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Influenza is a costly disease for pig producers and understanding its epidemiology is 
critical to control it. In this study, we aimed to estimate the herd-level prevalence and 
seasonality of influenza in breed-to-wean pig farms, evaluate the correlation between 
influenza herd-level prevalence and meteorological conditions, and characterize influ-
enza genetic diversity over time. A cohort of 34 breed-to-wean farms with monthly 
influenza status obtained over a 5-year period in piglets prior to wean was selected.  
A farm was considered positive in a given month if at least one oral fluid tested influenza 
positive by reverse transcriptase polymerase chain reaction. Influenza seasonality was 
assessed combining autoregressive integrated moving average (ARIMA) models with 
trigonometric functions as covariates. Meteorological conditions were gathered from 
local land-based weather stations, monthly aggregated and correlated with influenza 
herd-level prevalence. Influenza herd-level prevalence had a median of 28% with a 
range from 7 to 57% and followed a cyclical pattern with levels increasing during fall, 
peaking in both early winter (December) and late spring (May), and decreasing in sum-
mer. Influenza herd-level prevalence was correlated with mean outdoor air absolute 
humidity (AH) and temperature. Influenza genetic diversity was substantial over time 
with influenza isolates belonging to 10 distinct clades from which H1 delta 1 and H1 
gamma 1 were the most common. Twenty-one percent of farms had three different 
clades co-circulating over time, 18% of farms had two clades, and 41% of farms had 
one clade. In summary, our study showed that influenza had a cyclical pattern explained 
in part by air AH and temperature changes over time, and highlighted the importance 
of active surveillance to identify high-risk periods when strategic control measures for 
influenza could be implemented.

Keywords: influenza, seasonality, prevalence, genetic diversity, swine, absolute humidity, breed-to-wean pig 
farm, swine influenza virus

inTrODUcTiOn

Influenza A virus (IAV) is an economically significant pathogen in pig populations and it has 
been associated with increased mortality (1), increased feed conversion, and decreased daily 
weight gain in finishing pigs (2, 3). Hence, influenza can decrease US pork producer’s profit-
ability and affect business continuity if strains are linked to human health (4). IAV is part of 
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the porcine respiratory disease complex in pigs together with 
porcine reproductive and respiratory syndrome virus (PRRSV), 
Mycoplasma hyopneumoniae, and porcine circovirus type 2 
(PCV2).

Breed-to-wean (BTW) pig farms house adult females and 
their progeny from birth to weaning, which in the USA happens 
at approximately 21 days of age. BTW farms play a crucial role 
in influenza epidemiology because piglets can unnoticeably 
maintain, diversify, and transmit IAV at weaning when they are 
moved to grow-finish farms (5–7). There is some evidence that 
IAV infections in pigs are more common in the colder months 
(8–10) but, in general, information on herd-level prevalence and 
seasonal distribution of influenza in BTW farms is limited and 
it is unclear whether seasonality is observed in piglets, given 
that piglets are born almost daily and for the most part, they are 
housed in mechanically controlled environments.

There is evidence that certain meteorological conditions  
such as air temperature and humidity are associated with IAV 
survivability and transmissibility (11–17). In pigs, indoor-barn 
air temperature is usually controlled and drives ventilation 
rates in mechanically ventilated buildings. In contrast, indoor-
barn air humidity is not controlled and it depends on outdoor 
conditions (18). Therefore, meteorological conditions could 
potentially impact IAV survival and transmission inside swine 
facilities, which could affect IAV circulation, detection, and 
prevalence in pig farms.

Intervention strategies to control influenza often reside in 
the use of vaccines in sows before farrowing (19–21) with the 
goal to enhance transfer of passive immunity to piglets, decrease 
risk of infection, and reduce clinical disease presentation  
(5, 22–27). However, an additional challenge to control influenza 
is the genetic diversity of strains circulating in pig populations. 
Co-circulation of genetically distinct viruses is common in pigs 
in both grow-finish (28–32) and BTW farms (7, 9) which make 
vaccination difficult to succeed given the limited cross-reactivity 
among certain strains (33).

