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a b s t r a c t 

Infectious disease interventions like contact precautions and vaccination have proven effective in disease 

control and elimination. The priority given to interventions can depend strongly on how virulent the 

pathogen is, and interventions may also depend partly for their success on social processes that respond 

adaptively to disease dynamics. However, mathematical models of competition between pathogen strains 

with differing natural history profiles typically assume that human behaviour is fixed. Here, our objective 

is to model the influence of social behaviour on the competition between pathogen strains with differing 

virulence. We couple a compartmental Susceptible-Infectious-Recovered model for a resident pathogen 

strain and a mutant strain with higher virulence, with a differential equation of a population where in- 

dividuals learn to adopt protective behaviour from others according to the prevalence of infection of the 

two strains and the perceived severity of the respective strains in the population. We perform invasion 

analysis, time series analysis and phase plane analysis to show that perceived severities of pathogen 

strains and the efficacy of infection control against them can greatly impact the invasion of more viru- 

lent strain. We demonstrate that adaptive social behaviour enables invasion of the mutant strain under 

plausible epidemiological scenarios, even when the mutant strain has a lower basic reproductive number 

than the resident strain. Surprisingly, in some situations, increasing the perceived severity of the resident 

strain can facilitate invasion of the more virulent mutant strain. Our results demonstrate that for certain 

applications, it may be necessary to include adaptive social behaviour in models of the emergence of vir- 

ulent pathogens, so that the models can better assist public health effort s to control infectious diseases. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Modern approaches to developing a theory of the spread

f infectious diseases can be traced to 1927 when Kermack

nd McKendrick developed an integro-differential equation model

ow widely described as the SIR (Susceptible-Infected-Recovered)

odel ( Kermack and McKendrick, 1932 ). The model tracks changes

n the number of individuals susceptible to an infection S ( t ) , the

umber of infected individuals I ( t ) , and (implicitly) the number

f recovered individuals R ( t ) . Compartmental models such as the

IR model are useful for mechanistic modelling of infection trans-

ission in populations. They have since been further developed

o study the evolution and epidemiology of multiple species of

athogens in a population or different strains of the same species

 Frank, 1996 ). Some models focus on between-host competition

hile some others on within-host competition ( Mideo et al., 2008 ).

ull suggested in the 1990s that coupling inter-host and intra-host
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ynamics in models may be desirable ( Bull, 1994 ). Models link-

ng between-host transmission dynamics to within-host pathogen

rowth and immune response are now becoming commonplace

 Alizon and Fraser, 2013; Feng et al., 2013; 2012; Handel and Ro-

ani, 2015; Mideo et al., 2008 ). One such approach is to link host

iral load (which is a necessary condition of virulence) to the

etween-host transmission rate. 

Compartmental models have also been used to study the phe-

omenon of pathogen virulence–the rate at which a pathogen in-

uces host mortality and/or reduces host fecundity ( Anderson and

ay, 1982; Cressler et al., 2016; Murall et al., 2015; Thomas and

lkinton, 2004 ). It was initially believed that hosts and parasites

o-evolved to a state of commensalism (whereby parasites ben-

fit from their host without harming them) ( Simon et al., 1960;

wellengrebel et al., 1940 ) but this hypothesis was later challenged

 Alizon et al., 2009 ). In mathematical models, virulence is often

reated as a fixed model parameter expressing the excess mortal-

ty rate caused by the pathogen. For instance, virulence has been

ssumed to depend on the intrinsic reproductive rate of the par-

site ( Bremermann and Pickering, 1983 ). Other research expresses

https://doi.org/10.1016/j.jtbi.2018.06.028
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jtbi
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2018.06.028&domain=pdf
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the transmission rate β and the recovery rate μ in terms of a pa-

rameter ν that represents virulence ( Day, 2001 ). When the impact

of human behaviour is discussed in such models, it is discussed

in terms of hypothesized effects of human behaviour on the value

of the fixed parameter representing virulence. A Human Immun-

odeficiency Virus (HIV) virulence model by Massad (1996) shows

that reducing the number of sexual partners could possibly drive

HIV to be a more benign pathogen. However, the model assumes

that the number of sexual partners can simply be moved up or

down as a model parameter, whereas in reality the number of sex-

ual partners in a population is the outcome of a dynamic socio-

epidemiological process that merits its own mechanistic modelling,

and itself responds to pathogen virulence. In general, these mod-

els do not treat human behaviour as a dynamic variable that can

evolve in response to transmission dynamics and influence the

evolution of virulence. (A few exceptions exist, including work

that allows virulence to be a function of the number of infected

hosts, thus capturing a situation where the magnitude of the epi-

demics affects the ability of health care services to host patients

( Dieckmann, 2002 ).) However, as human responses to both en-

demic and emerging infectious diseases show, human behaviour

can have a significant influence on how infections get transmitted.

