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ARTICLE

Identification of Susceptibility Genes to Allergic Rhinitis 
by Gene Expression Data Sets

Kai Xue1, Jingpu Yang1, Yin Zhao1, Jinzhang Cheng1 and Zonggui Wang1,*

As an extremely prevalent disease worldwide, allergic rhinitis (AR) is a condition characterized by chronic inflammation of 
the nasal mucosa. To identify the finer molecular mechanisms associated with the AR susceptibility genes, differentially 
expressed genes (DEGs) in AR were investigated. The DEG expression and clinical data of the GSE19187 data set were used 
for weighted gene co-expression network analysis (WGCNA). After the modules related to AR had been screened, the genes 
in the module were extracted for Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment 
analysis, whereby the genes enriched in the KEGG pathway were regarded as the pathway-genes. The DEGs in patients with 
AR were subsequently screened out from GSE19187, and the sensitive genes were identified in GSE18574 in connection with 
the allergen challenge. Two kinds of genes were compared with the pathway-genes in order to screen the AR susceptibility 
genes. Receiver operating characteristic (ROC) curve was plotted to evaluate the capability of the susceptibility genes to 
distinguish the AR state. Based on the WGCNA in the GSE19187 data set, 10 co-expression network modules were identified. 
The correlation analyses revealed that the yellow module was positively correlated with the disease state of AR. A total of 
89 genes were found to be involved in the enrichment of the yellow module pathway. Four genes (CST1, SH2D1B, DPP4, and 
SLC5A5) were upregulated in AR and sensitive to allergen challenge, whose potentials were further confirmed by ROC curve. 
Taken together, CST1, SH2D1B, DPP4, and SLC5A5 are susceptibility genes to AR.

Allergic rhinitis (AR) is one of the most prevalent chronic 
conditions around the world, with people of all ages exhib-
iting various symptoms, such as repetitive sneezing, nasal 
itching, rhinorrhea, as well as nasal obstruction.1 AR has 
been linked with diminished quality of life, reduced sleep 
quality, and cognitive function, as well as heightened irri-
tability and fatigue.2 Although valiant efforts have been 
made to alleviate the symptoms of AR as well as to iden-
tify the finer molecular mechanisms associated with its 
pathological changes of the nasal mucosa, the treatment 
of AR remains a challenging task, highlighting the impor-
tance of identifying the key molecular and genetic entities 
that trigger AR pathologies, which may ultimately lead us 

to discover new targets for the treatment of AR.3 More re-
cently, genes that regulate immune responses have been 
shown to contribute to the increased risk of AR, with the 
relationship among AR, TLR4, and CD14 implicated in the 
occurrence of AR.4 However, the current evidence cannot 
fully explain the high incidence of AR.

At present, gene therapy has been identified as a poten-
tial method for the treatment of allergic airway diseases, 
including seasonal AR, so it is critical to retrieve candi-
date target molecules for the treatment of AR.5 The Gene 
Expression Omnibus (GEO) database provides a flexible 
and open design for submitting, storing, and retrieving 
heterogeneous data  sets from high-throughput gene 
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
✔  Allergic rhinitis (AR) is one of the most prevalent 
chronic conditions around the world with its pathogen-
esis arising due to both genetic and environmental fac-
tors. The increased risk of AR is associated with genes 
that regulate immune responses, such as TLR4 and 
CD14.
WHAT QUESTION DID THIS STUDY ADDRESS?
✔  What are the susceptibility genes to AR?

WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
✔  Four genes (CST1, SH2D1B, DPP4, and SLC5A5) were 
upregulated in AR and sensitive to allergen challenge, 
suggesting that CST1, SH2D1B, DPP4, and SLC5A5 are 
susceptibility genes to AR.
HOW MIGHT THIS CHANGE CLINICAL PHARMA- 
COLOGY OR TRANSLATIONAL SCIENCE?
✔  Investigation of susceptibility genes in AR and their 
functions yields a better understanding of mechanisms 
underlying AR and may have potentially important thera-
peutic implications in the treatment of AR.
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expression and genomic hybridization experiments.6 The 
Kyoto Encyclopedia of Genes and Genomes (KEGG; http://
www.genome.jp/kegg/), a database of biological systems, 
integrates genomic, chemical, and systemic functional in-
formation.7 Tremendous efforts have been made to identify 
differentially expressed genes (DEGs) in AR using microar-
ray data. For instance, the Gene Ontology (GO) Biological 
Process (BP) and KEGG pathway enrichment analyses were 
adopted in a previous study, which found that FOS, JUN, 
and CEBPD may exert vital functions during the progression 
of seasonal AR.8 Meanwhile, another study also observed 
that CST1, CLC, and STAT1 were associated with AR by uti-
lizing the GEO database and KEGG analysis.9