In this study, we sought to (i) assess influenza herd-level 
prevalence and seasonality over time in BTW farms, (ii) inves-
tigate the correlation of influenza herd-level prevalence with 
outdoor air temperature and humidity, and (iii) characterize 
the genetic diversity of the influenza viruses detected in BTW 
farms over time. We hypothesize that influenza levels in BTW 
farms are cyclical and that seasonality can be correlated with 
certain meteorological conditions. Understanding herd-level 
prevalence, seasonality, genetic diversity, and meteoro-
logical conditions affecting influenza in BTW farms may help  
guide the allocation and timing of strategies to control influ-
enza in pigs.

MaTerials anD MeThODs

ethics statement
The procedures employed as part of this study were approved by 
the Institutional Animal Care and Use Committee (IACUC) of 
the University of Minnesota (Protocol no. 1510-33054A). The 
participating production system agreed to share influenza testing 
data with the researchers.

influenza active surveillance Program
Data obtained for this project originated from a swine produc-
tion system that had been conducting influenza surveillance 
since 2011 as part of their herd health management program. 
Briefly, the swine production system had 60 BTW farms located 
in three Midwestern States (Minnesota, Iowa, and South 
Dakota). Samples were collected from a representative sample 
of piglets prior to wean because piglets have been identified as a 
key subpopulation able to maintain and spread IAV (5–8). The 
swine production system aimed to collect four monthly oral 
fluid samples from each farm. Oral fluids were chosen because 
of better pen-level sensitivity and easiness of collection by farm 
personnel (34, 35).

Four oral fluid samples aimed to detect a within-herd 
influ enza prevalence of 10% or higher, assuming 100 and 80% 
diagnostic test specificity and sensitivity, respectively, and 93% 
within-farm sensitivity (34–36). However, the number of sam-
ples collected in a given sampling event ranged between 1 and 
7 and the implications for within-farm sensitivity are discussed 
in Section “Assessment of the Active Surveillance Program.” 
Followed procedures were also outlined as part of the United 
States Department of Agriculture (USDA) Influenza Surveillance 
Program (37).

Collection of oral fluids was performed as described before 
(36). Briefly, oral fluids were collected from piglets in four far-
rowing crates choosing one crate per farrowing room. Crates 
were conveniently selected by farm personnel and the day prior 
to sample collection, piglets in the selected crates were trained 
with a different rope to increase the chances of obtaining an oral 
fluid sample. A cotton rope was hanged in the farrowing crates 
within reach of the piglets. After the ropes were saturated with 
oral fluids, the ropes were squeezed into plastic bags to obtain 
the oral fluid samples that were then refrigerated and submitted 
to the diagnostic laboratory for IAV testing.

iaV Testing, isolation, and sequencing
Oral fluid samples were tested by reverse transcriptase poly-
merase chain reaction (RT-PCR) targeting the matrix gene of 
IAV (38). RT-PCR testing was conducted at South Dakota State 
University Veterinary Diagnostic Laboratory. A sample was con-
sidered positive if the cycle threshold (ct) value was 38 or lower. 
Isolation of influenza in Madin–Darby Canine Kidney (MDCK) 
cells was attempted in up to two samples per submission with the 
lowest ct values according to the USDA Influenza Surveillance 
Program guidelines. When isolates were available, sequencing of 
the hemagglutinin gene was attempted (37).

Meteorological Data
Meteorological data including outdoor air temperature and 
relative humidity (RH) was compiled from 14 local land-based 
stations located near the farms. Hourly meteorological data 
were gathered from the National Centers for Environmental 
Information (39), and then data were aggregated monthly to 
conduct the analysis. Monthly average temperature and RH 
were calculated by including all available hourly data from all 
stations each month. Absolute humidity (AH) was calculated 
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using hourly temperature and RH following the equation 
AH =  2.17 × (pw/T) described by McDevitt et  al. (14), where  
T is the air temperature in kelvin (K) and pw is the partial pressure 
of water vapor in pascals. pw was calculated using the equation 
pw = RH × Po, where RH is the air relative humidity and Po is the 
saturation vapor pressure in pascals. Finally, Po was calculated 
as follows: Po = exp[(−5,800/T) + 1.391 − 0.04868 × T + 4.17
6 × 10−5 × T2 − 1.445 × 10−8 × T3 + 6.546 ×  lnT], where T is 
the air temperature in K and lnT is the natural logarithm of  
T (14). AH is reported in grams of water per cubic meter of 
air (g/m3). AH data were also averaged monthly including data 
from all stations.

