
The Effects of Population Size Histories on Estimates of
Selection Coefficients from Time-Series Genetic Data

Ethan M. Jewett,1,2 Matthias Steinrücken,3 and Yun S. Song*,1,2,4,5,6

1Department of EECS, University of California, Berkeley, CA
2Department of Statistics, University of California, Berkeley, CA
3Department of Biostatistics and Epidemiology, University of Massachusetts, Amherst, MA
4Department of Integrative Biology, University of California, Berkeley, CA
5Department of Biology, University of Pennsylvania, Philadelphia, PA
6Department of Mathematics, University of Pennsylvania, Philadelphia, PA

*Corresponding author: E-mail: yss@berkeley.edu.

Associate editor: Ryan Hernandez

Abstract

Many approaches have been developed for inferring selection coefficients from time series data while accounting for
genetic drift. These approaches have been motivated by the intuition that properly accounting for the population size
history can significantly improve estimates of selective strengths. However, the improvement in inference accuracy that
can be attained by modeling drift has not been characterized. Here, by comparing maximum likelihood estimates of
selection coefficients that account for the true population size history with estimates that ignore drift by assuming
allele frequencies evolve deterministically in a population of infinite size, we address the following questions: how much
can modeling the population size history improve estimates of selection coefficients? How much can mis-inferred
population sizes hurt inferences of selection coefficients? We conduct our analysis under the discrete Wright–Fisher
model by deriving the exact probability of an allele frequency trajectory in a population of time-varying size and we
replicate our results under the diffusion model. For both models, we find that ignoring drift leads to estimates of
selection coefficients that are nearly as accurate as estimates that account for the true population history, even when
population sizes are small and drift is high. This result is of interest because inference methods that ignore drift are
widely used in evolutionary studies and can be many orders of magnitude faster than methods that account for
population sizes.
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Introduction
Methods for inferring the selection coefficient at a single ge-
netic locus from time series data have been employed exten-
sively in evolutionary studies of simple traits. Such methods
track the frequency of an allele or Mendelian trait over mul-
tiple generations and infer the selection coefficient that best
explains the observed frequency changes. Studies of selective
pressures conducted using time series approaches have pro-
vided evidence for selective forces in natural populations and
have helped to characterize the ways in which environmental
factors influence evolution through selection (Fisher and Ford
1947; Clarke and Murray 1962; Wall et al. 1980; Lynch 1987;
Stine and Smith 1990; Goudsmit et al. 1996; Harrigan et al.
1998; Cook et al. 1999; Haubruge and Arnaud 2001;
Bonhoeffer et al. 2002; Reimchen and Nosil 2002; Cook
et al. 2005; Labbé et al. 2009).

Because random fluctuations in allele frequencies due
to genetic drift are often small compared with changes
due to selective pressures, it is common practice for
studies to assume that allele frequencies change

deterministically over time as they would in a popula-
tion of infinite size according to well-known determin-
istic formulas of (Fisher 1922, p. 424) and (Haldane 1927,
p. 840) or related expressions (Gillespie 1998; Hartl and
Clark 2007). However, because allele frequency trajecto-
ries can be heavily influenced by genetic drift when pop-
ulation sizes or selection coefficients are small, many
methods have been developed to account for drift by
explicitly modeling finite population sizes when infer-
ring selection coefficients from observed allele fre-
quency trajectories (Manly 1985; O’Hara 2005; Bollback
et al. 2008; Malaspinas et al. 2012; Mathieson and
McVean 2013; Lacerda and Seoighe 2014; Steinrücken
et al. 2014; Foll et al. 2015; Ferrer-Admetlla et al. 2015;
Schraiber et al. 2016) and when testing hypotheses
about selection versus drift (Fisher and Ford 1947;
Schaffer et al. 1977; Wilson 1980; Nishino 2013; Feder
et al. 2014).

Although it is commonly assumed that estimates of selec-
tion coefficients are likely to be improved by accounting for
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population size histories, the expected amount of improve-
ment is not well characterized. Even in relatively small pop-
ulations, allele frequencies and other evolutionary processes
behave almost deterministically if the selection coefficient or
allele frequency is sufficiently high (Rouzine et al. 2001), sug-
gesting that methods that ignore drift might perform well
under these conditions. Conversely, if drift is strong allele
frequency trajectories can be noisy and the accuracy of meth-
ods that ignore drift may be comparable to that of methods
that account for population size, as all methods are likely to
perform poorly under these conditions (Gallet et al. 2012).

If computationally fast methods that ignore drift are ac-
curate, they could dramatically reduce the time required to
infer selection coefficients in data sets with many loci. In
addition to their computational efficiency, methods that ig-
nore drift by assuming that the population size is infinite do
not require estimates of effective population sizes, which can
be difficult to obtain accurately. Moreover, ignoring drift can
lead to simple formulas and inference procedures under com-
plicated scenarios involving multiple populations with migra-
tion or multiple loci with recombination (Illingworth et al.
2012). Therefore, in light of the beneficial properties of meth-
ods that ignore drift and assume deterministic allele fre-
quency trajectories, it is of interest to compare their
accuracy to that of methods that account for population
size histories.

The theoretical accuracy of methods for inferring selection
coefficients can be difficult to derive analytically. Thus, to
explore differences between methods that ignore or account
for drift, one can take the approach of empirically comparing
inferences made by estimators that either account for the
true population size history or ignore the size history by as-
suming that populations are large and drift is negligible. This is
the approach we take here. For our analyses, we consider
maximum likelihood estimators of selection coefficients be-
cause they are typically quite accurate and have desirable
statistical properties. Moreover, the majority of recently de-
veloped methods for inferring selection coefficients from time
series data are maximum likelihood estimators, making them
an important category of methods to evaluate.

To draw conclusions about the accuracy of maximum
likelihood estimators, it is important to consider estimators
based on exact likelihoods rather than approximations, so
that differences in estimates can be attributed entirely to
whether a method ignores or accounts for drift. Although
several approximate approaches have been developed for
computing the likelihood of a selection model given time
series allele frequency data, only three existing methods com-
pute probabilities that are exact under a widely accepted
model. In particular, the methods of Bollback et al. (2008)
and Steinrücken et al. (2014) compute exact probabilities
under the diffusion approximation of the Wright–Fisher pro-
cess. However, these methods do not model time-varying
population size histories. The third inference method based
on an exact likelihood considers time-varying population
size histories under the diffusion approximation of the
Wright–Fisher process (Schraiber et al. 2016); however, it

uses an MCMC algorithm to perform Bayesian inference
that is not easily incorporated into a unified inference algo-
rithm that allows us to directly compare inferences made by
estimators that model the true population history with those
that assume a population of infinite size without drift. No
existing method computes the exact probability of an allele
frequency trajectory under the discrete Wright–Fisher model,
as the matrix powers required for such a method are consid-
ered to be computationally inefficient.

Here, we derive the exact probability of an allele frequency
trajectory in a population of piecewise constant size under
two classical models: the discrete Wright–Fisher model and
the diffusion approximation of the Wright–Fisher process.
We then use maximum likelihood estimators obtained using
these probabilities to explore how ignoring or accounting for
the true population history affects estimates of selection
coefficients.

Our results are useful for understanding when point esti-
mates obtained using estimators based on deterministic allele
frequency trajectories are likely to be accurate and when ac-
counting for the true population history could improve these
estimates. Our results have implications for the interpretation
of existing estimates of selection coefficients and for the use of
deterministic estimators in future studies. The results can also
help guide the development of demography-aware estima-
tors of selection coefficients by identifying scenarios under
which such estimators are likely to improve inference
accuracy.

Results
To compare the performance of estimators that ignore or
account for drift, we inferred selection coefficients from allele
frequency trajectories simulated under a variety of population
histories of time-varying size.

The Population Model
In all of our analyses, we considered a single biallelic locus with
alleles labeled a and A evolving under selection and recurrent
mutation in a panmictic population comprised of L different
epochs ‘ ¼ 1; . . . ; L, each with constant size N‘ diploid in-
dividuals (fig. 1). Epoch ‘ corresponds to the time interval
½s‘�1; s‘�, where time is measured continuously in units of
generations and we define s0 � 0. By varying the population
sizes N‘ across epochs, it is possible to model a variety of size-
change patterns including exponential growth, bottlenecks,
and rapidly oscillating population sizes.

Within epoch ‘, all mutation and selection parameters are
assumed to be constant. In particular, we assume that the
per-generation probability that allele a mutates to allele A is

u
ð‘Þ
aA and the per-generation probability that allele A to a is

u
ð‘Þ
Aa . The three possible genotypes, aa, aA, and AA, have rel-

ative fitnesses given by w
ð‘Þ
AA ¼ 1þ s‘; w

ð‘Þ
aA ¼ 1þ h‘s‘, and

w
ð‘Þ
aa ¼ 1 in epoch ‘, where s‘ is the selection coefficient and

h‘ is the dominance parameter.
We denote the collection of model parameters in epoch ‘

by H‘ and the set of parameters across all epochs by H. It will
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also be convenient to denote the value of the model param-
eters at time t by Nt, u

ðtÞ
aA; u

ðtÞ
Aa , st, and ht, where t is measured

continuously in units of generations. The epoch in which time
t lies will be denoted by ‘t and the epoch in which sampling
event k lies will be denoted by ‘k. It will be clear from the
context whether the subscript on ‘ refers to a time or a
sampling event.

We denote the population-wide number of copies of allele
A in generation t by ct and the population-wide frequency of
allele A by yt. In practice, we do not observe the true popu-
lation count of allele A. Instead, the data consist of observed
counts o1; . . . ; oK of the number of times allele A is observed
in K different samples of sizes n1; . . . ; nK haplotypes, taken at
times t1 < � � � < tK . For simplicity, we assume that each
sampling time tk is an integer for k ¼ 1; . . . ;K. The consec-
utive observed counts ðok; okþ1; . . . ; ok0 Þ will be denoted by
o½k:k0�.

In general, we will denote random variables corresponding
to observed quantities using capital letters (e.g., Ok, Ct, and Yt).
The goal is to compute the probability PHfO½1:K� ¼ o½1:K�g of
the observed data, conditional on the model parameters H.

Probabilities of Frequency Trajectories
Several different evolutionary models can be used to describe
stochastic allele frequency changes over time in a population.
Discrete changes in allele frequency are often modeled using
the Wright–Fisher and Moran processes, whereas continuous
changes are often modeled using the diffusion approximation
of the Wright–Fisher process (Karlin and Taylor 1981; Ewens
2004; Wakeley 2008) or one of several approximations of the
diffusion (Feder et al. 2014; Lacerda and Seoighe 2014).

Because it is unclear which model provides the most ac-
curate description of biological evolutionary processes, we
take the approach in this paper of deriving exact probabilities
of allele frequency trajectories under two different evolution-
ary models: the discrete Wright–Fisher process and the con-
tinuous diffusion approximation.

Under the Wright–Fisher model, the probability PH;W
fO½1:K� ¼ o½1:K�g of the observed allele counts can be obtained

using the recursive formula presented in Procedure 1. Under
the diffusion approximation, the probability PH;DfO½1:K�
¼ o½1:K�g can be obtained using the recursive formula pre-
sented in Procedure 2.

In the “Deterministic allele frequency trajectories under
the Wright–Fisher model” and “Deterministic allele frequency
trajectories under the diffusion model” sections, we show
that if drift is ignored and allele frequencies evolve determin-
istically, then the probabilities PH;WfO½1:K� ¼ o½1:K�g and
PH;DfO½1:K� ¼ o½1:K�g can be reduced to the simpler approx-
imate probabilitiesP1H;WfO½1:K� ¼ o½1:K�g andP1H;DfO½1:K� ¼
o½1:K�g which ignore the population history and which are
computed using Procedures 3 and 4, respectively.

Different estimates of the model parameters H can be ob-
tained using each of the different probabilitiesPH;WfO½1:K� ¼
o½1:K�g; PH;DfO½1:K� ¼ o½1:K�g; P1H;WfO½1:K� ¼ o½1:K�g, and
P
1
H;DfO½1:K� ¼ o½1:K�g by finding the value of H that maxi-

mizes the given probability of the observed allele counts o½1:K�.
In our analyses, we estimated the model parameters H sep-
arately using each of the different probabilities, yielding the
estimators ŝW ; ŝD; ŝ1W , and ŝ1D . The estimator ŝW accounts
for drift under the discrete Wright–Fisher model, whereas
drift in this model is ignored by the estimator ŝ1W . Similarly,
the estimator ŝD accounts for drift under the diffusion
model, whereas drift in this model is ignored by the
estimator ŝ1D .

The degree to which accounting for drift can improve
estimates of selection coefficients can be investigated by com-
paring ŝW to ŝ1W on trajectories simulated under the discrete
Wright–Fisher model and by comparing ŝD to ŝ1D on trajec-
tories simulated under the diffusion approximation.

Overview of the Experimental Design
We simulated allele frequency trajectories under a variety of
selection strengths and piecewise constant population histo-
ries reflecting demographic patterns such as exponential
growth, bottlenecks, rapid population size oscillations, and
constant histories. We then compared the demography-
aware estimates ŝW and ŝD with the estimates ŝ1W and ŝ1D
that ignore drift to study the degree to which accounting for
population size can improve the accuracy of inferences.

Expected Allele Frequency Trajectories
Before comparing the accuracy of the different estimators, we
first explored the degree to which trajectories that ignore drift
differ from trajectories that account for drift resulting from
finite population sizes. Figure 2 shows the expected frequency
of allele A in a discrete Wright–Fisher population of constant
size for several different initial allele frequencies, selection
coefficients, and effective population sizes. Figure 2 illustrates
that, for any starting frequency and selection coefficient, the
mean allele frequency trajectory approaches the mean trajec-
tory in a population without drift (i.e., in a population of
infinite size), as the true population size increases.
Moreover, if the initial frequency is sufficiently high, the

FIG. 1. Diagram of the model. An allele at a single locus evolves in a
population of piecewise constant size with L ¼ 5 epochs spanning
the time periods ½s0; s1�; . . . ; ½sL�1; sL�, where s0 � 0. Samples of
sizes n1; . . . ; nk haplotypes are taken at times t1; . . . ; tK .
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Procedure 2. Computing PH;DfO 1:K½ �g
1: For an initial starting frequency y0 initialize

b0 ¼ C�1
‘1

B‘1
y0ð Þ;

where B‘ y0ð Þ is the vector of eigenfunctions of the diffusion operator given inequation (A.14) and C‘ ¼ diagfhB‘;i; B‘;iig1i¼0
is given in equation (A.18).
2: For k ¼ 1 : K, compute

ak ¼
bk�1E‘k

tk � tk�1ð Þ if ‘k�1 ¼ ‘k;

bk�1F tk�1; tk; fð Þ otherwise;

(

and

bk ¼ akW‘k
Gok

‘k
1� G‘k
ð Þnk�ok W�1

‘k
;

where the matrices E‘ tð Þ; F tk�1; tk; fð Þ; W‘, and G‘ are given byequations (A.17), (B.10), (A.15), and (A.11), respectively, and
f is the set of Chebyshev nodes in the interval 0; 1½ �. The matrix inverse W�1

‘ ¼ D‘W
T
‘C�1

‘ is computed easily using the
diagonal matrices C‘ and D‘ in equations (A.18) and (A.19).
3: Compute

PH;DfO 1:K½ � ¼ o 1:K½ �g ¼
c‘K;0

B‘K;0 0ð Þ bK;0; (1)

where c‘K ;0 ¼ hB‘;0; B‘;0i ¼ C‘K
½ �0;0 is the (0, 0) element of matrix C‘ in equation (A.18) and B‘K;0 0ð Þ is the 0th element of

the vector B‘K
0ð Þ in equation (A.14).