For instance, an early and well-documented example shows how

the residents of the village of Eyam, England quarantined them-

selves to prevent the spread of plague to neighbouring villages

( Scott and Duncan, 2001 ). Individuals moved to less populated ar-

eas during the Spanish Influenza pandemic in the early 20th cen-

tury ( Crosby, 2003 ). More recently, masks became widely used dur-

ing the outbreak of the Severe Acute Respiratory Syndrome (SARS)

at the beginning of the 21st century ( Lau et al., 2005 ), and it has

been shown pathogen virulence in Marek’s disease can evolve in

response to how vaccines are used ( Read et al., 2015 ). 

Theoretical models of the interactions between human be-

haviour and the spread of infectious diseases are increasingly stud-

ied ( Bauch and Bhattacharyya, 2012; Bauch et al., 20 03; 20 05;

Fast et al., 2015; Funk et al., 2010; Pandey et al., 2014; Shaw

and Schwartz, 2008 ). For instance, Bagnoli et al. (2007) found

that under certain conditions, a disease can be driven extinct by

reducing the fraction of the infected neighbours of an individ-

ual. Zanette and Risau-Gusmán (2008) showed that if suscepti-

ble individuals decide to break their links with infected agents

and reconnect at a later time, then the infection is suppressed.

Gross et al. (2006) also shows that rewiring of edges in a network

(and thus social interaction) can greatly influence the spread of in-

fectious diseases. Of the compartmental models, we focus on those

that have used concepts from evolutionary game theory such as

imitation dynamics ( Bauch and Earn, 2004 ) to describe the evo-

lution of behaviour and its interplay with the epidemics. An ex-

ample of imitation dynamics concerns, as described in detail in

Bauch (2005) , the effect of vaccination on the spread of infectious

diseases. Each individual in the population picks one strategy and

adopts it: “to vaccinate” or “not to vaccinate”. The proportion of

vaccinators is modelled using an ordinary differential equation and

is coupled with a standard SIR model. An important aspect of be-

havioural models is to couple them with epidemiological processes

such as transmission. This coupling creates a feedback loop be-

tween behaviour and spread of the disease. 

Given that adaptive social behaviour is important in many as-

pects of infection transmission, we hypothesize that adaptive social

behaviour can also influence selection between pathogen strains

with differing virulence in ways that cannot be captured by as-

suming it to be represented by a fixed parameter. Our objective

in this paper was to explore how behaviour and virulence influ-

ence one another, in a coupled behaviour-disease differential equa-

tion model. The model allows individuals who perceive an increase

in the prevalence of infection to increase their usage of practices
hat reduce transmission rates (such as social distancing and hand-

ashing) and thereby boost population-level immunity. This ap-

roach can help us understand the effects specific social dimen-

ions, such as level of concern for a strain or the rate of social

earning, on the coupled dynamics of pathogen strain emergence

nd human behaviour in a situation where virulence imposes evo-

utionary trade-offs and is strain-specific. Instead of considering

ong-term evolutionary processes with repeated rounds of muta-

ion and selection, we focus on the case of invasion of a single mu-

ant strain with a large phenotypical difference compared to the

esident strain. In the next section, we describe a model without

daptive social behaviour as well as a model that includes it, and

n the following Results section we will compare their dynamics. 

. Model 

We compare dynamics of a two-strain compartmental epidemic

odel in the presence and absence of adaptive social behaviour.

ndividuals are born susceptible ( S ). They may be infected either

y a resident strain ( I 1 ) or a mutant strain ( I 2 ). For simplicity, we

ssume that co-infection and super-infection are not possible. In-

ected individuals can either recover ( R ) or die from infection. We

urthermore assume that recovery from either strain offers perma-

ent immunity to both strains. The system of differential equations

epresenting the SI 1 I 2 R model in the absence of adaptive social be-

aviour (we will refer to this as the “uncoupled model” through-

ut) is given by 

dS 

dt 
= μ − δS − β1 SI 1 − β2 SI 2 , 

dI 1 
dt 

= β1 SI 1 − (γ1 + δ + ν1 ) I 1 , 

dI 2 
dt 

= β2 SI 2 − (γ2 + δ + ν2 ) I 2 , 

dR 

dt 
= γ1 I 1 + γ2 I 2 − δR, (1)

here β1 ( β2 ) represents the transmission rate of the resident

mutant) strain; γ 1 ( γ 2 ) represents the recovery rate from the res-

dent (mutant) strain; ν1 ( ν2 ) represents the death rate from the

esident (mutant) strain due to infection (virulence); μ is a birth

ate and δ is the background death rate. All variables represent the

umber of individuals with the given infection status (for instance,

 is the number of susceptible individuals). Since R does not ap-

ear in the other equations, we can omit R from the analysis. 