Data analysis
Assessment of the Active Surveillance Program
In order to characterize the sensitivity of the surveillance pro-
gram, the number of monthly oral fluid samples submitted per 
farm, and the number of positive and total submissions per farm 
were analyzed. Moreover, the within-farm sensitivity to detect 
IAV circulation was assessed for each sampling. The within-
farm sensitivity was computed using the actual number of oral 
fluids in each sampling by assuming (a) a within-farm influenza 
prevalence of 10%, (b) nine piglets chewed the rope in each crate 
in 30 min (pool size) (40), and (c) a diagnostic sensitivity and 
specificity for influenza RT-PCR detection in oral fluids of 80% 
and 100%, respectively (35). The within-farm sensitivity was 
computed using the Sep.pooled function of the Rsurveillance 
package (41) in R 3.2.3 statistical software (42). Overall, we 
estimate that we needed at least three oral fluids per submission 
in order to achieve a within-farm sensitivity of 87%.

Influenza Herd-Level Prevalence and  
Seasonality Analysis
Only those farms that had at least 30 monthly submissions  
with estimated within-farm sensitivity of at least 87% were 
included in the time series analysis. The selected level of within-
farm sensitivity was chosen in order to achieve a high and  
uniform level of confidence of the within-farm influenza detec-
tion. Influenza monthly herd-level prevalence was estimated by 
dividing the number of positive farms by the total number of 
farms submitting in a given month.

Initially, the monthly herd-level prevalence was analyzed 
using basic statistics and plots. Prevalence was logit transformed 
to stabilize the variance and normalize the distribution (43). 
The pattern of influenza herd-level prevalence was evaluated 
using additive decompositions and classical time series models. 
Autoregressive integrated moving average (ARIMA) models 
combined with time as a trend covariate, and trigonometric 
functions such as sine and cosines (Fourier functions) at different 
time intervals as covariates were used to assess influenza trend 
and seasonality. ARIMA models per  se assume no trend and 
seasonality (stationary series). However, the combined models 
allowed us to account and test for trend and seasonality of the 
influenza herd-level prevalence.

All tested models were fitted using the logit transformed data 
(44, 45). Several combinations of the trend and trigonometric 

functions were tested at 3-, 4-, 6-, 12-, and 24-month intervals as 
linear regression models. Trend, sine, and cosine functions that 
were significant (p < 0.05) were kept for the combined models. 
Several combined models were tested with different ARIMA 
models. Model selection was based on parsimony using the 
lowest Bayesian Information criterion (BIC) as a goodness-of-fit 
criteria, including residual inspection to ensure lack of autocor-
relation through autocorrelation function (ACF) and partial 
autocorrelation function (PACF) plots. Error distribution plots 
were checked for normality. These analyses were computed using 
the R base package and the forecast package (46) in R 3.2.3 statisti-
cal software (42).

The final combined model was an ARIMA (0, 0, 3) plus sine 
and cosine functions for 6- and 12-month periods (annual  
and semiannual cycles). The final model after the logit transfor-
mation can be expressed as follows:

 

Y t
t t

t t t= µ + α + α + α +β (ω )
+β (ω ) +β (ω )

− −1 2 2 3 3 1 1

2 1 3 2

sin
cos sin
  t−1

++β (ω ) + ,4 2cos t t  

where Yt is the logit transformed monthly herd-level prevalence, 
μ is the intercept, αi is the coefficients of the moving average, ϵt − i 
is the error terms of the ARIMA model, and βi is the coefficients 
of the trigonometric functions: ω =

π
i

iT
2 , where Ti is the number 

of months (period) for which seasonality was tested and ϵt is the 
error term of the trigonometric functions model.