______________________________________________________________________________________________

Modifications:
If y0 is unspecified, omit Step 1 and initialize b1 using equation (B.17). Then iterate over k ¼ 2 :K in Step 2.
If conditioning on the event SK that allele A is segregating in the final sample, omit Step 3 and instead compute
PH;DfO 1:K½ � ¼ o 1:K½ �jSKg using equation (D.1).

Procedure 1. Computing PH;WfO 1:K½ � ¼ o 1:K½ �g
1: Define the quantities d0 ¼ PfC0 ¼ 0g;PfC0 ¼ 1g; . . . ;PfC0 ¼ 2Nt0

gð Þ and c o1ð Þ, where c okð Þ ¼ c0 okð Þ; c1 okð Þ;ð

. . . ; c2Ntk
okð ÞÞ with ci okð Þ ¼

nk

ok

� �
i=2Ntk
ð Þok 1� i=2Ntk

ð Þnk�ok .

2: Initialize v1 ¼ d0

Qt1

t¼1
Tt�1;t

� �
diagfc o1ð Þg.

3: For k ¼ 2 : K, compute

vk ¼ vk�1

Ytk

t¼tk�1þ1

Tt�1;t

" #
diagfc okð Þg:

4: Compute PH;WfO 1:K½ � ¼ o 1:K½ �g ¼
P2NtK

i¼0

vK;i:
______________________________________________________________________________________________

Modifications:
If d0 is unspecified, omit Step 1and set v1 ¼ c o1ð Þ=2Nt1

in Step 2.
If conditioning on the event SK that allele A is segregating in the final sample, omit Step 4 and instead compute PH;W
fO 1:K½ � ¼ o 1:K½ �jSKg using equation(C.1).
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expected trajectory is close to its deterministic limit even
when the population size is small and drift is high.

From figure 2, it can be seen that an effective population
size of several thousand individuals is often sufficiently large
to produce deterministic behavior, even when the selection
coefficient and initial allele frequency are small. Thus, selec-
tion coefficient inference methods that ignore drift are likely
to be accurate for a broad range of population sizes and
selection coefficients. As we will see, methods that ignore drift
can be almost as accurate as methods that account for drift,
even within the small-parameter-value regime.

Inference Accuracy for Populations of Constant Size
To explore how accounting for drift affects inference accu-
racy, we first considered the accuracy of inferring selection
coefficients in a population of constant finite size. Figure 3
shows the maximum likelihood estimate (MLE) of the selec-
tion coefficient for three different effective population sizes
(N¼ 100, 500, 1000), three selection coefficients
ðs ¼ 0:01; 0:05; 0:1Þ, and two initial allele frequencies ðy0 ¼
0:01; 0:1Þ for h¼ 1=2. In each of panels A-R, the violin plots
summarize the maximum likelihood estimates for 100 differ-
ent simulation replicates in which an allele frequency

Procedure 4. Computing P
1
H;DfO½1:K� ¼ o½1:K�g

1: Fix a large integer n and set Dt ¼ 1=n.

2: Starting with y10 ¼ y0, for j ¼ 0; . . . ; ntK � 1, compute

y1ðjþ1ÞDt ¼ fu
ðj�tÞ
aA � ðuðj�tÞ

aA þ u
ðj�tÞ
Aa Þy1jDt þ y1jDtð1� y1jDtÞ½ð1� 2y1j�tÞhj�tsj�t þ y1jDtsj�t� gDt:

3: Compute

P
1
H;DfO½1:K� ¼ o½1:K�g ¼

YK

k¼1

�
nk

ok

�
ðy1tk
Þokð1� y1tk

Þnk�ok :

______________________________________________________________________________________________

Modifications:

If y0 is unspecified, set �y ¼ 1=M for a large value M and repeat Steps 1 and 2 for the dense uniform grid of Mþ 1 values

y0 2 ½0;�y; 2�y; . . . ; 1�. Set P1H;WfO½1:K� ¼ o½1:K�g ¼ 1
Mþ1

PM
j¼0

P
1
H;WfO½1:K� ¼ o½1:K�; y0 ¼ j�yg.

Procedure 3. Computing P
1
H;WfO½1:K� ¼ o½1:K�g

1: Starting with y10 ¼ y0, for t ¼ 0; . . . ; tK � 1,

Compute ~y1t ¼ u
ðtÞ
aA þ ð1� u

ðtÞ
Aa � u

ðtÞ
aAÞy1t .

Compute

y1tþ1 ¼
ð~y1t Þ

2ð1þ stÞ þ ~y1t ð1� ~y1t Þð1þ htstÞ
�wt

� �
;

where �wt ¼ ð~y1t Þ
2ð1þ stÞ þ 2~y1t ð1� ~y1t Þð1þ htstÞ þ ð1� ~y1t Þ

2.
2: Compute

P
1
H;WfO½1:K� ¼ o½1:K�g ¼

YK

k¼1

�
nk

ok

�
ðy1tk
Þokð1� y1tk

Þnk�ok :

______________________________________________________________________________________________

Modifications:

If y0 is unspecified, set �y ¼ 1=M for a large value M and repeat Steps 1 and 2 for the dense uniform grid of Mþ 1 values

y0 2 ½0;�y; 2�y; . . . ; 1�. Set P1H;WfO½1:K� ¼ o½1:K�g ¼ 1
Mþ1

PM
j¼0

P
1
H;WfO½1:K� ¼ o½1:K�; y0 ¼ j�yg.
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trajectory was simulated for 500 generations with samples of
size n¼ 50 taken at generations t ¼50, 100, 150, 200, 250, 300,
350, 400, 450, and 500.

For the discrete Wright–Fisher model, allele frequency tra-
jectories were simulated by sampling the allele frequency in
each generation from the vector of transition probabilities,
conditional on the frequency in the previous generation using
Procedure 5. Under the diffusion model, trajectories were
sampled using the approach in Procedure 6. Maximum like-
lihood estimates were obtained for the Wright–Fisher trajec-
tories using the grid search described in Procedure 7 over the
likelihoods computed using Procedures 1 and 3, and maxi-
mum likelihood estimates for the diffusion trajectories were
obtained using the same grid search approach over the like-
lihoods computed using Procedures 2 and 4. In each panel in
figure 3, the estimates ŝ1W and ŝW were computed for the
same set of 100 allele frequency trajectories simulated under
the discrete Wright–Fisher model and the estimates ŝ1D and
ŝD were computed for the same set of 100 allele frequency
trajectories simulated under the diffusion model.

By comparing the estimates computed accounting for drift
with the estimates obtained ignoring drift, it can be seen that
all methods have similar accuracies. All methods perform well
when the population size, selection coefficient, and initial
frequency are sufficiently large (e.g., fig. 3I for the case y0 ¼
0:01 and Panels 3K through 3R for the case y0 ¼ 0:1), and all

methods have reduced accuracy, otherwise. To put this an-
other way: the allele frequency trajectories for which selection
coefficients are inferred accurately by demography-aware
methods correspond to those for which the deterministic
estimates are also accurate. Thus, methods that ignore or
account for drift are likely to produce estimates with similar
accuracy.

Moreover, it can be seen from the scatter plots (Panels 3S–
3X), which compare the estimators ŝW and ŝ1W , that the point
estimates themselves are very similar for both the
demography-aware and deterministic methods. Although
this similarity may be expected given that the deterministic
methods differ from the demography-aware methods only in
that they ignore the additional variability in the allele frequen-
cies arising from genetic drift, it is surprising that the point
estimates are so similar, as the overall expected allele fre-
quency trajectory in the deterministic case can differ consid-
erably from the expected trajectory accounting for drift
(fig. 2A–C).

As the magnitude of the selection coefficient decreases,
the point estimates of the deterministic and demography-
aware estimators remain well correlated, although the accu-
racy of all methods decreases. This can be seen in figure 3S–X
and in supplementary fig. S1, Supplementary Material online
in which the estimates by the different methods remain cor-
related, but become more variable as the selection coefficient

A D G

B

C F I

E H

FIG. 2. Expected Wright–Fisher trajectories of allele A for different initial starting counts c0, selection coefficients s, and effective population sizes N.
Columns correspond to different initial starting frequencies c0=2N with c0=2N ¼ 0:01; 0:1; and 0.25. The dominance parameter is set to h¼ 1=2 in
all panels. Because the effects of mutation are negligible during the time periods we consider, we set uAa ¼ uaA ¼ 0.
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s decreases and an increasingly large number of trajectories
drift out of the population quickly, leading to strong negative
estimates of selection coefficients by both methods.

Inference Accuracy in Populations of Piecewise
Constant Size
We next explored the degree to which accounting for more
complicated population histories can improve maximum
likelihood estimates, focusing on three scenarios, a population
with a bottleneck, a population undergoing exponential
growth, and a population undergoing rapid oscillations in
size. Under each scenario, we simulated 100 allele frequency
trajectories for an allele with selection coefficient s¼ 0.05,
dominance parameter h¼ 1=2, and initial frequency y0

¼ 0:1 under the Wright–Fisher model and separately under

the diffusion model. The parameter values in these simula-
tions were chosen so that drift would be strong enough to
affect allele frequency trajectories, but not strong enough to
result in poor estimates of selection coefficients by the full-
likelihood methods.

In addition to comparing estimates made by the deter-
ministic estimators, ŝ1W and ŝ1D , with those of the exact esti-
mators, ŝW and ŝD, that account for the true time-varying
population history, we investigated the effect on accuracy of
using crude, yet reasonable estimates of the population his-
tory. In particular, we also inferred selection coefficients using
likelihoods computed using variants of Procedures 1 and 2 in
which the population was assumed to consist of a single
epoch of constant size equal to the Watterson estimate
(Watterson 1975, Eqn. 1.4a; Hein et al. 2005, p.62). The

A B C J K L

M N O

P Q R

D E F

G

S T U V W X

H I

FIG. 3. Maximum likelihood estimates of the selection coefficient s in populations of constant size. For each of three different selection coefficients
(s ¼ 0:01; 0:05; 0:1) and effective population sizes (N¼ 100, 500, 1000), 100 allele frequency trajectories were simulated for 500 generations under
the either the Wright–Fisher or diffusion models. Samples of 50 alleles were taken at times 50, 100, 150, 200, 250, 300, 350, 400, 450, and 500
generations. Bars in panels A-R indicate medians. Dashed lines indicate true selection coefficients. The maximum width of each violin plot is scaled
to the same value for all estimators. Scatter plots S, T, U, V, W, and X compare the estimates ŝW with the estimates ŝ1W using the same data shown in
the top modes of the distributions in Panels A, B, C, J, K, and L for the case s¼ 0.01. Diagonal lines in these scatter plots indicate the line ŝ1W ¼ ŝW .
Bimodal violin plots are due to the fact that allele frequency trajectories typically fall into one of two categories: trajectories in which allele A is lost
quickly, resulting in a strong negative estimate of the selection coefficient, and trajectories in which allele A remains segregating long enough to
allow a more accurate estimate of the selection coefficient.
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Watterson estimate was obtained by computing the ex-
pected site frequency spectrum (SFS) for the multi-epoch
model for a sample size of 20 alleles using the method of
Kamm et al. (2016) and then inferring the effective size of a
single epoch using Watterson’s estimator (Computing the
Watterson estimator of Ne from the expected SFS of a piece-
wise constant population). The discrete Wright–Fisher and
diffusion estimators based on the Watterson estimate of ef-
fective size are denoted by ŝNe

W and ŝNe

D , respectively.

The Case of a Bottleneck
To model populations with bottlenecks, we considered pop-
ulations composed of three epochs, each of length 100 gen-
erations, with sizes N1, N2, and N3 satisfying N1 ¼ N3 ¼ 5N2.
Samples of size 50 were taken at times 50; 100; 150; 200;
250, and 300. Figure 4A and B shows the results for two
different populations; in the population in figure 4A, we set
N1 ¼ 500 and in the population in figure 4B we set
N1 ¼ 2500.

From figure 4A and B, it can be seen that all methods
performed similarly. However, the deterministic estimators
had significantly lower bias than the full-likelihood estimators
computed using the mis-specified population history for a
bottleneck of size N2 ¼ 100 with N1 ¼ N3 ¼ 500 (fig. 4A). In
the case of the bottleneck in figure 4A, the means of the
deterministic estimators ŝ1W and ŝ1D were not significantly
different from the true selection coefficient s (P¼ 0.59 and
P¼ 0.93 for t-tests of the null hypotheses meanð̂s1WÞ ¼ s and
meanð̂s1D Þ ¼ s versus the alternative hypotheses meanð̂s1WÞ
6¼ s and meanð̂s1D Þ 6¼ s). In comparison, the means of the full

likelihood estimators ŝNe

W and ŝNe

D with mis-specified histories
were significantly different from s (P¼ 0.03 and P< 0.01, re-
spectively). A similar trend was observed for the bottleneck
history with larger sizes shown in figure 4B (P¼ 0.64 and
P¼ 0.12 for t-tests of the null hypotheses meanð̂s1WÞ ¼ s
and meanð̂s1D Þ ¼ s, compared with P¼ 0.13 and P¼ 0.01
for t-tests of the null hypotheses meanð̂sNe

WÞ ¼ s and
meanð̂sNe

D Þ ¼ s). Note that, despite the tight bottleneck in
figure 4A, inferences were still relatively accurate due to the
larger sizes of epochs 1 and 3.

The Case of Exponential Growth
To model exponential growth, we considered populations
composed of five epochs, each of length 100 generations,
with effective population sizes chosen to represent 5-fold
exponential growth across all five epochs. Specifically, the
size in epoch ‘ was set to N‘ ¼ N0egs‘ , where we chose
N0 ¼ 100 and the growth constant g was chosen such that
egs5 ¼ 5. Samples of size 50 were taken in generations 100,
200, 300, 400, and 500. From the results in figure 4C and D, it
can be seen that all methods performed with similar accuracy
in the growth scenario.

The Case of Rapidly Oscillating Population Size
Figure 4E and F shows inferences of the selection coefficient in
a population with rapidly oscillating size. Such demographic
histories, which are often seen in insect populations like
Drosophila, have moderate arithmetic mean sizes, but small
harmonic mean sizes and experience episodes of extreme
drift.