The system of differential equations in the presence of adap-

ive human behaviour couples the SI 1 I 2 R epidemic spread with a

ifferential equation for human behaviour (“coupled model”). Each

ndividual in the population can choose to accept or reject be-

aviours that reduce infection risk (e.g. washing hands, wearing a

ask, social distancing), and individuals imitate successful strate-

ies observed in others. Let x represent the proportion of individu-

ls accepting preventive behaviour (we will call these “protectors”).

ndividuals sample others in the population at rate κ , representing

ocial learning. The choice is based on the perceived severity ω 1 

resp. ω 2 ) from the resident (resp. mutant) strain, where ω 1 (resp.

 2 ) can be quantified as the probability that an infection by the

esident (resp. mutant) strain results in a severe case of disease.

he more severe cases the population observes, the more attrac-

ive preventive behaviour becomes: we assume that individuals re-

pond to the total number of severe cases ω 1 I 1 + ω 2 I 2 they observe

t a given time. Preventive behaviour is not always completely ef-

ective. We introduce efficacy of infection control ε1 ( ε2 ) against

he resident (mutant) strain. The efficacy of infection control influ-

nces the transmission process. The more effective infection con-

rol is against a strain, the less likely it will be transmitted. 
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More formally, the preceding imitation dynamic (or equiva-

ently, replicator dynamic) assumes that each individual samples

thers as a fixed rate, and if another person is found to be play-

ng a different strategy but is receiving a higher payoff, the indi-

idual switches to their strategy with a probability proportional

o the expected gain in payoff ( Hofbauer and Sigmund, 1998 ).

hese assumptions give rise to a differential equation of the form

 x/d t = kx (1 − x )	U where k is the sampling rate and 	U is the

ayoff difference between the two strategies. This equation is de-

ived elsewhere and is used in other socio-ecological and socio-

pidemiological models ( Bauch, 2005; Bauch et al., 2016; Hender-

on et al., 2016; Oraby et al., 2014 ). The augmented system of dif-

erential equations representing the coupled social-epidemiological

I 1 I 2 RX model with adaptive human behaviour is therefore given

y: 

dS 

dt 
= μ − δS − β1 (1 − ε1 x ) SI 1 − β2 (1 − ε2 x ) SI 2 . 

dI 1 
dt 

= β1 (1 − ε1 x ) SI 1 − (γ1 + δ + ν1 ) I 1 . 

dI 2 
dt 

= β2 (1 − ε2 x ) SI 2 − (γ2 + δ + ν2 ) I 2 . 

dR 

dt 
= γ1 I 1 + γ2 I 2 − δR. 

dx 

dt 
= κx (1 − x )(w 1 I 1 + w 2 I 2 − 1) . (2) 

e apply the restrictions ε i ∈ [0, 1] and ω i ≥ 0. 

Baseline parameter values are summarized in Table 1 . We chose

arameter values to represent an emerging infectious disease with

 relatively low basic reproduction number and an acute-self lim-

ted infection natural history, as might occur for viral infections

uch as ebola or influenza. Recruitment is assumed to occur due to

irths and immigration at a constant rate μ, while the per capita

eath rate due to all causes other than the infection is δ. The val-

es of μ and δ are obtained as the reciprocal of an average human

ifespan of 50 years. Note that γi + νi is the reciprocal of the aver-

ge time spent in the infected class before the individual recovers

r dies from infection. Since we are assuming that strain 2 is more

irulent, ν2 − ν1 = 0 . 05 /day can be considered as the excess death

ate due to infection from the more virulent strain 2. We assume

1 = β2 and therefore R 0 , 2 ≈ 1 . 6 < R 0 , 1 ≈ 2 . Hence, all else being

qual, the more virulent strain has a lower reproductive number

nd is therefore at a disadvantage to invade. We note that R does

ot appear in the other equations and hence could be omitted. 