Meteorological Data and Influenza  
Herd-Level Prevalence Correlation
To explore the correlation between monthly herd-level preva-
lence and meteorological conditions, specifically ambient air 
temperature, RH, and AH, we used the cross-correlation func-
tion (ccf) in the R base package and the lag2.plot function in 
the astsa package (47) at different time lags. Lag correlation 
coefficient p-values were obtained using the pnorm function 
of the R base package. The above-described statistical analysis 
was done using R 3.2.3 statistical software (42). Although at 
first it may appear redundant to link both temperature and AH 
to prevalence, AH is a function of both temperature and RH 
which does not always have to fluctuate in the same direction 
as temperature.

Influenza Genetic Diversity Analysis
Hemagglutinin gene (HA) sequences were annotated for com-
pleteness and functionality using the influenza virus sequence 
annotation tool (FLAN)1 (48). H1 clade classification was done 
using the swine H1 clade classification tool in the Influenza 
Research Database (IRD)2 (49).

For H3 cluster classification, reference strains were obtained 
from the Influenza Virus Resource at the National Center for 
Biotechnology Information (NCBI)3 (50). Included H3 reference 
strains were under the following GenBank reference numbers: 
JX092535 (H3 IV C), JX092307 (H3 IV D), JN652493 (H3 IV F), 

1 https://www.ncbi.nlm.nih.gov/genomes/FLU/Database/annotation.cgi.
2 http://www.fludb.org.
3 https://www.ncbi.nlm.nih.gov/genome/viruses/variation/flu/.
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FigUre 1 | Influenza A virus herd-level prevalence in breed-to-wean pig farms.
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JN638733 (H3 IV A), JF812276 (H3 IV E), CY114592 (H3 IV B), 
CY095675 (H3 I), CY006475 (H3 III), CY002120 (H3 II), and 
KC306165 (H3 humSea11).

Alignment of 1,698-nucleotide-length HA sequences was 
done using the ClustalW algorithm. Phylogenetic trees were 
generated using a neighbor joining method and a Hasegawa, 
Kishino, and Yano (HKY) substitution model in Geneious version 
8.1.84 (51). H3 cluster was inferred according to the clustering of 
each isolate in the corresponding trees.

resUlTs

influenza active surveillance  
Program assessment
From July 2011 to April 2016, there were 58 months of data and 
60 BTW pig farms that submitted samples as part of the company 
influenza surveillance program. The median size of the selected 
farms was 3,125 sows ranging from 1,200 to 6,000. There were 
2,105 diagnostic submissions with a total of 7,778 oral fluids. 
The number of oral fluids per submission varied from 1 to 7 and 
the estimated within-farm sensitivity varied from 49 to 100%. 
Lastly, a total of 34 farms that had both at least 30 submissions 
and a within-farm sensitivity of 87% or higher (three or more 
oral fluids per submission) were selected and included in the 
seasonality analysis.

4 http://www.geneious.com.

From the 34 selected farms, there were 1,523 submissions 
with a total of 6,585 oral fluids. The number of oral fluids per 
submission varied from 3 to 7 with a median of 4 and an inter-
quartile range (IQR) of 0. The median number of submissions 
per farm was 47 (IQR = 10) with a range from 30 to 55. Median 
positive submissions per farm were 12 (IQR = 8) ranging from 
3 to 34. Moreover, there were 28% (424/1,523) of submissions 
with at least one influenza positive result. All farms tested posi-
tive at least once during the study period. Finally, the within-
farm sensitivity had a median of 93% (IQR = 0) and varied from  
87 to 99%.

seasonality of influenza herd-level 
Prevalence
Influenza herd-level prevalence varied over time. Prevalence of 
influenza had a median of 28% (IQR = 18%) with a range from 
7 to 57%, as shown in Figure 1. Influenza herd-level prevalence 
showed a seasonal pattern that was repeated on a yearly basis. 
The seasonality analysis showed that the herd-level prevalence 
had annual and semiannual cycles that were detected with the 
sine and cosine functions at 6- and 12-month periods in the 
final combined model as described above (p < 0.05). Prevalence 
was low in summer, rose during fall, and peaked twice in both 
early winter (December) and late spring (May). August was the 
month with the lowest prevalence. Figure 2 shows the seasonality 
of influenza herd-level prevalence as observed and as predicted 
after considering the combined final model that included the 
significant seasonal functions as predictors.
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FigUre 2 | Observed and predicted seasonality of influenza A virus herd-level prevalence in breed-to-wean pig farms.

