homozygosity
mapping �60 Mbp as an objective measurement to determine
consanguinity.

Table 2 – Information on nine pathogenic CNVs known to cause a CAKU

Individual
ID

CAKUT phenotype Extrarenal phenotype

A1955-21 Bilateral VUR grade III None reported

A2903-21 Bilateral renal dysplasia,
ESRD

Hirschsprung’s disease

A693-21 Horseshoe kidney Anal atresia, cryptorchidism

F0126_735 VUR None reported

B26-21 Bilateral glomerulocystic
KD

None reported

B630-21 Bilateral multicystic
dysplastic kidney

Hyperurecimia, ADHD,
DD, asthma

B378-21 Left renal agenesis Cerebral palsy

B1004-21 Bilateral VUR, scrotal
hypoplasia

Facial dysmorphy, rib hypoplasia,
hypoplastic nails

A2037-21 Left renal agenesis, left
cryptorchidism

None reported

ADHD = attention-deficit/hyperactivity disorder; CAKUT = congenital anomalies
variation; DD = developmental delay; ESRD = end-stage renal disease; GD-CNV = g
(Genome Reference Consortium human build 37); KD = kidney disease; RCAD = r

Table 3 – Information on three likely pathogenic CNVs identified in the

Individual ID CAKUT phenotype Extrarenal phenotype

A976-21 Right multicystic dysplastic kidney ASD, PFO
PAD4 Left renal agenesis None reported
B26-21 Bilateral glomerulocystic KD None reported

ASD = atrial septal defect; CAKUT = congenital anomalies of the kidneys and urin
genome assembly 19 (Genome Reference Consortium human build 37); KD = kid
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from 13% to 18%. WES and CNV analyses complement each
other to increase the genetic diagnostic rate for patients
with CAKUT. We recommend running both platforms to
identify both sequencing variants and CNVs in the work-
up for genetic causes of CAKUT.
5. Conclusions

In summary, we conducted genome-wide CNV analysis on a
cohort of CAKUT families for whom we previously per-
formed WES analysis [18]. We identified a pathogenic
CNV as the likely cause of CAKUT in nine out of 170 families
(5.29%). This increased the diagnosis rate for genetic causes
of CAKUT from 13% diagnosed on WES [18] to 18% diag-
nosed on WES + CNV combined. WES and CNV analyses
complement each other to increase the genetic diagnostic
rate for patients with CAKUT. We recommend running both
platforms to identify both sequencing variants and CNVs as
part of the patient work-up to identify a genetic cause of
CAKUT.
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