A

C D

E F

B

FIG. 4. Maximum likelihood estimates of the selection coefficient s in populations with a bottleneck, exponential growth, or rapidly oscillating
population size. In each panel, the trajectory of an allele with selection coefficient s¼ 0.05, dominance parameter h¼ 1=2, and starting frequency
y0 ¼ 0:1 was simulated 100 times under the Wright–Fisher and diffusion models. Bars indicate medians. Dashed lines indicate the true selection
coefficient. The maximum width of each violin plot is scaled to the same value for all estimators.
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In the simulations shown in figure 4E, the population size
oscillates rapidly between 10 and 100 diploids every five gen-
erations. In the simulations shown in figure 4F, the population
size oscillates between 100 and 500 diploids every five gener-
ations. From figure 4, it can be seen that the methods that
ignore drift have similar accuracy to the methods that ac-
count for drift. However, the methods that account for drift
are slightly less biased when the population size oscillates
between very small values (fig. 4E) (P¼ 0.017 and P¼ 0.012,
respectively, for the one-tailed t-tests of the null hypotheses
ŝ1W � ŝW and ŝ1D � ŝD versus the alternative hypotheses ŝ1W
< ŝW and ŝ1D < ŝD).

Conditioning on Segregation in the Final Sample
It is sometimes of interest to infer the selection coefficient of
an allele, conditional on the event that the allele is segregating
in the most recent sample. Such conditional inferences are
useful if alleles are ascertained in present-day samples and
their historical trajectories are subsequently investigated.

Conditioning on segregation in the final sample is also
useful for estimating weak positive selection coefficients
when initial allele frequencies are low. This is because a large
fraction of weakly selected alleles with low initial frequencies
will drift out of the population quickly resulting in large neg-
ative estimates of their selection coefficients. However, more
accurate estimates can be obtained for the subset of alleles
that are not lost quickly, which can be seen, for example, in
figure 3B–I through I in which the part of the density corre-
sponding to alleles that are not lost quickly from the popu-
lation is localized around the true selection coefficient.

Considering only alleles that are segregating in the final
sample can lead to biased estimates of selection coefficients if
likelihood methods do not properly condition on segregation.
For example, weakly selected alleles typically drift out of small
populations quickly. Thus, weakly selected alleles that escape
loss and ultimately fix generally exhibit faster-than-expected
increases in frequency that are similar to the unconditional
trajectories of alleles under stronger selection. Thus, if a like-
lihood method does not properly account for conditioning,
weakly selected alleles that are segregating in the final sample
will have inflated inferred selection coefficients.

Estimators that ignore drift cannot be modified to condi-
tion on the event of segregation in the final sample because
they implicitly assume that alleles follow fixed trajectories
whose long-term behavior in the absence of mutation is en-
tirely determined by the selection coefficient: fixation for pos-
itively selected alleles and loss for negatively selected alleles.
Thus, estimators that ignore drift are expected to produce
biased estimates of selection coefficients when applied to
conditioned trajectories.

In contrast, the allele frequency trajectories in likelihood
methods that account for the population size are modeled
stochastically, allowing likelihoods to be modified to condi-
tion on segregation in the final sample. It is expected that
methods that account for the true population size can be
modified to produce accurate estimates of selection coeffi-
cients, whereas methods that ignore drift will necessarily pro-
duce biased estimates.

Simulations Conditioning on Segregation
To investigate the degree to which accounting for drift can
improve estimates of selection coefficients when allele fre-
quency trajectories are conditioned on segregation in the final
sample, we modified the discrete Wright–Fisher probability in
Procedure 1 to compute the likelihood conditional on segre-
gation in the final sample using results derived in the
“Conditional Probabilities” section. Under a grid search, this
modified likelihood yields the conditional maximum likeli-
hood estimator ŝWjSK

. We compared the estimates computed
using the exact conditional estimator ŝWjSK

with estimates
computed using the approximate estimator ŝ1W that ignores
drift and cannot be modified to account for conditional allele
frequency trajectories.

The effect of failing to account for conditioning is evident
in the violin plots in figure 5A–I corresponding to the uncon-
ditional approximate maximum likelihood estimates ŝ1W . As
expected, when the true selection coefficient is small
(s � 0:01), the estimates ŝ1W are biased upward.
Conversely, when the selection coefficient is larger
(s � 0:05), the approximate estimator ŝ1W produces nega-
tively biased estimates because alleles under strong positive
selection that remain segregating in the final sample show
slower-than-expected increases in frequency. In contrast to
the estimator ŝ1W , the bias is negligible in the estimator ŝWjSK

,
which accounts for drift and properly conditions on segrega-
tion in the final sample.

The results shown in figure 5A–I suggest that methods
that account for drift are capable of significantly improving
the accuracy of estimates of selection coefficients when allele
frequency trajectories are conditioned on segregation. The
differences in accuracy between methods that ignore or ac-
count for drift are visible for a range of selection coefficients
and population sizes. However, the differences in accuracy
between the methods diminish as the population size be-
comes larger.

Simulations Conditioning on Segregation or Fixation
The magnitude of the bias in the estimates ŝ1W is due in part
to the event on which trajectories are conditioned. In cases
involving positive selection in populations of moderate or
large size, most alleles will be fixed in the final sample (e.g., >
80% fixation within 10 generations when s¼ 0.1, h¼ 1=2,
y0 ¼ 0:01, and N¼ 1000). Thus, it may sometimes be more
natural to condition on the event FK that a selected allele is
found (segregating or fixed) in the final sample. Under this
conditioning scheme, the approximate estimator ŝ1W will not
generally produce negatively biased estimates of selection
coefficients because allele frequency trajectories will not be
constrained to those which exhibit slower-than-expected in-
creases in allele frequency.

In light of these considerations, we repeated the analysis
shown in figure 5A–I, simulating allele frequency trajectories
conditional on the event that the allele was segregating or
fixed in the final sample. To compare the estimates ŝ1W with
maximum likelihood estimates that fully account for drift and
the proper conditioning, we also modified the probability
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PH;WfO½1:K� ¼ o½1:K�g computed in Procedure 1 to condition
on the event FK of segregation or fixation in the final sample,
yielding the conditional probability PH;WfO½1:K� ¼ o½1:K�jFKg
(eq. 21) with the associated estimator ŝWjFK

.
By comparing figure 5J–R with figure 5A–I, it can be seen

that the estimator ŝ1W has considerably less bias when condi-
tioning on the event FK than when conditioning on SK.
Although the bias is still high when the population size is
small (N � 100), it decreases quickly as the population size
increases and becomes comparable to the bias in the properly
conditioned, demography-aware estimator ŝWjFK

when the
population size is greater than approximately N¼ 500 dip-
loids. In contrast to figure 5E–I, the bias in ŝ1W observed in
figure 5M–R is positive because the trajectories on which
these estimates are based exclude only those in which the
allele is lost; thus, they exhibit faster-than-expected growth on
average. The results in figure 5J–R suggest that under certain
conditioning schemes, methods that ignore drift can produce
similar estimates to methods that account for drift.

The Effect of Sample Size on Accuracy
When the sample size is small, the variance in estimates aris-
ing from sampling noise will tend to obscure small differences
between estimators that ignore or account for population

size. Thus, when comparing methods, it is important to sam-
ple a sufficiently large number of alleles to ensure that the
differences between the methods due to ignoring or account-
ing for drift are visible.

To evaluate the effects of sample size on inference accu-
racy, we inferred the selection coefficient for a range of sample
sizes for several different combinations of the population size
and selection coefficient. Figure 6 shows a plot of the variance
in selection coefficients inferred using Procedures 1 and 3 for
sample sizes ranging from n¼ 2 to n¼ 50. For each combi-
nation of Ne, s, and n, the trajectories of 100 alleles were
simulated under the Wright–Fisher process with an initial
allele frequency of y0 ¼ 0:1. Samples were taken in genera-
tions 50 and 100.

The plots in figure 6 suggest that variability due to small
sample sizes has a strong effect on the variability in estimates
only for sample sizes smaller than 10 alleles. Thus, in all of our
simulations, we have used a sample size of n¼ 50 alleles so
that differences between estimators are not likely to be ob-
scured by the variance in estimates due to small sample sizes.

Unspecified Initial Allele Frequencies
In our simulations, we have assumed that the initial frequency
y0 of allele A at time t¼ 0 is known. Knowledge of the initial

A B C J
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G H I

FIG. 5. Estimates of selection coefficients, conditional on segregation. Each violin plot was computed using 100 frequency trajectories sampled over
500 generations for an allele with initial frequency y0 ¼ 0:01. As in figure 3, samples of size n¼ 50 were taken in generations 50, 100, 150, 200, 250,
300, 350, 400, 450, and 500. In Panels A–I, trajectories were sampled conditional on the event that the selected allele was segregating in the final
sample. In Panels J–R, trajectories were sampled conditional on the event that the selected allele was either segregating or fixed in the final sample.
Red bars indicate medians. Dashed lines indicate the true selection coefficients. The maximum width of each violin plot is scaled to the same value
for both estimators.
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allele frequency provides approximately the same informa-
tion as an informative sample taken at time t¼ 0. Although
this information can improve the estimate of the selection
coefficient if few samples are taken, it contributes relatively
little information to the estimate of s when the number of
samples is moderate. However, because a lack of knowledge
of the initial frequency could potentially lead to greater errors
in the deterministic estimators, we also compared versions of
the estimators that assume a uniform prior distribution on
the allele frequency at the time of the first sampling event,
and which do not incorporate information about the initial
allele frequency (Computing PH;WfO½1:K� ¼ o½1:K�gWhen d0

Is Unspecified, Computing PH;DfO½1:K� ¼ o½1:K�gWhen y0 Is
Unspecified, and Deterministic Estimators When the Initial
Allele Frequency Is Unknown).

Figure 7 shows a comparison between the deterministic
and exact Wright–Fisher estimates when the initial frequency
is drawn uniformly from the interval y0 2 ð0; 0:5� and the
selection coefficient is inferred using Procedures 1 and 2 as-
suming no knowledge of the initial allele frequency. From
figure 7, it can be seen that the deterministic and exact esti-
mators produce similar results, even in the absence of knowl-
edge of the initial frequency. Moreover, although the
estimates produced by the two methods decrease in accuracy
as the number of sampling events decreases, the accuracies of
the two kinds of methods remain similar. In particular, From
figure 7D–F, it can be seen that both the deterministic and
exact methods are relatively accurate when allele frequency
trajectories do not drift out or fix immediately due to random
fluctuations.

Violation of Model Assumptions
It is possible that violations of model assumptions in real data
could increase the differences in accuracy between the deter-
ministic and demography-aware estimators. To investigate
this possibility we compared the performance of the deter-
ministic and demography-aware discrete Wright–Fisher esti-
mators using experimentally sampled allele frequency time
series data that are thought to violate several model assump-
tions. In particular, we considered time series data for an allele
at the medionigra locus in the species Panaxia dominula,
which confers a darkened wing phenotype (Cook and Jones

1996). Although these samples are thought to represent a
single population that is isolated from migration events, there
is evidence for temporal fluctuations in the selection coeffi-
cient, frequency dependent selection, and assortative mating.
These data are also useful for our analyses because they in-
clude estimates of population sizes obtained using mark, re-
lease, and recapture. The data set, which spans over 40 years,
provided important evidence for natural selection resulting
from environmental pressures.

We computed the log likelihood as a function of the se-
lection coefficient s for three different values of the domi-
nance parameter (h ¼ 0; 0:5, and 1). Figure 8 shows the log
likelihood for different values of h, along with asymptotic
normal approximations of 95% confidence intervals.
Figure 8 shows that the log likelihood surfaces computed
using Procedures 1 and 3 are qualitatively similar, yielding
similar point estimates for s. However, the confidence inter-
vals for the deterministic estimator are considerably smaller
than those of the demography-aware estimator. This result is
expected, given that the deterministic estimator ignores the
largely symmetrical variability arising from drift and considers
only variability in the sampling frequency.

Note that the point estimates presented in figure 8 are
similar to those estimated previously in other studies. Using a
model of additive selection (h¼ 0.5) Cook and Jones (1996)
estimated s � �0:16 whereas Mathieson and McVean
(2013) inferred s � �0:12. These estimates are close to the
maximum likelihood estimates that we inferred under the
same model of additive selection (̂sW ¼ �0:1 and
ŝ1W ¼ �0:09) (note that the estimates in Cook and Jones
(1996) and Mathieson and McVean (2013) are reported using
a different parameterization of the dominance model than
the one we have used in this paper; thus, we have scaled the
selection coefficients reported in these papers so that they are
comparable with the ones reported here).

It is of interest to note that Mathieson and McVean (2013)
found evidence that the medionigra allele is recessive, finding
that the likelihood was maximized for a recessive model with
a strong negative selection coefficient around s � �1, al-
though they note that such a strong negative selection coef-
ficient violates the assumptions of the Gaussian model under
which their likelihoods were derived. In accordance with the

FIG. 6. The effect of sample size on inference accuracy. The variance of the estimates produced by the methods in Procedures 1 and 3 are shown for
a range of sample sizes.
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result of Mathieson and McVean (2013), we find that both
the deterministic and exact Wright–Fisher likelihoods we
considered were also maximized for a recessive pattern of
dominance (h¼ 0) with a large negative selection coefficient
around s � �1.

Under a recessive model of dominance, the strongly neg-
ative selection coefficient that was inferred by the estimators
in this study and by that of Mathieson and McVean (2013) is
reasonable given that the allele frequency decreases rapidly,
which would be unlikely under weak selection where alleles
must combine in homozygotes for selection to act. Unlike the
analyses of Mathieson and McVean (2013), a selection coef-
ficient of s � �1 does not violate our model assumptions.
Thus, our analysis provides further support that the medioni-
gra variant is largely recessive, although there is evidence that
the dominance of the variant can change over time (Cook
and Jones 1996).

Computational Efficiency of Methods
As we have noted, methods that assume that allele frequency
trajectories are deterministic can be considerably faster than
methods that account for population size histories. Table 1
shows the average runtimes of the estimators ŝ1W ; ŝW ; ŝD,
and ŝ1D for the computations used to produce figure 3A–I.

From the table, it can be seen that the runtimes are con-
siderably faster for the estimators based on deterministic tra-
jectories (̂s1W and ŝ1D ). Moreover, the runtimes for ŝ1W and ŝ1D

do not depend on the population size or selection coefficient.
In comparison, the runtimes for the estimators ŝW and ŝD
increase with increasing Ne and s because these methods
depend on eigenvalue decompositions or sparse matrix prod-
ucts, which require larger matrices or greater precision when
Ne or s is large. Note that although the discrete Wright–Fisher
estimator is considerably faster than the diffusion estimator
for the scenarios we considered, the diffusion estimator can
still be more efficient when samples are widely separated in
time and the repeated matrix–vector products required by
the discrete Wright–Fisher method become cumbersome.