TaBle 1 | Lag correlation between influenza A virus herd-level prevalence and 
meteorological conditions.

Outdoor air conditions lag time in 
months

lag correlation 
coefficients

lag correlation 
p-value

Temperature (°C) 0 −0.28 0.033
−1 −0.33 0.012
−2 −0.34 0.010
−3 −0.24 0.068

Relative humidity (%) 0 −0.08 0.542
−1 −0.10 0.446
−2 −0.09 0.493
−3 −0.02 0.879

Absolute humidity (g/m3) 0 −0.35 0.008
−1 −0.43 0.001
−2 −0.41 0.002
−3 −0.21 0.110
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Meteorological conditions and influenza 
herd-level Prevalence
Mean outdoor air temperature and AH were negatively cor-
related with herd-level prevalence. Influenza herd-level preva-
lence was higher when both mean outdoor air temperature 
and AH were lower. Indeed, temperature and AH variations 
that happened earlier at 0, −1, and −2  months were statisti-
cally correlated with the influenza herd-level prevalence of 
a given month, as shown in Table  1 and Figure  3. The lag 
correlation coefficients varied between −0.28 and −0.43 for 
both temperature and AH at lags from 0 to −3 months. Lastly, 
mean outdoor air RH was not correlated with influenza herd-
level prevalence at the tested lag months, as shown in Table 1  
and Figure 3.

influenza co-circulation and genetic 
Diversity at the system level
Eighty-five (20%) influenza isolates from 424 positive submis-
sions were obtained from the 34 selected farms. Isolates were 
distinct genetically and grouped into 10 different clades or 
clusters of H1 and H3 subtypes that are contemporary in North 
American swine populations. The most common clades identi-
fied were H1 delta 1 (40%, 34/85), H1 gamma 1 (21%, 18/85), 
and clusters H3 IV A (12%, 10/85) and H3 IV B (11%, 9/85).

Furthermore, 21% (7/34) of the farms had 3 different 
influenza genetic clades circulating during the study period, 
18% (6/34) had 2, 41% (14/34) had 1, and the remaining 20% 
(7/34) of farms had no isolates available to further characterize 
influenza. The genetic diversity and frequency of the influenza 
isolates obtained over time are presented in Figure 4.

DiscUssiOn

Understanding the temporal dynamics and genetic diversity of 
influenza in BTW farms is central to control influenza infec-
tions in pigs. In this study, we assessed influenza herd-level 
prevalence, seasonality, and strain distribution in Midwestern 
BTW farms belonging to one production system. The farms 
sampled were considered representative of the region, given 
the similarities across commercial farms in the Midwest and 
the large number of farms managed by the production company 
in the study. Influenza infections were widespread and seasonal 
with infection peaks in both winter and spring. The seasonal 
pattern was partially explained by air temperature and AH, 
and there was significant co-circulation of genetically distinct 
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FigUre 3 | Correlation of meteorological conditions and influenza A virus herd-level prevalence.
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FigUre 4 | Genetic classification and frequency of influenza A virus isolates over time.

strains over time. To the knowledge of the authors, this is the 
first time that influenza herd-level prevalence and seasonality 
in swine has been assessed based on an active surveillance 
program.

Influenza seasonality in BTW farms is epidemiologically 
significant because BTW farms supply pigs at weaning. Weaned 
pigs are commonly transported to distant locations, which rep-
resents a risk for influenza dissemination to grow-finish farms 
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(6, 9, 52). Our results targeting the sampling of piglets showed 
the highest herd-level prevalence in December and May, which 
is slightly different and after the peaks in October/November 
and April/May reported in other studies based on the number  
of posi tive diagnostic laboratory submissions (53–56) and short-
time investigations (8–10, 28). Differences on the age of pigs  
sampled, geographical regions, climatic conditions, immune 
status, management practices, sampling strategies, introduc-
tion of new strains by replacement females, and/or farm per-
sonnel and lack of precision in model predictions used in the 
studies may explain the differences among the reported studies 
(57–59).