The gene expression data sets (GSE19187 and GSE18574) 
uploaded from the GEO database, were used in the current 
study to perform a series of microarray analyses to iden-
tify novel AR targets by detected the biological function of 
DEGs involved in progression of AR. A weighted gene co- 
expression network analysis (WGCNA) was used to identify 
the gene modules associated with AR followed by identifi-
cation of the DEGs between patients with AR and healthy 
individuals. Moreover, GO and ClueGO pathway enrichment 
analysis was performed for the genes in the yellow module 
that was positively correlated with AR. The intersection among 
DEGs, sensitive genes to allergen challenge, and genes in the 
yellow module was verified as susceptibility genes to AR. 
Additionally, potentials of susceptibility genes for prediction 
of the disease state were also investigated based on the re-
ceiver operating characteristic (ROC) curve. The purpose of 
this study was to identify the potential target genes and ex-
plore the underlying mechanisms in the pathogenesis of AR.

MATERIALS AND METHODS
Microarrays
Gene expression profile and gene annotation files of 
AR-related microarrays GSE19187 and GSE18574 were 
downloaded from the GEO database (https ://www.ncbi.nlm.
nih.gov/geo/).10 The GSE19187 data set consisted of 38 sam-
ples, was classified into four categories, namely: 14 isolated 
rhinitis (R), six rhinitis with uncontrolled asthma, seven rhini-
tis with controlled asthma, and 11 healthy subjects (control). 
Only healthy individuals and patients with AR were used for 
the subsequent WGCNA and DEG screening process. The 
sequencing tissue in the microarray was epithelial cell, and 
all the patients were allergic to dust mite.11 GSE19187 data 
referred to data of healthy individuals and patients with AR. 
The gene annotation platform of GSE19187 database was 
GPL6244 (HuGene-1_0-st) Affymetrix Human Gene 1.0 ST 
Array (transcript (gene) version). GSE18574 was comprised 
of samples from three patients with AR; each separated into 
allergen-challenged samples and unchallenged controls, 
among which grass pollen extract was the allergen of allergen- 
challenged for screening the allergen-challenged suscep-
tibility genes in patients with AR. CD4+ cells were used as 
sequencing cells.12 The gene annotation platform of GSE18574 
was GPL2507 Sentrix Human-6 Expression BeadChip.

WGCNA
WGCNA was applied to calculate the correlation efficient, 
build hierarchical clustering tree, and divide the genes 

with high co-expression into the same module based on 
their respective expression levels. Based on the data 
of the healthy individuals and patients with AR from the 
GSE19187 data set, a co-expression network module was 
constructed with R software and the WGCNA package uti-
lized.13 In order to satisfy the premise of scale-free network 
distribution among genes in the co-expression network, an 
adjacency matrix weight parameter β value was set at 1–20 
during the current study. The One-step network construc-
tion and module detection method were used to construct 
co-expression network module.

The correlation analysis and identification of AR-
related modules
After the genes had been divided into different modules by 
the WGCNA analysis, the correlation among different mod-
ules was calculated with the correlation heatmap used to 
help identify visualize the correlation between all the mod-
ules. The GSE19187 data set contains the clinical information, 
including the disease state, sex, and age of the samples. In 
an attempt to further investigate the correlation between the 
module and the disease, the correlation between the module 
and the clinical factors was evaluated to detect the module 
with the greatest susceptibility to AR, with the WGCNA pack-
age in R software (Vienna, Austria) used for analysis.