Discussion
The results of our analyses suggest that accurate estimates of
selection coefficients from allele frequency time series data
can often be obtained by assuming that alleles evolve without
drift in a population of infinite size. In the majority of our
simulations, the estimates obtained using deterministic ap-
proximations were nearly as accurate as estimates obtained
by explicitly modeling the true population history and they
were sometimes more accurate than estimates obtained us-
ing crude but reasonable estimates of the population history.
The latter result indicates that an overestimate of the popu-
lation size, for example due to underestimation of the muta-
tion rate or other factors, may have only small adverse effects
on the accuracy of exact likelihood estimates of the selection
coefficient from time series data, a result that is of interest

A B C

D E F

FIG. 7. Scatter plots comparing the estimates ŝ1W and ŝW when the initial allele frequency is unspecified during inference. One hundred allele
frequency trajectories were simulated for 500 generations with s¼ 0.05, N¼ 100, and y0 sampled uniformly from the interval ð0; 0:5� as described
in the “Simulations” section. Estimates ŝ1W and ŝW were computed using Procedures 1 and 2 using the modified procedure taken when d0 and y0 are
unspecified. (A) Estimates computed using all ten samples of size n¼ 50 taken in generations 50; 100; 150; 200; 250; 300; 350; 400; 450, and 500.
(B) Estimates computed using the five samples taken in generations 50; 150; 250; 350, and 450. (C) Estimates computed using the two samples
taken in generations 50 and 150. (D), (E), and (F) are zoomed-in versions of the plots in (A), (B), and (C). All panels correspond to the same 100
simulated trajectories. Dashed lines correspond to the true selection coefficient. Bars show means over all 100 estimates. The solid line is ŝ1W ¼ ŝW .
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because population size histories can be difficult to infer
accurately.

Surprisingly, estimates made under the deterministic ap-
proximation were generally as accurate as estimates that ac-
counted for drift, due to the fact that the exact maximum
likelihood methods had low accuracy when drift was strong.
Accounting for the true population history only resulted in
significantly improved estimates of selection coefficients
when conditioning on the event that the target allele was
segregating in the final sample. Methods that modeled the
true population history were more accurate in this case be-
cause they could be modified to model conditional trajecto-
ries, whereas methods that assumed infinite population sizes
could not. These results suggest that methods that account
for drift are likely to be preferable under circumstances in
which conditioning on segregation is desirable. However, it
is important to note that deterministic methods can perform
well when population sizes are moderately large if allele fre-
quencies are conditioned on a slightly different event: the
event that an allele is found (segregating or fixed) in the final
sample.

It is important to note that we have focused on estimates
of the selection coefficient rather than the dominance pa-
rameter h, which is a more difficult task. However, in our
analyses of the medionigra variant in the Panaxia dominula

moth, we found that both the deterministic and exact like-
lihoods were qualitatively similar in both h and s and were
both maximized for a recessive model of dominance. A com-
prehensive exploration of the effects of deterministic assump-
tions on the inference of h is deferred to future analyses.

It is also important to note that our analyses do not imply
that the deterministic and exact estimators will produce ex-
actly the same point estimate for a given allele frequency
trajectory. Although the scatter plots in figures 3, 7, and
supplementary figure S1, Supplementary Material online sug-
gest that both deterministic and exact estimators often agree
closely on the magnitude of the selective strength, the esti-
mates for any given trajectory can differ by 100% or more.
This result is consistent with the observation by Schraiber
et al. (2016) that specifying different demographic histories
led to different estimates of dominance and selection param-
eters for alleles affecting coat coloration in horses. Although
specific point estimates can differ, our results demonstrate
that deterministic and exact estimators have similar accura-
cies for estimating the strength of selection, even when the
population size is small.

The idea that ignoring drift can lead to accurate estimates
of selection coefficients is not new. In fact, inference methods
based on deterministic allele frequency trajectories capitalize
on exactly this idea. However, our comparison with estima-
tors based on exact likelihoods makes it possible to charac-
terize the relative loss in accuracy that is incurred when drift is
ignored, as well as the demographic, evolutionary, and sam-
pling scenarios under which accounting for drift is likely to be
important.

The comparatively accurate estimates achieved by meth-
ods that assume deterministic allele frequency trajectories are
encouraging for three primary reasons. First, a large number of
studies have relied on the assumption that alleles evolve de-
terministically in order to infer selection coefficients from
biological time series data. Our results suggest that these es-
timates are likely to be nearly as accurate as those obtained
using the exact likelihood accounting for drift. Second, esti-
mators based on deterministic trajectories can be consider-
ably faster than estimators that account for drift, making
them useful for inferring selection coefficients at large num-
bers of loci. Third, it may be easier to obtain analytical results
under the assumption that allele frequencies change deter-
ministically, simplifying the development of inference meth-
ods for inferring selection coefficients under more

Table 1. Mean Runtimes of the Methods in figure 3A–I (seconds).

Ne s ŝ1W ŝW ŝ1D ŝD

100 0.01 0.01 2.30 4.74 197.25
0.05 0.01 2.36 4.23 204.66
0.1 0.01 2.29 3.98 217.34

500 0.01 0.02 134.07 4.41 185.18
0.05 0.01 132.45 4.41 496.83
0.1 0.02 126.35 4.46 531.15

1000 0.01 0.02 175.27 4.64 196.90
0.05 0.02 191.53 4.78 815.27
0.1 0.02 199.32 4.67 1950.59

A

B

FIG. 8. The log likelihood as a function of s computed using
Procedures 1 and 3 for three different values of the dominance pa-
rameter h (h ¼ 0; 0:5; 1). Solid vertical lines show the maximum like-
lihood estimates, ŝW in (A) and ŝ1W in (B), for the curve of the
corresponding color. Dashed vertical lines indicate asymptotic nor-
mal approximations of the 95% confidence intervals for s, for the
curve of the corresponding color. (A) The demography-aware likeli-
hoods (Procedure 1). (B) The deterministic likelihoods (Procedure 3).
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complicated scenarios; for example, inferring coefficients at
linked loci (Illingworth et al. 2012). Finally, the ability to ignore
the population size is useful in situations in which the true
population history is unknown or difficult to infer.

In addition to characterizing the degree to which account-
ing for drift can improve estimates of selection coefficients,
our results shed light on the accuracy of exact maximum
likelihood methods for inferring selection coefficients from
allele frequency trajectories. In accordance with predictions
about the relative strengths of genetic drift and selection
(Gillespie 1998, section 3.7) and experimental work (Gallet
et al. 2012), our findings suggest that very small selection
coefficients (s � 0:01) are difficult to infer if the initial allele
frequency and population size are not large. Moreover, even if
the population size is large, the accurate inference of a small
selection coefficient may require samples taken over hun-
dreds of generations, during which time the selection coeffi-
cient could change considerably (Felsenstein 1976; Siepielski
et al. 2009).

Despite the difficulties of inferring weak selection coeffi-
cients when the population size is small, coefficients of one
percent or lower can be inferred accurately if the initial allele
frequency is sufficiently high. It is important to note that the
selection coefficient need not be high at the time of the very
first sampling event, as long as the allele has reached a suffi-
ciently high frequency at one of the intermediate sampling
events, leading to quasi-deterministic behavior between some
sampling time points that can be exploited by the maximum
likelihood estimator.

Although we have only considered positively selected al-
leles in our simulation analyses, our results apply equally well
to negatively selected alleles, as it is arbitrary whether we
choose to track the trajectory of the allele with higher or
lower fitness. We have also focused on low initial allele fre-
quencies ðy0 � 0:1Þ for selected alleles; however, it is clear
from figure 2 that allele frequency trajectories become in-
creasingly deterministic as the initial allele frequency in-
creases. Thus, the accuracy of a method that assumes a
deterministic trajectory will become more similar to that of
a method that accounts for drift as the initial allele frequency
increases. Conversely, for negatively selected alleles, the accu-
racy of the deterministic method will approach that of the
exact likelihood as the initial allele frequency decreases. Thus,
our analyses provide a characterization of inference accuracy
for both positively and negatively selected alleles for a broad
range of starting frequencies.

At first glance, our finding that the population size does
not strongly influence estimates of selection coefficients
might appear to be at odds with the fact that population
size histories can be inferred from allele frequency time series
data (O’Hara 2005; Bollback et al. 2008; Ferrer-Admetlla et al.
2015). However, this is not the case. Methods for inferring the
population size capitalize on information in the short-term
fluctuations of the allele frequency around its expected value,
arising from drift; conversely, estimators of selection coeffi-
cients capitalize on the long-term changes in allele frequency
due to selection, effectively averaging over the short-term
fluctuations due to drift. Our results suggest that allele

frequencies often change quasi-deterministically, even in
small populations. Thus, deviations around the expected tra-
jectory can be distinguished from long-term changes, allowing
effective population sizes to be inferred accurately even in
small populations.

We have conducted our analyses under two different
models of evolution: the discrete Wright–Fisher model and
the continuous diffusion model. Although the diffusion
model was developed as an approximation to the Wright–
Fisher process, it also captures the limiting behavior of a large
class of evolutionary models, including the Wright–Fisher
process, as the population size grows to infinity and mutation
and selection parameters are scaled accordingly. Thus, it is
reasonable to believe that our findings will generalize to max-
imum likelihood estimators derived under a wide range of
evolutionary models.

Taken together, our results help to characterize the prop-
erties of maximum likelihood methods for inferring selection
coefficients from time series data. Because of the accuracy and
beneficial properties of maximum likelihood methods, it is
reasonable to believe that our results provide insight into the
accuracy with which it is possible to infer selection coefficients
from biological data, and the degree to which accounting for
the true population history can improve these estimates. Our
results also provide justification for the use of fast inference
methods based on the assumption that allele frequencies
evolve deterministically. Such methods can be applied to infer
selection coefficients efficiently on large genomic data sets
with many loci. Finally, our results provide further justification
for the use of deterministic approximations in the develop-
ment of statistical approaches for studying time series data.

Methods
In this section, we compute the exact probability of an allele
frequency trajectory in a population of piecewise-constant
size under the discrete Wright–Fisher model and under the
diffusion approximation. We also describe how drift can be
ignored in these probabilities, yielding approximate estima-
tors of selection coefficients that are similar to commonly
used approaches that assume deterministic allele frequency
trajectories.

Computing P�;WfO½1:K� ¼ o½1:K�g under the
Discrete Wright–Fisher Model
To compute the probability PH;WfO½1:K� ¼ o½1:K�g under the
discrete Wright–Fisher model, we make use of a hidden
Markov model (HMM) similar to that presented in
Steinrücken et al. (2014). However, the hidden state in our
discrete model is the count ct of the number of (unobserved)
copies of allele A in the population at time t, rather than the
continuous allele frequency yt.

In our model, the count ct of allele A evolves according to a
Wright–Fisher process in which mutation occurs, followed by
random mating, selection, and drift. Given that the count of
allele A in generation t is ct¼ i, let f t

Aji be the frequency of allele
A in the gamete pool after mutation. Then
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ðtÞ
AaÞ þ 1� i

2Nt

� �
u
ðtÞ
aA

¼ u
ðtÞ
aA þ ð1� u

ðtÞ
Aa � u

ðtÞ
aAÞ

i

2Nt

� �
: (2)

After random mating, the fraction of zygotes with each of
the genotypes AA, Aa, and aa is ðf t

AjiÞ
2; 2f t

Ajið1� f t
AjiÞ, and

ð1� f t
AjiÞ

2, from which it follows that the fraction of geno-
types of each kind remaining after selection is given by

pt
AAji ¼

ðf t
AjiÞ

2ð1þ stÞ
�wt;i

;

pt
Aaji ¼

2f t
Ajið1� f t

AjiÞð1þ htstÞ
�wt;i

;

pt
aaji ¼

ð1� f t
AjiÞ

2

�wt;i
;

(3)

where �wt;i ¼ ðf t
AjiÞ

2ð1þ stÞ þ 2f t
Ajið1� f t

AjiÞð1þ htstÞþ
ð1� f t

AjiÞ
2 is the mean fitness of the population.

Immediately after selection and before drift occurs, the
probability that a randomly chosen allele is of type A is given
by pt

Aji ¼ pt
AAji þ 1

2 pt
Aaji. Then, as the result of drift, the count

of allele A in generation tþ 1 is binomially distributed with
mean pt

Aji. Thus, the probability that allele A has count j in
generation tþ 1, given that it had count i in generation t is

PH;WfCtþ1 ¼ jjCt ¼ ig ¼ 2Ntþ1

j

� �
pt

Aji

� �j
1� pt

Aji

� �2Ntþ1�j
:

(4)

The Wright–Fisher transition matrix Tt;tþ1 from genera-
tion t to generation tþ 1 is the ð2Nt þ 1Þ 	 ð2Ntþ1 þ 1Þ
matrix with entry i, j given by

½Tt;tþ1�ij ¼ PH;WfCtþ1 ¼ jjCt ¼ ig; (5)

which can be used to obtain the allele frequency distribution
at each discrete generation t given the initial distribution
at some time r< t. In particular, define dt ¼
ðPfct ¼ 0g;Pfct ¼ 1g; . . . ;Pfct ¼ 2NtgÞ, to be the distri-
bution of the count of allele A in generation t. Using equation
(5), dt can be computed recursively as

dt ¼ dr

Yt

g¼rþ1

Tg�1;g

" #
(6)

for r< t.

Computing the Probability P�;WfO½1:K� ¼ o½1:K�g
The probability PH;WfO½1:K� ¼ o½1:K�g of the observed data is
computed using the forward procedure for hidden Markov
models. In particular, we define the vector vk whose ith entry
vk;i is the joint probability of the population-wide count of
allele A at the kth sampling event and the observed sample
allele counts up to sample k:

vk;i ¼ PH;WfO½1:k� ¼ o½1:k�; Ctk
¼ ig: (7)

To simplify calculations, we also define the conditional “emis-
sion probability”

ciðokÞ ¼ PHfOk ¼ okjCtk
¼ ig

¼ nk
ok

� �
ði=2Ntk

Þokð1� i=2Ntk
Þnk�ok (8)

of the observed allele count, conditional on the population
allele count. The probability in equation (8) comes from
the fact that the observed allele count at time tk can be
modeled as a binomial random variable with sample size
nk and probability ctk

. Although the observed allele count
is, strictly speaking, hypergeometric we use the binomial
distribution to maintain consistency with the formulas for
the diffusion model, which are often derived using a bino-
mial sampling distribution. The binomial and hypergeomet-
ric distributions are very similar for the population and
sample sizes we consider. We then construct the emission
probability vector

cðokÞ ¼ ðc0ðokÞ; c1ðokÞ; . . . ; c2Ntk
ðokÞÞ: (9)

The probability of the data is then given by the forward
procedure (Rabiner 1989), outlined in Procedure 1. In
Procedure 1, the formula for v1 comes from the fact that

v1¼ðPH;WfO1¼ o1;Ct1
¼ 0g; . . . ;

PH;WfO1¼ o1;Ct1
¼ 2N‘t1

gÞ¼ðc0ðo1ÞPH;WfCt1
¼ 0g; ... ;

c2N‘t1
ðo1ÞPH;WfCt1

¼ 2N‘t1
gÞ¼ dt1

diagfcðo1Þg

¼ d0

Yt1

t¼1

Tt�1;t

" #
diagfcðo1Þg;

(10)

where diagðcÞ denotes the square matrix whose diagonal
entries are given by c.