It is also important to note that our study was based on an 
active surveillance program with a standardized sampling pro-
cedure and high within-farm sensitivity for influenza detection 
across the participating farms. However, the assumption that 
nine pigs (pool size) contributed to one oral fluid sample may 
have overestimated the within-farm sensitivity for a within-
farm prevalence of 10% or higher. Given that there are no data 
available on how many suckling piglets will chew a rope in 
30 min, and the fact that piglets were trained to chew the rope 
before collection (36), we feel that the assumptions to calculate 
the within-farm sensitivity are logical. Within-farm sensitiv-
ity estimates using a pool size of 7 and 8 would still be 80% 
or higher to detect a within-farm prevalence of 10% or higher 
and considering three or more oral fluid samples (results not 
shown). Finally, a BTW farm that tested negative means that 
within-farm prevalence was lower than 10% considering our 
sampling approach.

Although the seasonal pattern was repeatable across the 
5  years of study, herd-level prevalence varied between years 
perhaps because of differences in herd immunity, management 
strategies, or introduction of novel strains through female 
replacements and/or farm personnel. Analysis of the effect of 
these factors on herd-level prevalence was beyond the scope 
of this study. Nevertheless, the consistent seasonal pattern 
described in these farms can serve as a guide for producers and 
veterinarians to allocate control strategies to mitigate the spread 
of influenza.

Influenza seasonality in people and birds has been attributed to 
seasonal variations in temperature and humidity (12, 15, 60–65). 
Both temperature and AH have been associated with influenza 
survivability and transmissibility (11, 14–18, 66–69). In our 
study, we observed an association between influenza herd-level 
prevalence and outdoor air temperature and AH. Although the 
correlation was considered low, seasonal changes in air AH and 
temperature appeared to partially explain influenza circulation 
in the studied farms. The mechanism behind this correlation 
is unclear, given that pigs are housed indoor in mechanically 
controlled environments. However, given that ventilation con-
trols are set based on ambient temperature, we speculate that 
outdoor conditions can have an effect on influenza circulation 
inside facilities. Indeed, ventilation rates may act as a surrogate 
for outdoor environmental conditions but unfortunately, we 
had no data on ventilation rates to evaluate whether there was a 

direct association between ventilation rates and influenza herd-
level prevalence. Further studies should investigate this potential 
association.

The genetic diversity and frequency of influenza isolates was 
significant despite the low yield of virus isolates obtained from 
oral fluids, which is known to be a poor sample to measure viral 
viability (34–36, 70–72). The isolates clustered in 10 genetically 
distinct hemagglutinin clades or clusters that were contempo-
rary and similar to the ones reported by the USDA influenza 
surveillance program (53, 56, 73–76). In our study, we could not 
establish an association between the seasonal peak of infection 
and the detection of new strains likely because of the limited 
number of isolates recovered from each farm. This is a question 
that remains to be answered in future studies.

Furthermore, there were multiple farms that had more than 
one genetically distinct influenza virus. The co-circulation of 
different influenza strains in swine farms has been documented 
before (7, 9, 28), and our results support those studies and 
illustrate the difficulty to control influenza in BTW farms. 
The detected co-circulation is relevant because it suggests that 
comprehensive vaccination approaches that consider the broad 
genetic diversity are needed to control influenza in swine popu-
lations (75).

In summary, influenza herd-level prevalence in Midwestern 
BTW pig farms had a seasonal pattern with higher levels of 
influenza in winter and spring months. Seasonality was par-
tially explained by air temperature and AH, although other 
factors may have played a role in the observed trends. Finally, 
our results evidenced the co-circulation of genetically diverse 
influenza viruses over time and highlighted the challenge that 
this represents for the control of influenza in pigs.
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