Enrichment analysis
In order to assess their biological function, the module 
genes were extracted and the function enrichment analy-
sis of GO BP, cellular component, and molecular function 
was carried out via clusterProfiler package14 in R software 
after extraction of the AR-related modules utilized. The 
Benjamini-Hochberg multiple hypothesis test was used to 
correct the enrichment results with adjusted P < 0.05 set 
as the threshold. ClueGO, a CytoScape plug-in that al-
lows functional annotation of genes, was used for signaling 
pathway enrichment analysis of key module genes to fur-
ther visualize the interrelation networks between genes and 
pathways. The gene enriched into the pathway was defined 
as the module pathway-gene.

DEG screening
The DEGs of AR were screened out using R software, 
based on the microarray data of the healthy individuals as 
well as the patients with AR in GSE19187. The DEGs that 
were easily affected during the allergen challenged were 
identified from the GSE18574 microarray accordingly. The 
affy package in R software15 was used to pre-process 
the expression of the microarray. The Limma package16 
was applied for DEG screening, and the genes with an 
adjusted P value < 0.05 and |log2 fold change| > 1.0 were 
selected as the DEGs. The P value was corrected using 
the false discovery rate method. The heatmap of DEGs 
was plotted with the pheatmap package (https ://cran.r-
proje ct.org/web/packa ges/pheat map/index.html). By 
comparing the DEGs with the module pathway-gene, the 
intersection genes were identified, which were the mod-
ule pathway-genes that were differentially expressed in 
AR and easily affected by allergen challenge were the key 
genes in AR.

http://www.genome.jp/kegg/
http://www.genome.jp/kegg/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://cran.r-project.org/web/packages/pheatmap/index.html
https://cran.r-project.org/web/packages/pheatmap/index.html
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ROC curve analysis
In order to investigate the effect associated with gene expres-
sion on the disease state of AR, the ROC curve was plotted 
based on the gene expression data from the GSE19187 and 
the state of the sample, with the gene expression accuracy 
assessed accordingly. The pROC package17 in R software 
was used to plot ROC curves. The weight of each gene was 
determined using the entropy weight method, with the ROC 
curve of four genes subsequently plotted. The area under 
the curve (AUC) obtained from an ROC curve analysis was 
utilized to assess the biomarker accuracy. The sensitivity 
and specificity for each gene was separately calculated in 
addition to the cutoff values acquired from the ROC curve.

Statistical analysis
The statistical package R version 3.5.1 was applied to anal-
yses gene expression data. The “affy” and “limma” were 
used to analyze the standardized correction differences of 
microarray data. The “WGCNA” package was utilized for 
gene co-expression module analysis, and the “clusterpro-
filer” package was used for functional enrichment analysis 
of the DEGs. The “pROC” package was used to plot an ROC 
curve and calculate the AUC value. An adjusted P < 0.05 
value following false discovery rate correction was consid-
ered to be statistically significant.

RESULTS
WGCNA analysis
The flow diagram of our protocol is shown in Figure  S1. 
GSE19187 expression data and annotation files were down-
loaded from the GEO database. In order to construct the 
co-expression module, the expression data of both the 
healthy individuals as well as the patients with AR were 
extracted from GSE19187, after which the expression pro-
files were annotated to 19,976 genes. The SD value of each 
gene was calculated, followed by ranking of the top 25% 
of genes (4,994 genes) in descending order followed by 
WGCNA analysis. In order to evaluate the outliers of the 
samples, sample clustering methods were used based on 

the distribution of the expression values of the samples 
(Figure 1a), with no significant difference detected in the 
samples included in the WGCNA. A scale-free topology 
index and mean connectivity were applied during the cur-
rent study to determine the soft-threshold in WGCNA. The 
higher the scale-free topology index value was indicative of 
a strong probability of a nonscale feature. Power = 5 was 
selected in the event of the correlation coefficient between 
log (k) and log P (k) reached 0.9 for the first time (Figure 1b).

Module selection
After determination of the optimal soft-threshold = 5, both 
the relatively balanced scale independence and the mean 
connectivity of WGCNA were ensured accordingly. Within 
the gene co-expression network module recognition, the 
maximum number of genes processed by computer was 
maxBlockSize = 6,000, the minimum number of genes of 
each module was minModuleSize  =  30, and the module 
merge threshold was set as mergeCutHeight = 0.25. The 
10 identified modules are depicted in Figure 2a, whereby 
the different modules were marked using different colors. 
The modules in gray were reflective of genes that were not 
divided into any other module, and a smaller number was 
considered to be representative of a superior result. The 
turquoise, blue, and brown were found to have the largest 
number of genes, with 1,660, 1,274, and 480 genes, respec-
tively. The detailed distribution of genes in each module can 
be seen illustrated in Figure 2b.