It has been noted by several authors that computing
powers of the transition matrix is computationally prohibi-
tive, providing one motivating factor for the use of approxi-
mations of the Wright–Fisher process, such as the diffusion
and Gaussian approximations (Ewens 1963; Feder et al. 2014;
Lacerda and Seoighe 2014). However, the products

Qtk

t¼tk�1þ1
Tt�1;t in Procedure 1 do not require products of the transition
matrix Tt�1;t because it suffices to repeatedly compute vec-
tor–matrix products instead of multiplying full matrices to-
gether. In practice, this can be done very quickly, even for
large population sizes. A similar fast procedure was carried
out by Zhao et al. (2014) to simulate trajectories under the
Wright–Fisher model.

Computing P�;WfO½1:K� ¼ o½1:K�gWhen d0 Is Unspecified
When the initial distribution d0 is unspecified, the probability
PH;WfO½1:K� ¼ o½1:K�g can be obtained by assuming that the
distribution dt1

is uniform at the time of the first sampling
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event. Under this assumption, it follows directly from the
second to last equality in equation (10) that the value of
the joint density vector v1 is given by

v1 ¼
1

2Nt1

1diagfcðo1Þg ¼
1

2Nt1

cðo1Þ; (11)

where 1 is the vector of length 2Nt1
with all entries equal

to one. This form of v1 can then be substituted into
Procedure 1.

Computing P�;DfO½1:K� ¼ o½1:K�g under the
Diffusion Approximation
The diffusion approximation models the evolution of the
continuous population frequency Yt of allele A, rather than
its count Ct. The time-evolution of the random frequency Yt is
governed by the diffusion transition density pHðs; t; x; yÞ
given by

pHðs; t;x;yÞdy¼ PH;Dfy � Yt < yþdyjYs¼ xg; (12)

for an infinitesimal increment dy. The quantity pHðs; t;x;yÞ
specifies the density of the allele frequency at time t, condi-
tional on the value of the allele frequency at an earlier time s.
For more details about the transition density function of the
diffusion approximation, see Appendix A.

Using the diffusion transition density pHðs; t; x; yÞ
Steinrücken et al. (2014) developed an HMM to compute
the probability PH;DfO½1:K� ¼ o½1:K�g of the data in a single
epoch of constant size by efficiently integrating over the hid-
den allele frequencies fyt1

; . . . ; ytK
g at the set of sampling

times. Here, we extend this HMM to the case of piecewise-
constant population size.

To compute the probability PH;DfO½1:K� ¼ o½1:K�g effi-
ciently, Steinrücken et al. (2014) define the quantities fkðyÞ
and gkðyÞ satisfying

fkðyÞdy :¼ PH;DfO½1:k� ¼ o½1:k�;y � Ytk
< yþdyg; (13)

and

gkðyÞdy :¼ PH;DfO½1:k�1� ¼ o½1:k�1�; y � Ytk
< yþ dyg

(14)

for an infinitesimal increment dy. The quantity fkðyÞ is the
joint density of the allele frequency at time tk and the ob-
served counts up to sampling event k. The quantity gkðyÞ is
the joint density of the allele frequency at time tk and the
observed counts up to sampling event k – 1.

It follows from the definition of fkðyÞ that the probability
of the data is given by

PH;DfO½1:K� ¼ o½1:K�g ¼
ð1

y¼0

fKðyÞdy: (15)

The quantity fKðyÞ can be obtained efficiently by recursion
using the relationships

fkðyÞ ¼ gkðyÞ
�

nk
ok

�
yokð1� yÞnk�ok ; (16)

and

gkðyÞ ¼
ð1

z¼0

fk�1ðzÞpHðtk�1; tk; z; yÞdz: (17)

Equation (16) follows from the fact that the observed
number of copies of allele A at sampling event k is binomially
distributed with count nk and probability ytk

and equation
(17) follows from the law of total probability integrating over
Ytk�1

.
Let B‘;iðyÞ ði ¼ 0; 1; . . .Þ be the ith eigenfunction of the

backward diffusion operator ‘‘ and let p‘ðyÞ be the speed
density of ‘‘ in Epoch ‘ (Appendix A). Steinrücken et al.
(2014) demonstrated that the recursive formulas in equations
(16) and (17) can be evaluated efficiently by expressing fkðyÞ
and gkðyÞ as series of the form

fkðyÞ ¼
X1
i¼0

bk;ip‘k
ðyÞB‘k;iðyÞ ¼ bkp‘k

ðyÞB‘k
ðyÞ (18)

and

gkðyÞ ¼
X1
i¼0

ak;ip‘k
ðyÞB‘k;iðyÞ ¼ akp‘k

ðyÞB‘k
ðyÞ; (19)

where B‘ðyÞ ¼ ðB‘;0ðyÞ; B‘;1ðyÞ; . . .Þ, and where bk ¼ ðbk;0;
bk;1; . . .Þ and ak ¼ ðak;0; ak;1; . . .Þ are vectors of constants
that encode the densities fkðyÞ and gkðyÞ. In Appendix B, we
extend the results of Steinrücken et al. (2014) to derive recur-
sive formulas for the coefficients ak and bk, resulting in
Procedure 2, which computes the probability of an allele fre-
quency trajectory under the diffusion approximation in a pop-
ulation of piecewise constant size.

Computing P�;DfO½1:K� ¼ o½1:K�gWhen y0 Is Unspecified
When the initial frequency y0 is unspecified, the probability
PH;DfO½1:K� ¼ o½1:K�g can be obtained by assuming that the
distribution of the allele frequency yt1

at the time of the first
sampling event is uniform. Under this assumption, we show
in Lemma B.3.2 that the coefficients b1 encoding the distri-
bution at the time of the first sampling event are given by
equation (B.17). The form of b1 in equation (B.17) is then
used in Procedure 2.

Conditional Probabilities
Sometimes it is desirable to compute the probability of the
observed allele counts conditional on the event SK that allele
A is segregating in the final sample. In this section, we provide
formulas for these conditional probabilities under the
Wright–Fisher and diffusion models.

Computing P�;WfO½1:K� ¼ o½1:K�jSKg
In the “Simulations Conditioning on Segregation” section, we
consider the probability PH;WfO½1:K� ¼ o½1:K�jSKg of the data
conditional on the event SK that allele A is segregating in the
final sample. In Appendix C, we show that in the case of the
discrete Wright–Fisher model,
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PH;WfO½1:K� ¼ o½1:K�jSKg ¼
PfSKjOK ¼ oKg

PH;WfSKg
X2NtK

i¼0

vK;i;

(20)

where vk;i is defined in equation (7) andPfSKjOK ¼ oKg ¼ 1
if 1 � oK < nK , or 0 otherwise. The probability PH;WfSKg
is given in equation (C.3). Thus, if we wish to compute con-
ditional probabilities under the Wright–Fisher model, we
carry out Procedure 1, replacing step 3 with equation (20).

Computing P�;WfO½1:K�o½1:K�jFKg
Similarly, for the event FK that allele A is segregating or fixed in
the final sample, we show in Appendix C that

PH;WfO½1:K� ¼ o½1:K�jFKg ¼
PfFKjOK ¼ oKg

PH;WfFKg
X2NtK

i¼0

vK;i;

(21)

where vk;i is defined in equation (7) andPfFKjOK ¼ oKg ¼ 1
if 1 � oK � nK , or 0 otherwise. The probability PH;WfFKg
is given in equation (C.6). If we wish to compute the condi-
tional probability PH;WfO½1:K� ¼ o½1:K�jFKg under the
Wright–Fisher model, we carry out Procedure 1, replacing
step 3 with equation (21).

Computing P�;DfO½1:K� ¼ o½1:K�jSKg
In the case of the diffusion approximation, we show in
Appendix D that the conditional probability of the data given
SK can be computed as

PH;D O 1:K½ � ¼o 1:K½ �jSK

� 	
¼ PfSKjOK¼ oKgc‘K ;0bK;0

B‘K ;0 0ð Þ�c‘K ;0
~bK;0 0ð Þ�c‘K ;0

~bK;0 nKð Þ
;

(22)

wherePfSKjOK¼ oKg¼1 if 1� oK < nK or 0 otherwise, and

~bK jð Þ ¼

b0E‘1
tKð ÞW‘K

Gj
‘K

1� G‘K
ð ÞnK�jW�1

‘K
;

if ‘tK
¼ 1;

b0F 0; tK; fð ÞW‘K
Gj
‘K

1� G‘K
ð ÞnK�jW�1

‘K
;

otherwise :

8>>>>><
>>>>>:

(23)

Thus, if we are interested in conditional probabilities under
the diffusion model, we carry out Procedure 2, replacing step
3 with equation (22).

The Probability in the Absence of Genetic Drift
If we ignore genetic drift, the allele frequency changes deter-
ministically over time, as it would in a population of infinite
size. Here, we obtain versions of Procedures 1 and 2 in the
case when the changes in allele frequency arising from genetic
drift are negligible relative to the changes due to selection and
recurrent mutation.

Deterministic Allele Frequency Trajectories under the

Wright–Fisher Model
If there is no contribution to the change in allele frequency
arising from genetic drift, the allele frequency in a given gen-
eration is equal to its expectation after mutation, random
mating, and selection, conditional on its value in the previous
generation. Because the expectation is not necessarily integer-
valued, we no longer consider discrete integer allele counts ct.
Instead, we track the expected allele frequency in the absence
of drift, which we denote by y1t � E1½Yt�, where the sub-
script1 denotes the expectation without drift as the effec-
tive population size tends to infinity.

The expected frequency y1t in the absence of drift is ob-
tained by combining equations (2) and (3), ignoring the drift
step in equation (4), yielding

y1tþ1 ¼
ð~y1t Þ

2ð1þ stÞ þ ~y1t ð1� ~y1t Þð1þ htstÞ
�wt

� �
; (24)

where

~y1t ¼ u
ðtÞ
aA þ ð1� u

ðtÞ
Aa � u

ðtÞ
aAÞy1t (25)

and �wt ¼ ð~y1t Þ
2ð1þstÞ þ 2~y1t ð1� ~y1t Þð1þ htstÞþ

ð1� ~y1t Þ
2. Equations (24) and (25) are iterated to find the

allele frequency in any generation t> 0.
Equation (24) is related to equation 3.1 of Gillespie (1998),

which describes the dynamics of allele frequency change in a
population of infinite size without drift. The frequency trajec-
tories described by this formula are closely approximated by
logistic curves that have closed formulas (Feder et al. 2014,
equation 3), which can be used to increase the speed of de-
terministic approaches even further. However, we have cho-
sen to implement the exact formulas for better comparison
with the exact likelihoods.

Deterministic Allele Frequency Trajectories under the

Diffusion Model
Under the diffusion model in an Epoch ‘ of constant size, the
allele frequency Yt obeys the stochastic differential equation
(SDE)

dYt ¼M‘ðYtÞdtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ytð1� YtÞ

p
dBt; t 2 ½s‘�1; s‘�; (26)

with the initial condition Ys‘�1
¼ ys‘�1

, where time is mea-
sured in units of generations and s‘�1 is the time at which
Epoch ‘ begins (Karlin and Taylor 1981, Section 15.14; Durrett

2008, Section 7.2). The quantity
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ytð1� YtÞ

p
in equation

(26) controls random fluctuations due to drift whereas the
quantity M‘ðyÞ describes the deterministic change in the
mean frequency of the allele over time due to mutation
and selection and is given by

M‘ðyÞ ¼ u
ð‘Þ
aA � ðu

ð‘Þ
aA þ u

ð‘Þ
Aa Þy

þ yð1� yÞ½h‘s‘ð1� 2yÞ þ s‘y�: (27)

In equation (27), we have rescaled the usual form ofM‘ so
that time is measured continuously in units of generations.
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If the drift term in equation (26) is negligible compared
with M‘ðYtÞ, then equation (26) can be approximated by
the ordinary differential equation

dy1t
dt
¼M‘ðy1t Þ; (28)

where we may write y1t instead of Yt because the evolution of
the allele frequency is deterministic and follows its expecta-
tion in the absence of drift.

We can also suppress the explicit dependence on the ep-
och ‘ by definingMtðy1t Þ � M‘t

ðy1t Þ, yielding

dy1t
dt
¼Mtðy1t Þ; y10 ¼ y0; t 2 ½0; sL�; (29)

which holds for the full population history across all epochs
‘ ¼ 1; . . . ; L. Equation (29) can be solved numerically, for
instance by choosing a sufficiently small time step �t and
iteratively computing y1tþ�t ¼Mtðy1t Þ�t.

Sample Probabilities Based on Deterministic Allele Frequency

Trajectories
To compute the probabilityP1H fO½1:K� ¼ o½1:K�g under either
the discrete Wright–Fisher or diffusion models when drift is
negligible, we note that the observations ðO1; . . . ;OKÞ are
conditionally independent of one another, given the under-
lying allele frequencies. Thus, in the absence of drift we have

P
1
H fO½1:K� ¼ o½1:K�g ¼

YK

k¼1

PHfOk ¼ okjYtk
¼ y1tk

g (30)

for both the diffusion and Wright–Fisher models, where y1tk
is

the deterministic allele frequency at time tk, for k ¼ 1; . . . ; K.
Using equations (24) and (30), the probability of the data
under the Wright–Fisher model in a population without drift
can be obtained using Procedure 3. Similarly, using equations
(29) and (30), the probability of the data in the case of the
diffusion model is given by Procedure 4.

Deterministic Estimators When the Initial Allele Frequency Is

Unknown
If the initial allele frequency is unspecified, the selection co-
efficient can still be inferred using the deterministic estima-
tors by integrating over the allele frequency yt1

at the time of
the first sampling event, where we assume in these analyses
that the initial allele frequency distribution is uniform. In
practice, we perform this integration by specifying a dense
grid of values yt1

2 ½0;�y; 2�y; . . . ; 1�, where �y ¼ 1=M
for some large predetermined value M. Defining the proba-
bility of the data when the initial allele frequency is y to be
P
1
H;WfO½1:K� ¼ o½1:K�; y0 ¼ yg, we compute the probability

of the data as

P
1
H;WfO½1:K� ¼ o½1:K�g ¼

1

Mþ 1

XM

j¼0

P
1
H;WfO½1:K�

¼ o½1:K�; y0 ¼ j�yg: (31)

Simulations
Allele frequency trajectories were simulated under two differ-
ent models, the discrete Wright–Fisher model and the con-
tinuous diffusion model. All simulations were carried out by
iteratively sampling the allele frequency at the time points t1;
t2; . . . ; tK starting with a specified frequency y0 or with the
initial frequency y0 sampled uniformly from the interval ð0;
0:5� at time t0 ¼ 0.