The correlation analysis between modules and the 
recognition of the key module
The co-expression of the genes of the modules in blue, tur-
quoise, brown, and red was relatively high. The correlation 
between the module genes is illustrated in Figure  3a. In 
order to further explore the relationship between modules, 
the correlation between modules was calculated accord-
ingly (Figure 3b). A hierarchical clustering tree (Figure 3c) 
was plotted to observe the similarity between the modules, 
after which 10 co-expression modules from WGCNA were 

Figure 1 WGCNA processing for AR data set GSE19187. (a) Sample clustering dendrogram from WGCNA; (b, c) power value for the 
adjacency matrix in WGCNA, where the red line signals 0.9 on the vertical axis. AR, Allergic rhinitis; WGCNA, weighted gene co-
expression network analysis.
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divided into 2 categories, these modules clustered into the 
same large class had a certain similarities in terms of their 
gene expression trends, which was also detected based 
on our analysis of the correlation heatmap in Figure 3b. In 
order to obtain the gene modules closely related to AR, the 
relevant clinical information of the sample was extracted 
from the microarray, and the correlation between the above 
10 different color modules and the 3 clinical characteristics 
of age, sex, and disease state were analyzed. The heatmap 
of the module and the clinical correlation is demonstrated in 
Figure 3d. We observed that the yellow module shared the 
closest correlation to AR, which was identified to be a pos-
itive association. The correlation coefficient reached 0.54, 
which was considered to be an indication that the genes 
in this module were highly likely to be positively affected 
by the development of the disease. The gray module was 
found to be negatively correlated with AR, and the genes in 
the gray module could not be divided into any of the mod-
ules. Thus, based on the results obtained, we concluded 
that the genes in this module may not directly influence 
the development of the disease. In addition, the correlation 
coefficient between the magenta module and the disease 
status was found to be −0.3, suggesting that the genes in 
this module could be negatively correlated with disease 
status, which was still notably lower than the yellow mod-
ule. The higher the correlation with the disease, the greater 
the potential for disease, hence, highlighting the yellow 
module as a key AR module. The core genes closely related 
to AR were obtained through the application of an in-depth 
analysis of the genes in the module.

GO enrichment analysis
Based on the aforementioned correlation analysis of the 
WGCNA co-expression modules and clinical features, 
the yellow module has the highest correlation with AR. In 
order to identify the biological functions of the genes in-
volved in the module, 325 genes were extracted from the 
yellow module. The GO enrichment analysis was performed 
using R software. The genes in the yellow module were 

then markedly enriched in BP terms, including extracellular 
matrix organization, cornification, extracellular structure or-
ganization, epidermis development, regulation of peptidase 
activity (Figure 4a), and also enriched in cellular compo-
nent terms, such as extracellular matrix, proteinaceous 
extracellular matrix, extracellular matrix component, base-
ment membrane, and the basolateral plasma membrane 
(Figure 4b), all of which were associated with the cell ma-
trix. Regarding the molecular function terms, genes in the 
yellow module were predominantly enriched in peptidase 
regulator activity, endopeptidase inhibitor activity, endo-
peptidase regulator activity, peptidase inhibitor activity, 
and growth factor binding (Figure  4c). The obtained re-
sults indicated that the aforementioned items were strongly 
involved in the development of AR. The number of items 
associated with peptidase regulation occurred frequently 
in GO analysis, suggesting a higher association with AR. 
Reported studies have shown that the regulation of pepti-
dase activity was closely related to AR, which indicated that 
our previous analysis was reasonable and credible.

ClueGO pathway enrichment analysis
With an aim to understand the information related to the 
signaling pathways involved in the development of AR, 
enrichment analysis of KEGG signaling pathway was con-
ducted on the gene in the co-expression yellow module 
using the CytoScape plug-in ClueGO. Following that, the 
correlation between the gene and the pathway was an-
alyzed in an attempt to elucidate the relevant details of 
the metabolic pathway in AR. As depicted in Figure  5, 
the genes in the yellow module were markedly enriched 
in pathways such as arachidonic acid (AA) metabolism, 
extracellular matrix (ECM)-receptor interaction, p53 sig-
naling pathway, focal adhesion, mucin type O-glycan 
biosynthesis, and amoebiasis. There were 89 genes iden-
tified to be involved in the enriched pathway in the yellow 
module, and our observations revealed that the yellow 
module was positively related to the disease state. The 
results suggested that the aforementioned genes were 

Figure 2 The number of modules and genes from WGCNA. (a) The cluster dendrogram of genes in GSE19187 with each branch 
representing a gene, and each color representative of a co-expression module; (b) the number of co-expression module genes 
identified by WGCNA, and the number in parentheses of the legend represents the number of genes in each module. WGCNA, 
weighted gene co-expression network analysis.
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involved in the regulation of the AP through the pathway, 
which were subsequently used for the module path-
way-gene analyses.

Identification of DEGs
The occurrence of AR has been strongly correlated with 
a large variety of allergens. To further our understanding 

regarding the genes that are susceptible to allergens and 
had significant differences in AR, R software was used to 
analyze and screen DEGs in AR with the data from healthy 
individuals and patients with AR obtained from GSE19187 
dataset, and 24 DEGs were screened out. Only two genes 
were found to be poorly expressed in AR when compared 
with the findings among the healthy individuals, whereas 

Figure 3 The correlation between WGCNA modules. (a) The heatmap of co-expression gene module, where deeper color is 
reflective of a stronger correlation; (b) the heatmap of co-expression modules, where red for positive correlation and blue for negative 
correlation; (c) the clustering dendrogram for WGCNA co-expression modules in which shorter distance indicates higher similarity; (d) 
the correlation between WGCNA modules and the clinical features of the sample. Each row corresponds to a module, and the column 
corresponds to different clinical features. The numbers in the figure represent the correlation between the corresponding module 
and the clinical feature with the P value displayed in parentheses. The red represents a positive correlation, whereas blue indicates a 
negative correlation). WGCNA, weighted gene co-expression network analysis.
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Figure 4 GO enrichment analysis of genes in the yellow module. (a) Significant BP terms; (b) significant CC terms; (c) significant MF 
terms. Vertical axis represents GO terms. Circle size represents the number of genes significantly enriched in each GO term. P values 
are marked in different colors. BP, biological process; CC, cellular component; GO, gene ontology; MF, molecular function.
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the other 22 genes all exhibited high expression levels. 
The heatmap of DEGs is displayed in Figure 6a. Of the 24 
genes analyzed, our results suggested a strong likelihood 
that they are involved in the development of AR. GSE18574 
demonstrates data of allergen-challenged and unchal-
lenged patients with AR. Genes that were sensitive to 
allergen challenge were screened out. In the patients with 
AR, the expression of 2,218 genes was changed after aller-
gen challenge, therefore, these genes were deemed to be 
susceptible to the allergen challenge. The heatmap of the 
top 50 DEGs is illustrated in Figure 6b.

Allergen sensitive gene in AR
The three major types of genes were selected through 
the aforementioned analyses were as follows: 89 path-
way-genes in the yellow module were screened through 
WGCNA; 24 DEGs in the GSE19187 data set expressing 
differentially in the patients with AR and healthy individ-
uals, and 2,218 sensitive genes to allergen challenge in 
the GSE18574 data  set. The comparison among these 
three types of genes, revealed there to be five inter-
secting genes: cystatin SN (CST1), SH2D1B, dipeptidyl 
peptidase 4 (DPP4), SERPINB2, and SLC5A5 (Figure 7a), 
with the expression of these five genes in AR was higher 
than that in healthy individuals in the GSE19187 data set 
(Figure 7b). In addition, in the GSE18574 data set, CST1, 
SH2D1B, DPP4, and SLC5A5 were also highly expressed 
after the allergen challenged in patients with AR, with only 
low expression of SERPINB2 detected (Figure 7c). CST1, 
SH2D1B, DPP4, and SLC5A5 were expressed differently 
in AR and easily affected by allergens, highlighting the 