Wright–Fisher simulations were carried out using
Procedure 5. Specifically, for an initial allele frequency y0, we
took the initial distribution d0 to be the standard basis vector
edy0e of length 2N0 þ 1 with element d2N0y0e set to unity
and all other elements set to zero. We then sampled the
population allele count ctk

at each sampling time tk by iter-
atively propagating the allele frequency distribution dtk

for-
ward, conditional on the population count ctk�1

at the
previous sampling time using equation (6). The derived allele
count ok in each sample k was then chosen from a binomial
distribution with sample size nk and probability ctk

=2Ntk
. For

the results in the “Inference Accuracy for Populations of
Constant Finite Size”, “Inference Accuracy in Populations of
Piecewise Constant Size”, “Conditioning on Segregation in the
Final Sample”, and “The Effect of Sample Size on Accuracy”
sections, we fixed y0 ¼ 0:01 or y0 ¼ 0:1 in all simulations, as
indicated in the results section. In the “Unspecified Initial
Allele Frequencies” section, we simulated y0 uniformly from
the interval ð0; 0:5�.

Simulations under the diffusion model were carried
out using Procedure 6. Specifically, for an initial frequency
y0, we computed the coefficients b0 of the expansion of
the initial condition dðy� y0Þ in the basis functions B‘1

of
the first epoch. In Appendix D, we show that the proba-
bility PH;DfOk ¼ ig of sampling i derived alleles at sam-
pling event k (eq. D.3) can be obtained by computing a set

of coefficients that we call ~bkðiÞ (eq. D.7) that specify an
expansion in the basis of eigenfunctions B‘k

.
Thus, to sample the derived allele count o1 in the first

sample, we propagated the initial coefficients b0 to obtain ~b1

ðiÞ and we used the fact that PH;DfO1 ¼ ig / ~b1;0ðiÞ (eq.

D.3) to sample o1 ¼ i with probability ~b1ðiÞ=
Pn1

i¼0

~b1ðiÞ. Using

the fact that ~bkðokÞ is defined in Section D as the set of

coefficients such that PH;DfOk ¼ ok; y � Ytk
< yþ dyg

¼ ~bkðokÞp‘k
B‘k
ðyÞ for an infinitesimal increment dy, we

then set b1 ¼ ~b1ðokÞ and iterated this procedure to obtain

the subsequent coefficient vectors f~bkðiÞgnk

i¼2 and the full set
of samples o½1:K�. Simulated trajectories were checked for ac-

curacy against those obtained using the software of Jenkins
and Span�o (2015), personal communication.

Grid Searches to Infer Selection Coefficients
The same iterated grid search procedure, implemented as a
wrapper function and outlined in Procedure 7, was used to
infer selection coefficients using each of the methods de-
scribed in Procedures 1–4. The grid search is initialized by
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specifying lower and upper bounds on a region ½s‘; su� over
which to search for a value of the selection coefficient s that
maximizes the likelihood. Assuming that the likelihood sur-
face is convex and smooth, the grid search iteratively refines
the search to the region that contains the optimum until
the width of the region is smaller than a specified tolerance

�. In our analyses, we chose the initial region to be ½s‘; su� ¼
½�0:99; 1� and we set � ¼ 2 � 10�4.

For each allele frequency trajectory simulated under the
Wright–Fisher model, Procedure 7 was carried out using
Procedure 1 and then subsequently for the same trajectory
using Procedure 3, with or without conditioning. For each

Procedure 6. Simulating diffusion model trajectories

1: Optional: sample the initial population allele frequency y0 uniformly from a predetermined interval y‘; yuð �, where
0 � y‘ � yu � 1.
2: For an initial starting frequency y0 initialize

b0 ¼ C�1
‘1

B‘1
y0ð Þ;

where B‘ y0ð Þ is the vector of eigenfunctions of the diffusion operator given inequation (A.14) and C‘ ¼ diagfhB‘;i; B‘;iig1i¼0
is given in equation(A.18).
3: For k ¼ 1 : K,
Compute

ak ¼
bk�1E‘k

tk � tk�1ð Þ if ‘k�1 ¼ ‘k;

bk�1F tk�1; tk; fð Þ otherwise:

(

For i ¼ 0; 1; . . . ; nk, compute

~bk ið Þ ¼ akW‘k
Gi
‘k

1� G‘k
ð Þnk�iW�1

‘k
;

noting that ~bk;0 ið Þ / PH;DfOk ¼ ig (eq. D.3).

Sample ok¼ i with probability bk;0 ið Þ=
Pnk

i¼0

bk;0 ið Þ.

Set bk ¼ bk okð Þ.
Here, the matrices E‘ tð Þ; F tk�1; tk; fð Þ; W‘, and G‘ are given by equations (A.17), (B.10), (A.15) and (A.11), respectively and
f is the set of Chebyshev nodes in the interval 0; 1½ �. The matrix inverse W�1

‘ ¼ D‘W
T
‘C�1

‘ is computed easily using the
diagonal matrices C‘ and D‘ in equations (A.18) and (A.19).
4: If conditioning on segregation in the final sample and oK¼ 0 or oK¼nK, return to Step 1. Otherwise, the sampled trajectory
is o 1:K½ �.

Procedure 5. Sampling Wright–Fisher trajectories

1: Optional: sample the initial population allele frequency y0 uniformly from a predetermined interval y‘; yuð �, where
0 � y‘ � yu � 1, and set ct0

¼ d2N0y0e.
2: Let d0 ¼ ect0

be the standard basis vector of length 2N0 þ 1 with element ct0
equal to one.

3: For k ¼ 1 : K,
Compute the conditional distribution ~dk at sampling event k, conditional on the distribution dk�1 at time tk�1 using

~dk ¼ dk�1

Ytk

t¼tk�1þ1

Tt�1;t

" #
:

Sample ctk
¼ i with probability ~dk ið Þ, for i ¼ 0; 1; . . . ; 2Ntk

.
Set dk ¼ ectk

, where ectk
is the standard basis vector of length 2Ntk

þ 1 with element ctk
equal to one.

4: Fork ¼ 1 : K, sample Ok 
 Binomial nk; ctk
= 2Ntk
ð Þð Þ.

5: If conditioning on segregation in the final sample and oK¼ 0 or oK¼nK, return to Step 1. Otherwise, the sampled trajectory
is o 1:K½ �.
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allele frequency trajectory simulated under the diffusion
model, Procedure 7 was carried out using Procedure 2 and
then subsequently for the same trajectory using Procedure 4,
with or without conditioning. A gradient descent
optimization approach produced nearly identical results
and is available as an option in the software package we
have released.

Computing the Watterson Estimator of Ne from the
Expected SFS of a Piecewise Constant Population
In the “Inference Accuracy in Populations of Piecewise
Constant Size” section, we obtain a crude constant estimate
of the effective size Ne of a piecewise constant population by
computing the expected unnormalized SFS for the true his-
tory and then inferring the effective size of a constant pop-
ulation with the same level of genetic diversity as the
piecewise constant population using the Watterson
estimator.

Under the assumption that any given base pair in a col-
lection of n haplotypes from a population is at most biallelic,
the unnormalized and folded SFS for the n haplotypes is a
collection of counts fnn;ign�1

i¼1 in which nn;i is the number of
sites with one or the other allele appearing in i out of n copies
in the sample. When the expected number l of new muta-
tions occurring in a population within in a region of fixed
length is specified, the expected SFS for n haplotypes span-
ning the region can be computed for a population of piece-
wise constant size using algorithms by Kamm et al. (2016).

The effective size of a population of constant size extending
infinitely far back into the past with the same level of diversity
as the piecewise constant population can be computed using
the Watterson estimator (Watterson 1975, Eqn. 1.4a; Hein
et al. 2005, p. 62). The information used by the Watterson
estimator is the diversity in the n sampled haplotypes of
specified length, combined with knowledge of the expected
mutation rate l. The Watterson estimator is given by

N̂e ¼
1

4l
SPn�1

i¼1

i

; (32)

where S is the total number of segregating sites observed in
the sample. The total number of segregating sites can be

computed as S ¼
Pn�1

i¼1 nn;i, where nn;i is the ith entry of
the un-normalized folded SFS.

Thus, given the expected SFS fnn;ign�1
i¼1 for a piecewise

constant population computed using the algorithm of
Kamm et al. (2016) and a specified mutation rate l, we com-
puted the Watterson estimate of the size Ne of a constant-
sized population with similar diversity as

N̂e ¼
1

4l

Pn�1

i¼1

nn;i

Pn�1

i¼1

i

: (33)

When computing the expected SFS and the Watterson
estimator, we arbitrarily chose a value of l ¼ 1.

Supplementary Material
Supplementary figure S1 is available at Molecular Biology and
Evolution online (http://www.mbe.oxfordjournals.org/).
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Appendix A

Diffusion Transition Densities: Background
The equations in the “Computing PH;DfO½1:K� ¼ o½1:K�g under the

Diffusion Approximation” section were derived under a model in

which the selected allele A evolves under the diffusion approximation

in a population of piecewise constant size. Given that allele A has fre-

quency x at a fixed time s, the density at a later time t is given by the

transition density of the diffusion approximation (eq. 12). Steinrücken

et al. (2014) derived a formula for the density for the case of a single

population of constant size. Here, we review this derivation to provide

background and notation for the derivation of the diffusion model

probability computed in Procedure 2.

Procedure 7. Grid search

1: Specify the bounds s‘ and su of an interval ½s‘; su�in which to search.
2: Specify the stopping tolerance e.
3: While su � s‘ > e:
Evaluate the likelihood at the points fsð0Þ; sð1Þ; sð2Þ; sð3Þ; sð4Þ; sð5Þg ¼ fs‘ þ idg5

i¼0, where d ¼ ðsu � s‘Þ=5.
Let smax ¼ arg max ifsðiÞg.
If smax ¼ 0, set s‘ ¼ sð0Þ and su ¼ sð1Þ.
Else, if smax ¼ 5, set s‘ ¼ sð4Þ and su ¼ sð5Þ.
Else, set s‘ ¼ sðsmax�1Þ and su ¼ sðsmaxþ1Þ.
4: Return ŝ ¼ ðs‘ þ suÞ=2.
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The Diffusion Approximation in a Population of
Constant Size
Let p‘ðs; t; x; yÞ denote the transition density restricted to a specific

epoch ‘ of constant size with s; t 2 ‘. The density p‘ðs; t; x; yÞ is the

unique solution of the Kolmogorov backward equation,

@p‘ðs; t; x; yÞ
@t

¼ 1

2N‘
L‘p‘ðs; t; x; yÞ (A.1)

satisfying the terminal condition qsðyÞ ¼ dðy� xÞ, where dð�Þ is the

Dirac delta distribution andL‘ is the Kolmogorov backward operator

in the epoch defined in equation (A.2). The factor 1=2N‘ in equation

(A.1) is introduced so that the time-scaling is the same in all epochs,

and time is measured continuously in units of generations.

The Kolmogorov backward operator is defined in terms of the

scaled mutation and selection parameters b‘ ¼ 4N‘u
ð‘Þ
aA;

a‘ ¼ 4N‘u
ð‘Þ
Aa, and r‘ ¼ N‘s‘ as

L‘ ¼
1

2
n2ðxÞ @

2

@x2
þ l‘ðxÞ

@

@x
; (A.2)

where the quantity

n2ðxÞ ¼ xð1� xÞ (A.3)

captures the contribution to the change in allele frequency arising from

genetic drift and

l‘ðxÞ ¼
1

2
b‘ � ðb‘ þ a‘Þx� þ 2xð1� xÞ½h‘r‘ð1� 2xÞ þ r‘x�½ (A.4)

captures the contribution from recurrent mutation and selection.

Song and Steinrücken (2012) showed that p‘ðs; t; x; yÞ can be ex-

pressed as an expansion in the eigenfunctions of L‘ of the form

p‘ðs; t; x; yÞ ¼
X1
n¼0

e�k‘;nðt�sÞ=2N‘
p‘ðyÞB‘;nðxÞB‘;nðyÞ
hB‘;n; B‘;nip‘

; (A.5)

where fB‘;nðxÞg1n¼0 are the eigenfunctions of ‘‘ with associated eigen-

values fk‘;ng1n¼0 and the function p‘ðyÞ is given by

p‘ðyÞ ¼ e�r‘ðyÞyb‘�1ð1� yÞa‘�1; (A.6)

where �r‘ðyÞ ¼ 4h‘r‘yð1� yÞ þ 2r‘y2. The inner product hf ; gix with

respect to a weight function xðxÞ in equation (A.5) is defined for two

functions f and g on an interval ½a; b� by

hf ; gix ¼
ðb

a

fðxÞgðxÞxðxÞdx: (A.7)

In equation (A.5), the inner product h�; �ip‘ is taken over the interval

½0;1� with respect to p‘ðyÞ.

Expressions for the Quantities in Equation
(A.5)
Expressions for the eigenvalues fk‘;ng1n¼0, eigenfunctions fB‘;nðyÞg1n¼0,

and inner products fhB‘;n;B‘;nig1n¼0 in equation (A.5) can be obtained

using a matrix formulation developed by Steinrücken et al. (2014). In

particular, the eigenfunctions fB‘;nðyÞg1n¼0 can be expressed as

B‘;nðyÞ ¼
X1
m¼0

w‘;n;me��r‘ðyÞ=2Rðb‘;a‘Þm ðyÞ; (A.8)

where R
ða;bÞ
m ðyÞ ¼ p

ðb�1;a�1Þ
m ð2y� 1Þ and p

ða;bÞ
m ðyÞ is the mth classical

Jacobi polynomial (Abramowitz and Stegun 1972, Chapter 22). The

vector w‘;n ¼ ðw‘;n;0;w‘;n;1; . . .Þ is the nth left eigenvector of the

infinite-dimensional matrix

M‘ :¼ �ð!ða‘;b‘Þ þ
X4

r¼0

q‘;rG
r
‘Þ (A.9)

corresponding to the nth eigenvalue k‘;n, where !ða;bÞ ¼ diagðtða;bÞ0 ;

tða;bÞ1 ; . . .Þ is the diagonal matrix with elements given by tða;bÞn ¼ 1
2 nðn

þaþ b� 1Þ and the quantities q‘;r are given by

q‘;0 ¼ akh‘r‘;

q‘;1 ¼ �ð2þ 3a‘ þ b‘ � 2h‘r‘Þh‘r‘ þ ð1þ a‘Þr‘;

q‘;2 ¼ ð2þ 2a‘ þ 2b‘ þ 4r‘ � 10h‘r‘Þh‘r‘ � ð1þ a‘ þ b‘Þr‘;

q‘;3 ¼ 16h2
‘r

2
‘ þ 2r2

‘ð1� 6h‘Þ;

q‘;4 ¼ �2r2
‘ð1� 2h‘Þ2:

(A.10)

The matrix Gr
‘ in equation (A.9) has elements given by

½G‘�n;m ¼

ðnþ a‘ � 1Þðnþ b‘ � 1Þ
ð2nþ a‘ þ b‘ � 1Þð2nþ a‘ þ b‘ � 2Þ ;

if m ¼ n� 1 and n > 0;

1

2
� b2

‘ � a2
‘ � 2ðb‘ � a‘Þ

2ð2nþ a‘ þ b‘Þð2nþ a‘ þ b‘ � 2Þ ;

if m ¼ n and n � 0;

ðnþ 1Þðnþ a‘ þ b‘ � 1Þ
2ð2nþ a‘ þ b‘Þð2nþ a‘ þ b‘ � 1Þ ;

if m ¼ nþ 1 and n � 0;

0;

otherwise;

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

(A.11)

which correspond to the coefficients of the three-term recurrence rela-

tion satisfied by the Jacobi Polynomials.