notable role of these genes in the development of AR. 
Based on the CST1, SH2D1B, DPP4, and SLC5A5 ex-
pression data in GSE19187 and the disease state of the 
samples, an ROC curve was plotted to evaluate the signif-
icance of these four genes in AR. As depicted in Figure 7d, 
the AUC of these four genes was >0.8, indicating these 
genes could be used to identify AR. Among these four 
genes, the AUC value of the CST1 gene reached 0.985, 
indicating that this gene was more suitable as a marker 
gene for AR than the other three genes. With four genes 
as a gene data set, the weight of each gene was calcu-
lated using the entropy weight method. The ROC curve of 
four gene data sets was constructed, after which the AUC 
value was calculated accordingly (Figure 7e). The results 
obtained revealed that the AUC value was 0.981 when 
using the four genes as a gene data set for the diagnosis 
of AR, highlighting the ability of these four genes as good 
markers for AR.

DISCUSSION

AR is a complex disorder with its pathogenesis arising 
due to both genetic and environmental factors results in 
its pathogenesis.18 There were ~  400  million people who 
have AR in the Asia-Pacific area, which had a tremendous 
influence on quality of life, performance at school, and in 
the workplace and caused a huge socio-economic burden, 
thus, more understanding on AR diagnosis, epidemiology, 
risk factors, and prevention is urgently needed.19 At pres-
ent, the factors that negatively impact nasal conditioning 
in patients with AR have not been systematically evaluated, 

Figure 6 Heatmap of DEGs between patients with AR and the healthy individuals. (a) The heatmap of DEGs in GSE19187; (b) the 
heatmap of the top 50 DEGs between allergen challenged and unchallenged patients with AR in GSE18574. Each row represents a 
sample number; each column represents a single gene. The gradual color change from red to blue represents the changing process 
from upregulation to downregulation. Allergen, sample challenged by allergen; AR, allergic rhinitis; control, samples free of allergen 
challenge; DEGs, differentially expressed genes.
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with accumulating studies highlighting the roles of microR-
NAs20 as well as long non-coding RNAs3 in the disease 
pathology from a gene expression regulation perspective. 
In order to elucidate the molecular mechanisms underly-
ing the progression of AR, the current study was set out 
through the use of WGCNA to identify gene modules as-
sociated with progression of AR. A key observation of the 
current study revealed the DEGs that were particularly 
sensitive to the allergen challenge in AR (CST1, SH2D1B, 
DPP4, and SLC5A5) were significantly enriched with several 
GO terms and ClueGO pathways, such as AA metabolism, 
ECM-receptor interaction, p53 signaling pathway, focal ad-
hesion, mucin type O-glycan biosynthesis, and amoebiasis 
pathways.

As a member of the type 2 cystatin (CST) superfamily, 
CST1 has been reported to be capable of inhibiting the pro-
teolytic activities of cysteine proteases and is implicated in 
progression of several human cancers.21 CST1 is an endog-
enous cysteine protease inhibitor that is elevated in nasal 
epithelia in patients with AR.22 During natural allergen ex-
posure, CST1 has been reported to be overexpressed in 
patients with seasonal AR-cryptomeria japonica, and may 
inhibit cryptomeria japonica allergen-induced histamine re-
lease in vitro.23 Furthermore, a previous study ranked CST1 

as the number 1 differentially expressed mRNA in AR during 
an investigation aiming to construct an AR-specific tran-
scriptional regulatory network.9 The involvement of SH2D1B, 
also known as Ewing’s sarcoma transcript-2, has been im-
plicated in the modulation of signaling the lymphocytic 
activation molecule family receptor function.24 SH2D1B, is 
predominantly expressed in the innate immune cells, such 
as the macrophages and dendritic cells, whose upregula-
tion has been speculated to help modulate the kinetics of 
a series of vital proinflammatory cytokine and chemok-
ine responses.25 DPP4, also referred to CD26, is a type II 
transmembrane protein that exhibits enhanced levels in an 
extensive range of metabolic diseases involving diabetes, 
cardiovascular diseases, and obesity, as well as nonalco-
holic fatty liver diseases.26 Notably, the silencing DPP4 in 
hepatocytes has been reported to repress the inflammation 
seen in visceral adipose tissues as well as diminishing the 
insulin resistance associated with obesity.27 Evidence has 
demonstrated the involvement of DPP4 in certain immuno-
logical processes, which play a significant role in the lung’s 
allergic responses.28 The upregulation of DPP4 has been 
implicated in atopic dermatitis, as well as studies highlight-
ing its involvement in other inflammatory skin diseases as 
well.28 More recently, accumulating literature has emerged 