Matrix Expressions for the Transition Density
It is computationally and notationally simpler to express the eigen-

functions of L‘ and the transition density as products of matrices. In

particular, we can express equation (A.8) as

B‘;nðyÞ ¼ e��r‘ðyÞ=2w‘;nRða‘;b‘ÞðyÞ; (A.12)

where

Rða;bÞðyÞ ¼ ðRða;bÞ0 ðyÞ; Rða;bÞ1 ðyÞ; . . .ÞT (A.13)

and we can express the vector B‘ðyÞ of eigenfunctions as

B‘ðyÞ ¼ ðB‘;0ðyÞ; B‘;1ðyÞ; . . .ÞT ¼ e��r‘ðyÞ=2W‘R
ða‘;b‘ÞðyÞ; (A.14)

where

W‘ ¼

w‘;0

w‘;1

..

.

2
6664

3
7775 (A.15)

is the matrix whose rows are the left eigenvectors of the matrix M‘ in

equation (A.9).

Using equations (A.5) and (A.14), the transition density in a single

epoch ‘ can then be expressed as the matrix product

p‘ðs; t; x; yÞ ¼ p‘ðyÞBT
‘ ðxÞC�1

‘ E‘ðt� sÞB‘ðyÞ; (A.16)

where
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E‘ðtÞ ¼ diagfe�k‘;0t=2N‘ ; e�k‘;1t=2N‘ ; . . .g (A.17)

and C‘ ¼ diagfhB‘;n;B‘;nip‘g
1
n¼0. Steinrücken et al. (2014) showed that

the matrix C‘ in equation (A.16) can be expressed as

C‘ ¼ W‘D‘W
T
‘ ; (A.18)

where

D‘ ¼ diagfdða‘;b‘Þ0 ; d
ða‘;b‘Þ
1 ; . . .g (A.19)

and

d
ða‘;b‘Þ
i ¼ Cðiþ a‘ÞCðiþ b‘Þ

ð2iþ a‘ þ b‘ � 1ÞCðiþ a‘ þ b‘ � 1ÞCðiþ 1Þ : (A.20)

Thus, the transition density in a single epoch can be computed

by constructing matrix M‘, computing its eigenvectors W‘ and ei-

genvalues ðk‘;0; k‘;1; . . .Þ, and plugging these into the components of

equation (A.16). In practice, because the matrix M‘ has infinite

dimension, we approximate it by truncating its dimensions at

some large integer M yielding approximate eigenvectors f~w‘;ngM
n¼0

and eigenvalues f~k‘;ngM
n¼0. We also truncate the length of the vector

B‘ðyÞ at a large integer N. Although these truncations lead to

approximate values of the transition density, the approximation

can be made arbitrarily precise by taking N � M to be sufficiently

large.

Appendix B

Recursions for the Coefficients ak and bk

Discussion of the Problem
Here, we extend the HMM of Steinrücken et al. (2014) to accom-

modate populations of piecewise constant size. As we noted in the

“Computing PH;DfO½1:K� ¼ o½1:K�g under the Diffusion Approx-

imation” section, the probability PH;DfO½1:K� ¼ o½1:K�g of the data

under the diffusion model can be obtained using the equation

PH;DfO½1:K� ¼ o½1:K�g ¼
ð1

y¼0

fKðyÞdy; (B.1)

where the quantity fKðyÞ is obtained by recursively evaluating equa-

tions (16) and (17). Because fkðyÞ and gkðyÞ can be expressed as the

series fkðyÞ ¼ p‘k ðyÞbkB‘k ðyÞ and gkðyÞ ¼ p‘k ðyÞakB‘k ðyÞ (eqs. 18 and

19), determining fkðyÞ and gkðyÞ amounts to determining the coeffi-

cients ak and bk. Thus, it is useful to develop analogs of the recursions

(15) and (16) that apply to the coefficients themselves.

Equations for Propagating Coefficients
From equation (16), it can be seen that obtaining fkðyÞ from gkðyÞ
involves only multiplication by a polynomial in y. Thus, the for-

mula for obtaining the coefficients bk from the coefficients ak does

not depend on the population history and, therefore, it can be

obtained from results in Steinrücken et al. (2014) who derived

formulas for the recursion for the case of a population of constant

size. However, the formula for obtaining gkðyÞ from fk�1ðyÞ (eq.

17) involves the transition probability pHðtk�1; tk; z; yÞ, which de-

pends on the population parameters H. Thus, it is necessary to

account for the population history when computing the coefficients

ak from the coefficients bk�1.

To obtain ak from bk�1, we first consider the more general problem

of obtaining the generalized vector of coefficients akðtÞ from bk�1,

where akðtÞ is defined as the vector of coefficients of the expansion of

the generalized density gkðy; tÞ defined by

gkðy;tÞdy :¼PH;DfO½1:k�1� ¼ o½1:k�1�;y� Yt < yþdyg ¼p‘t
ðyÞakðtÞB‘t

ðyÞ;

(B.2)

i.e., the joint density of the observed data up to sample k – 1 and the

allele frequency at time t, where we assume tk�1 � t so that the time t at

which gkðy;tÞ is evaluated occurs later than the time tk�1 at which fkðyÞ
is evaluated. The density gkðyÞ¼gkðy;tkÞ defined in equation (14) is a

special case of the generalized density gkðy;tÞ obtained when t¼tk.

To obtain akðtÞ from bk�1, there are two scenarios to consider: the

case in which both tk�1 and t lie within the same epoch ‘ and the case in

which tk�1 and t lie within distinct epochs. Our derivations of these

separate cases provide the results necessary for step 2 of Procedure 2.

The Case ‘tk�1
¼ ‘t ¼ ‘

If both tk�1 and t lie within the same epoch ‘, then the transition density

is given by equation (A.16) and we have

p‘ðyÞakðtÞB‘ðyÞ ¼ gkðy; tÞ ¼
ð1

0

fk�1ðzÞp‘ðtk�1; t; z; yÞdz

¼
ð1

0

p‘ðzÞbk�1B‘ðzÞp‘ðyÞBT
‘ ðzÞC�1

‘

	 E‘ðt� tk�1ÞB‘ðyÞdz

¼ p‘ðyÞbk�1½
ð1

0

p‘ðzÞB‘ðzÞBT
‘ ðzÞdz�

	 C�1
‘ E‘ðt� tk�1ÞB‘ðyÞ

¼ p‘ðyÞbk�1E‘ðt� tk�1ÞB‘ðyÞ;
(B.3)

where the first equality follows from the definition of gkðy; tÞ (eq. B.2)

and the second equality follows from equation (17). In the fifth equality

we have used the fact that
Ð 1
0 p‘ðyÞB‘ðyÞBT

‘ ðyÞdy ¼ C‘. Because the

eigenfunctions fB‘;nðyÞg1n¼0 form a complete basis of the Hilbert space

defined with respect to the inner product h�; �ip‘ , the coefficients in the

expansion on the left-hand side of equation (B.3) must equal those on

the right-hand side. Thus,

akðtÞ ¼ bk�1E‘ðt� tk�1Þ; if ‘tk�1
¼ ‘t: (B.4)

The Case When ‘tk�1
6¼ ‘t

If the times tk�1 and t lie in different epochs, ‘tk�1
and ‘t, then the

transition density is no longer given by equation (A.16). Instead, we

must use a formula for the transition density across multiple epochs of

different sizes. Steinrücken et al. (2015) showed that if the allele fre-

quency density q‘;sðyÞ at time s in epoch ‘ is given by the expansion

q‘;sðyÞ ¼ p‘ðyÞr‘;sB‘ðyÞ; (B.5)

where r‘;s ¼ ðr‘;s;0; r‘;s;1; . . .Þ are the coefficients encoding the density at

time s in the basis of the eigenfunctions fB‘;nðyÞg1n¼0, then at time t in

epoch ‘þ 1, the allele frequency density is given by

q‘þ1;tðyÞ ¼ p‘þ1ðyÞr‘þ1;tB‘þ1ðyÞ, where the coefficients r‘þ1;t are given

by

r‘þ1;t ¼ r‘;sZ‘ðs‘ � s; fÞE‘þ1ðt� s‘Þ; (B.6)

where s‘ is the time of the terminating boundary of epoch ‘, and

Z‘ðs; fÞ ¼ E‘ðsÞW‘R‘ðfÞH‘;‘þ1ðfÞR�1
‘þ1ðfÞW�1

‘þ1: (B.7)

In equation (B.7), R‘ðfÞ and H‘;‘þ1ðfÞ are given by
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R‘ðfÞ ¼ ½Rða‘;b‘Þðf0Þ; Rða‘;b‘Þðf1Þ; . . .�; (B.8)

where Ra;bðyÞ is defined in equation (A.13) and

H‘;‘þ1ðfÞ ¼ diag
p‘ðf0Þe��r‘ðf0Þ=2

p‘þ1ðf0Þe��r‘þ1ðf0Þ=2
;

p‘ðf1Þe��r‘ðf1Þ=2

p‘þ1ðf1Þe��r‘þ1ðf1Þ=2
; . . .

� �
;

(B.9)

for an arbitrary collection of distinct values f ¼ ðf0; f1; . . .Þ 2 ½0; 1�. In

practice, we take f to be the Chebyshev nodes (Steinrücken et al. 2015).

By repeated application of equation (B.6), it follows that if the co-

efficients r‘s ;s encode the density qsðyÞ at time s in epoch ‘s, then the

coefficients r‘t ;t encoding the density qtðyÞ at time t in epoch ‘t > ‘s are

given by r‘t ;t ¼ r‘s ;sFðs; t; fÞ; where

Fðs; t; fÞ ¼ Z‘s
ðs‘s
� s; fÞ

Y‘t�1

i¼‘sþ1

Ziðsi � si�1; fÞ
" #

	 E‘t
ðt� s‘t�1Þ:

(B.10)

Moreover, if we define r‘s ;sðxÞ to be the vector of coefficients encoding

the density qðyÞ ¼ dðy� xÞ, then it follows from equation (B.10) that

the transition density pHðs; t; x; yÞ for times s< t lying in distinct ep-

ochs ‘s < ‘t is given by

pHðs; t; x; yÞ ¼ p‘t
ðyÞr‘s;sðxÞFðs; t; fÞB‘t

ðyÞ;

if ‘s < ‘t:
(B.11)

For the initial condition q‘;sðyÞ ¼ dðy� xÞ, it was shown in

Proposition 1 of Steinrücken et al. (2014) that the coefficients r‘s;sðxÞ
are given by

r‘s;sðxÞ ¼
B‘s;0ðxÞ

hB‘s;0; B‘s;0ip‘s
;

B‘s;1ðxÞ
hB‘s;1; B‘s;1ip‘s

; . . .

 !
¼ B‘s

ðxÞTC�1
‘s
;

(B.12)

yielding

pHðs; t; x; yÞ ¼ p‘t
ðyÞB‘s

ðxÞTC�1
‘s

Fðs; t; fÞB‘t
ðyÞ;

if ‘s < ‘t;
(B.13)

which is obtained by plugging equation (B.12) into equation (B.11).

We can now plug equation (B.13) into equation (17) to obtain a

relationship between akðtÞ and bk�1 when times tk�1 and t lie in differ-

ent epochs:

p‘t
ðyÞakðtÞB‘t

ðyÞ ¼ gkðy; tÞ ¼
ð1

0

fk�1ðzÞpHðtk�1; t; z; yÞdz

¼
ð1

0

p‘k�1
ðzÞbk�1B‘k�1

ðzÞp‘t
ðyÞB‘k�1

ðzÞT C�1
‘k�1

Fðtk�1; t; fÞ

B‘t
ðyÞdz ¼ p‘t

ðyÞbk�1ð1

0

p‘k�1
ðzÞB‘k�1

ðzÞ B‘k�1
ðzÞTdz

� �
C�1
‘k�1

Fðtk�1; t; fÞB‘t
ðyÞ

¼ p‘t
ðyÞbk�1Fðtk�1; t; fÞB‘t

ðyÞ;

(B.14)

where we have again used the fact that
Ð 1
0 p‘ðzÞB‘ðzÞB‘ðxÞTdy ¼ C‘.

Finally, by the uniqueness of expansions in the Hilbert basis

fB‘t ;ng
1
n¼0, we have

akðtÞ ¼ bk�1Fðtk�1; t; fÞ; if ‘tk�1
6¼ ‘t: (B.15)

The results derived in the “Equations for Propagating Coefficients”

section provide the machinery necessary to propagate the coefficients

ak and bk in the HMM over time. These results can now be used to

compute the probability of observing a set of sampled allele frequen-

cies under the diffusion model.

Derivation of Lemmas Necessary for Procedure 2
We now obtain three lemmas that provide the steps in Procedure 2.

Lemma B.3.1. If the initial frequency density �0ðyÞ at time t0 ¼ 0 is

�0ðyÞ ¼ �ðy � xÞ, then the value of the initial vector b0 encoding the quan-

tity f 0ðyÞ is given by

b0 ¼
B‘1;0ðxÞ

c‘1;0
;
B‘1;1ðxÞ

c‘1;1
; . . .

� �
¼ C�1

‘1
B‘1
ðxÞ; (B.16)

where B‘ðxÞ is given in equation (A.14) and C‘ is the diagonal matrix given

in equation (A.18).

Proof. Because b0 depends only on the parameters �‘1
in the first

epoch, the proof of Lemma B.3.1 is the same whether we consider a pop-

ulation composed of a single epoch, or a population composed of multiple

epochs. The equation for f kðyÞ (eq. 18) is the same as equation 2.14 of

Steinrücken et al. (2014). Thus, the coefficients bk in this paper correspond

to the coefficients bk in Steinrücken et al. (2014) who proved Lemma B.3.1

for the case of a population of constant size. Thus, the first equality in

Lemma B.3.1 follows directly from Proposition 1 of Steinrücken et al.

(2014). The matrix representation in the second equality follows directly

from the definitions of C‘ and B‘ðxÞ. h

Lemma B.3.2. If the initial frequency density �0ðyÞ at time t0 ¼ 0

is unspecified and we instead assume a uniform prior on the allele frequency

at the time of the first sampling event, then the coefficients b1 encoding the

density at time t1 are given by

b1 ¼
1

Betaðo1 þ 1; n1 � o1 þ 1ÞBð�r‘1 ;o1þ1;n1�o1þ1Þ;0ð0Þ
	 Cðr‘1 ;o1þ1;n1�o1þ1ÞWðr‘1 ;o1þ1;n1�o1þ1Þ
	 Dðr‘1 ;o1þ1;n1�o1þ1ÞW

T
ð�r‘1 ;o1þ1;n1�o1þ1Þ

	 Zðr‘1 ;o1þ1;n1�o1þ1Þ;ðr‘1 ;a‘1 ;b‘1 Þð0; fÞ;
(B.17)

where Cð�;�;�Þ; Dð�;�;�Þ , and Wð�;�;�Þ are obtained by replacing �‘; �‘ , and

�‘ in equations (A.18), (A.19), and (A.15) with �, �, and �. Similarly,

Zð�;�;�Þ;ð~�;~�;~�Þð� ; 	Þ is obtained by replacing �‘; �‘þ1; �‘; �‘þ1; �‘ , and

�‘þ1 in equation (B.7) with �, ~�, �, ~�, �, and ~�, respectively, Bð�;�;�Þð0Þ is

the eigenfunction in equation (B.23) with �‘; �‘ , and �‘ replaced with �, �,

and �, and Wð�;�;�Þ is the matrix given in equation (A.15) whose rows are

the left eigenvectors of Mð�;�;�Þ , i.e., the matrix in equation (A.9) with �‘; �‘ ,

and �‘ replaced with �, �, and �. Finally, Betað�; �Þ ¼ �ð�Þ�ð�Þ=�ð�þ �Þ
is the normalizing constant of the beta distribution with parameters � and �.

Proof. If the initial density �0ðyÞ of the allele frequency is unspecified,

then the density of Y t1
at the time t1 of the first sampling event, conditional

on the observed number o1 of copies of allele A is given by Bayes Theorem:

fYt1 jO1
ðyjo1Þ ¼

PfO1 ¼ o1jYt1
¼ ygfY1

ðyÞ
PfO1 ¼ o1g

: (B.18)

If we suppose that fYt1
ðyÞ is uniform on the interval ½0; 1� then equation

(B.18) becomes

fYt1 jO1
ðyjo1Þ ¼

n1

o1

 !
yo1ð1� yÞn1�o1

Ð 1
y¼0 PfO1 ¼ ojYt1

¼ ygfYt1
ðyÞdy

¼

n1

o1

 !
yo1ð1� yÞn1�o1

Ð 1
y¼0

n1

o1

 !
yo1ð1� yÞn1�o1 dy

¼ yo1ð1� yÞn1�o1Ð 1
y¼0 yo1ð1� yÞn1�o1 dy

¼ yo1ð1� yÞn1�o1

Betaðo1 þ 1; n1 � o1 þ 1Þ ;

(B.19)
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where, in the final equality, we have used the fact that yo1 ð1� yÞn1�o1 is the

unnormalized beta distribution with parameters o1 þ 1 and n1 � o1 þ 1.

Thus, conditional on the first observation o1, we see that Yt1
jO1 has a

beta distribution with parameters o1 þ 1 and n1 � o1 þ 1. Steinrücken

et al. (2014) showed in Appendix C of their paper that the distribution

�ðyÞ ¼ y��1ð1�yÞ��1

Betað�;�Þ has coefficients given by

br;a;b ¼
1

Betaða; bÞBð�r;a;bÞ;0ð0Þ
Cðr;a;bÞWðr;a;bÞ Dðr;a;bÞW

T
ð�r;a;bÞ

in an epoch with selection parameter r and mutation parameters a and

b. Thus, using the change of basis in equation (B.6), we see that the

distribution �ðyÞ y��1ð1�yÞ��1

Betað�;�Þ has coefficients given by b�;�;�Zð�;�;�Þ;ð�‘;�‘;�‘Þ
ð0; 	Þ in the basis of eigenfunctions fB‘;nðyÞg1n¼0 corresponding to an

epoch with parameters �‘; �‘ , and �‘ , proving the result in equation

(B.17). h

Lemma B.3.3. Let G‘; W‘; E‘ðtÞ, and Fðs; t; 	Þ denote the ma-

trices defined in equations (A.11), (A.15), (A.17), and (B.10), respectively,

where 	 ¼ ð	0; 	1; . . .Þ is a set of distinct values arbitrarily chosen such that

f	0; 	1; . . .g 2 ½0; 1�. Then the coefficient vectors ak and bk satisfy the

recursive relationships

bk ¼ akW‘k
Gok

‘k
ð1� G‘k

Þnk�ok W�1
‘k
; (B.20)

ak ¼
�

bk�1Elkðtk � tk�1Þ if ‘k�1 ¼ ‘k;

bk�1Fðtk�1; tk; fÞ otherwise;
(B.21)

where W�1
‘ ¼ D‘W

T
‘ C�1

‘ .

Proof. The relationship in equation (B.21) is obtained immediately by

setting t = tk in equations (B.4) and (B.15), which follows because akðtkÞak .

The relationship in equation (B.20) does not depend on the population

parameters �; therefore, equation (B.20) is the same as that derived in

Steinrücken et al. (2014), who considered a population of constant size

(see Steinrücken et al. 2014, Theorem 2). h

Lemma B.3.4. The probability P�;DfO½1:K� ¼ o½1:K�g of observing

the allele counts o½1:K� , given the population parameters � is

PH;DfO½1:K� ¼ o½1:K�g ¼
c‘K ;0

B‘K;0ð0Þ
bK;0; (B.22)

where c‘;0 ¼ ½C‘�0;0 is element 0, 0 of the matrix C‘ in equation (A.18) and

B‘;0ð0Þ ¼
X1
m¼0

ð�1Þm½W‘�0;m
Cðmþ a‘Þ

Cðmþ 1ÞCða‘Þ
: (B.23)

The quantity ½W‘�i;j in equation (B.23) is element i, j of the matrix W‘

given in equation (A.15).

Proof. Equation (B.22) can be obtained by integrating over the joint

density f K ðyÞ of the data O½1:K� and the allele frequency YtK
at the final

sampling time:

PH;DfO½1:K� ¼ o½1:K�g ¼
ð1

0

fKðyÞdy ¼
ð1

0

X1
n¼0

bK;np‘K
ðyÞB‘K ;nðyÞdy

¼
X1
n¼0

bK;n

ð1

0

p‘K
ðyÞB‘K ;nðyÞdy ¼

X1
n¼0

bK;n

ð1

0

p‘K
ðyÞB‘K;nðyÞ

B‘K ;0ðyÞ
B‘K ;0ð0Þ

dy

¼ bK;0
c‘K;0

B‘K;0ð0Þ
;

(B.24)

where c‘K ;0½C‘K
�0;0 � hB‘K ;0; B‘K ;0i
‘K . In the fourth equality we have used

the fact that B‘;0ðyÞ ¼ B‘;0ð0Þ is a constant function in y. To see why B‘;0ðyÞ
is constant, note that the eigenvalues �‘;0; �‘;1; . . . are non-negative and

strictly increasing. Thus, all terms in equation (A.5) must vanish in the limit

s! �1, except possibly the term n = 0. Because p‘ðs; t; x; yÞ approaches

the stationary density in the limit s! �1, it must be the case that

�‘;0 ¼ 0, so at least one term does not vanish. Thus, we have

lim
s!�1

phðs; t; x; yÞ ¼ p‘ðyÞ
B‘;0ðxÞ B‘;0ðyÞ
hB‘;0; B‘;0ip‘

/ p‘ðyÞ; (B.25)

where we have used the fact that 
‘ðyÞ is proportional to the stationary

density of the diffusion equation in Epoch ‘. It follows from equation (B.25)

that B‘;0ðyÞ is constant. Thus, we obtain the result, proving equation (B.22).

Equation (B.23) follows directly from the proof of Proposition 3 in

Steinrücken et al. (2014). h

Appendix C

Conditional Probabilities: The Wright–Fisher
Model
Under the Wright–Fisher model, the probability PH;WfO½1:K� ¼ o½1:K�j
SKg of the observed allele counts, conditional on the event SK that allele

A is segregating in the final sample can be computed using the fact that

PH;WfO½1:K� ¼ o½1:K�jSKg

¼
X2NtK

j¼0

PH;WfO½1:K� ¼ o½1:K�; ctK
¼ jjSKg

¼
X2NtK

j¼0

PH;WfSKjO½1:K� ¼ o½1:K�; ctK
¼ jg

PH;WfSKg
	 PH;WfO½1:K� ¼ o½1:K�; ctK

¼ jg

¼ PfSKjOK ¼ oKg
PH;WfSKg

	
X2N‘tK

j¼0

PH;WfO½1:K� ¼ o½1:K�; ctK
¼ jg

¼ PfSKjOK ¼ oKg
PH;WfSKg

X2NtK

i¼0

vK;i;

(C.1)

where the third equality in equation (C.1) follows from the fact that the

conditional probability PH;WfSKjO½1:K� ¼ o½1:K�; ctK
¼ jg depends only

on the allele count oK and the final equality in equation (C.1) follows

from the definition of vk. The probability PfSKjOK ¼ oKg in equation

(C.1) is given by

PfSKjOK ¼ oKg ¼
1; if 1 � oK < nK;

0; otherwise

(
(C.2)

and the probability PH;WfSKg is given by

PH;WfSKg ¼
X2NtK

i¼0

PfSKjCtK
¼ igPH;WfCtK

¼ ig

¼
X2NtK

i¼0

1� PfOK ¼ 0jCtK
¼ ig � PfOK ¼ nKjCtK

¼ ig½ �

	 PH;WfCtK
¼ ig ¼

X2NtK

i¼0

1� 1� i

2NtK

� �nK

� i

2NtK

� �nK
� �

	 PH;WfctK
¼ ig;

(C.3)

where, as before, PH;WfCtK
¼ ig is given by the ith element of

dt ¼ d0

QtK

t¼1 Tt�1;t.

Note that it is easy to condition on other configurations of the final

sample using a procedure similar to that used to derive equation (C.1).

For example, for the event FK that allele A is segregating or fixed in the

final sample, which we consider in the “Simulations Conditioning on

Segregation or Fixation” section, the probability PH;WfO½1:K� ¼ o½1:K�
jFKg is given by
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PH;WfO½1:K� ¼ o½1:K�jFKg ¼
PfFKjOK ¼ oKg

PH;WfFKg
X2NtK

i¼0

vK;i; (C.4)

where

PfFKjOK ¼ oKg

¼
1; if 1 � oK � nK;

0; otherwise

8<
: (C.5)

and

PH;WfFKg ¼
X2NtK

i¼0

1� PfOK ¼ 0jCtK
¼ ig½ �PH;WfCtK

¼ ig

¼
X2NtK

i¼0

1� 1� i

2NtK

� �nK
� �

PH;WfctK
¼ ig:

(C.6)

Other probabilities can be obtained in a similar fashion.

Appendix D

Conditional Probabilities: Diffusion Model
Under the diffusion approximation, the probability PH;DfO½1:K�
¼ o½1:K�jSKg of the observed allele counts conditional on the event SK

that allele A is segregating in the final sample can be computed using

the fact that

PH;DfO½1:K� ¼ o½1:K�jSKg ¼
ð1

y¼0

PH;DfO½1:K� ¼ o½1:K�; YtK
¼ yjSKgdy

¼
ð1

y¼0

PfSKjOK ¼ oKg
PH;DfSKg

fKðyÞdy ¼ PfSKjOK ¼ oKg
PH;DfSKg

ð1

0

fKðyÞdy

¼ PfSKjOK ¼ oKg
PH;DfSKg

PH;DfO½1:K� ¼ o½1:K�g ¼
PfSKjOK ¼ oKg

PH;DfSKg
c‘K;0

B‘K;0ð0Þ
bK;0;

(D.1)

where the second equality follows from the fact that the conditional

probability PfSKjOK ¼ oK;YtK
¼ yg depends only on the allele count

oK in the final sample, and the final equality follows from equation

(B.22).

The probability PH;DfSKg can be computed as

PH;DfSKg ¼ 1� PH;DfOK ¼ 0g � PH;DfOK ¼ nKg: (D.2)

In equation (D.2), the probabilityPH;DfOK ¼ jg can be found easily

by noting that if the only sampling time is tK, at which OK¼ j lineages

are observed, then the probability computed using Procedure 2 is pre-

cisely the probability PH;DfOK ¼ jg.
Consider the problem in which the only sampling occurs at time tK

and denote the coefficient vectors for this related problem by ~ak and ~bk.

Then, by equation (B.22), we see that

PH;DfOK ¼ jg ¼ c‘K;0

B‘K ;0ð0Þ
~bK;0ðjÞ; (D.3)

where ~bKðjÞ is obtained by computing the steps in Procedure 2. In Step

1, we compute

~b0 ¼ b0; (D.4)

which follows because the initial vector b0 depends only on the initial

frequency. In Step 2, we compute

~aK ¼
~b0E‘1
ðtKÞ; if ‘tK

¼ 1;

~b0Fð0; tK; fÞ; otherwise;

(
(D.5)

which follows because the coefficients are propagated directly from

time t0 ¼ 0 to time tK. Finally, in Step 3 we have

~bKðjÞ ¼ ~aKW‘K
Gj
‘K
ð1� G‘K

ÞnK�jW�1
‘K
: (D.6)

Combined together, equations (D.4), (D.5), and (D.6) yield

~bKðjÞ ¼

b0E‘1
ðtKÞW‘K

Gj
‘K
ð1� G‘K

ÞnK�jW�1
‘K
;

if ‘tK
¼ 1;

b0Fð0; tK; fÞW‘K
Gj
‘K
ð1� G‘K

ÞnK�jW�1
‘K
;

otherwise:

8>>>>><
>>>>>:

(D.7)

Plugging equations (D.2) and (D.3) into equation (D.1) gives

PH;DfO½1:K� ¼ o½1:K�jSKg ¼
PfSKjOK ¼ oKgc‘K;0bK;0

B‘K;0ð0Þ � c‘K ;0
~bK;0ð0Þ � c‘K ;0

~bK;0ðnKÞ
;

(D.8)

where

PfSKjOK ¼ oKg ¼
1; if 1 � oK < nK;

0; otherwise:

(
(D.9)

Note that it is easy to condition on other configurations of the final

sample by computing the probabilitiesPfVKjOK ¼ okg andPH;WfVKg
for some other event VK.
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