Figure 7 Susceptibility genes to AR were identified. (a) Five genes in the intersection of the pathway-genes in yellow module, DEGs in 
GSE19187 and sensitive gene to allergen challenge in GSE18574; (b) the expression of CST1, SH2D1B, DPP4, SERPINB2, and SLC5A5 
in GSE19187; (c) the expression of CST1, SH2D1B, DPP4, SERPINB2, and SLC5A5 in GSE18574; (d) expression of CST1, SH2D1B, 
DPP4, SLC5A5, and ROC curve of AR; (e) ROC curve of four genes as gene collection for patients with AR. *P < 0.05; **P < 0.01; 
***P < 0.0001. AR, allergic rhinitis; DEGs, differentially expressed genes; ROC, receiver operating characteristic.
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providing evidence emphasizing the crucial role of DPP4 in 
the immune system, especially in the release of T cells.29 The 
solute carrier family 5 member 5 (SLC5A5, National Inpatient 
Sample) gene, located on chromosome 19 (19p13.11), en-
codes a highly specialized 80–90  kDa transmembrane 
glycoprotein that helps to regulate the active transport of io-
dide from the blood into the follicular cells.30 Guerrieri et al.31 
concluded that SLC5A5 is a direct target gene of the p53 
signaling pathway and suggested that the DNA-damaging 
agents-mediated SLC5A5 could hypothetically potentiate its 
upregulation in vivo. Solute-linked carrier has been linked 
to disease resistance and susceptibility in animals, with re-
search proposing its potential as an essential mechanism 
in the mediation against intracellular infection.32 Those find-
ings were largely inconsistent with the findings of the current 
study, whereby these five genes were all markedly elevated 
in AR, and displayed sustained high levels following allergen 
challenge.

AA metabolism has been shown to trigger a large re-
lease of a number of inflammatory regulators, including 
leukotrienes and prostaglandins, which may be involved 
in numerous inflammatory-associated diseases, such as 
asthma, rheumatoid arthritis, as well as various types of can-
cers.33 Similarly, reports have indicated that AA metabolism 
and the p53 signaling pathway as the most strongly associ-
ated pathways involved with AR. Apart from AA metabolism 
and the p53 signaling pathway, the DEGs in AR also highlight 
the role of ECM-receptor interaction. Pathologically, ECM 
remodeling and infiltration of inflammatory cells are closely 
correlated to eosinophilic asthma,34 highlighting its potential 
in the treatment of AR, a condition related to asthma. More 
recently, literature has emerged providing findings about 
focal adhesion regulating cell migration in AR.35 Interestingly, 
the DEGs in enchondromas were primarily associated with 
ECM-receptor interaction, focal adhesion, and amoebia-
sis as well.36 Besides, mucin type O-glycan biosynthesis 
pathway has been previously reported to be significantly en-
riched in upregulated miRNAs in chronic rhinosinusitis with 
nasal polyps use, as per the KEGG database.37 To verify the 
results of bioinformatics analysis, we used ROC curve to 
predict the prognostic value of these susceptibility genes, 
which were significantly correlated with the state of AR.

CONCLUSION

Taken together, the key findings revealed a total of four 
genes, including CST1, SH2D1B, DPP4, and SLC5A5 as 
potential AR biomarkers. The current study provides evi-
dence for the diagnosis and treatment of AR in the future. 
However, our study has certain limitations, such as the 
application of only the ROC curve to predict the prog-
nostic value of the susceptibility genes, as well as a small 
sample size, a lack of validation cohort, and a lack of AR 
severity data, all of which might influence our results. In 
addition, the data  set is not sufficiently robust, and the 
reproducibility has not been determined. The prognostic 
utility of these markers has to be explored in patients with 
AR and further studies need to be conducted to exam-
ine the underlying mechanisms and related pathways of 
these genes.

Supporting Information. Supplementary information accompa-
nies this paper on the Clinical and Translational Science website (www.
cts-journal.com).

Figure S1. The flow diagram of our protocol.
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