We identify all equilibria of the uncoupled and coupled systems

nd determine their local stability properties. We study conditions

nder which the mutant strain successfully invades. Due to the

nalytical complexity of the coupled model, we rely primarily on

umerical simulations. We used MATLAB to run our simulations

nd generate parameter planes (ODE45, ODE23tb, and ODE15s). We

lso wrote MATLAB code to analyse the stable regions of all equi-

ibria versus a combination of parameters of interest. 

. Results 

.1. Invasion analysis: SI 1 I 2 R model 

The SI 1 I 2 R model has 3 equilibria ( Bichara et al., 2014 ). One

quilibrium is disease free and is stable when 

ax 

{ 

R 0 , 1 , R 0 , 2 

} 

< 1 . 

 0 , 1 (resp. R 0 , 2 ) is the basic reproductive number of the resident

mutant) strain, where R 0, i is given by 

 0 ,i = 

βi 

γi + δ + νi 

. 
he other two equilibria are endemic. Assuming that basic repro-

uctive numbers are not equal, strains can not co-exist and the

train with the higher basic reproductive number always invades. 

.2. Invasion analysis: SI 1 I 2 RX model 

In contrast, the addition of a dynamic social variable x ( t ) gener-

tes 9 equilibria for the SI 1 I 2 RX model. Two equilibria are disease

ree and the other equilibria are endemic. One of the 7 endemic

quilibria represents a state of coexistence of both strains (which

an occur even if basic reproductive numbers are not the same).

he analytical expression and stability criteria for the equilibrium

ith co-existing strains are difficult to compute and therefore, we

nalyze it numerically. 

If both basic reproductive numbers are less than 1, then the sys-

em is disease-free and social behaviour is not relevant. Assume,

n the other hand, that 1 < R 0 , 2 < R 0 , 1 (as in our baseline param-

ter values, Table 1 , and where the expressions for R 0 , 1 and R 0 , 2 

re the same as in the SI 1 I 2 R model and assume x = 0 . This corre-

ponds to a scenario where the resident strain is more transmis-

ible than the mutant strain. As already noted the mutant strain

an not invade in the absence of adaptive social behaviour ( SI 1 I 2 R

odel). However, in the presence of adaptive social behaviour, we

an derive necessary and sufficient conditions for the mutant strain

o invade when 1 < R 0 , 2 < R 0 , 1 : 

 2 > 

β2 

δ

1 

R 0 , 2 − 1 
1 −ε2 

, ε1 > 1 − R 0 , 2 

R 0 , 1 

(1 − ε2 ) . 

These results show that a high level of perceived severity from

he mutant strain is a necessary condition for invasion. However,

t has to be coupled with a sufficiently high efficacy of infection

ontrol against the resident strain (with ε1 > ε2 ). A high efficacy of

nfection control against the resident strain will effectively reduce

ts transmission and therefore creating a larger pool of suscepti-

le individuals for the mutant strain. The two conditions must be

et simultaneously to provide a necessary and sufficient condition

or invasion. The condition that ε1 > ε2 could easily be met in a

eal population if the two strains differ in their model of transmis-

ion, and the population has more experience with controlling the

esident strain than with the new mutant strain. Moreover, a high

alue of ω 2 could easily be met in a real population due to spread-

ng panic about a new and more virulent strain that public health

oes not yet know how to best control. 

We also consider necessary and sufficient conditions for failure

f invasion of the mutant strain: 

ω 1 > 

β1 

δ

1 

R 0 , 1 − 1 
1 −ε1 

, ε2 > 1 − R 0 , 1 

R 0 , 2 

(1 − ε1 ) , 

ω 2 < 

β2 

δ

1 

R 0 , 2 − 1 

. 

nvasion fails when perceived severity of the mutant strain is low

nough but also that of the resident strain high enough. Note the

ifference between invasion and failure to invade. Here, we require

onditions on both perceived severities. As predicted, if the efficacy

f infection control against the mutant strain is high enough (rel-

tive to that of the resident strain) then invasion fails. Again, all

hree conditions must be met jointly. Together, they create a nec-

ssary and sufficient condition for the failure of invasion. 

Finally assume that R 0 , 1 < R 0 , 2 (this scenario is not discussed

t length in this paper). In the absence of social behaviour, the

utant strain is bound to invade. However, we derive necessary

nd sufficient conditions for the failure of invasion when social be-

aviour is added to the system: 

 1 > 

β1 

δ

1 

R 0 , 1 − 1 
1 −ε1 

, ε2 > 1 − R 0 , 1 

R 0 , 2 

(1 − ε1 ) . 
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Note the difference between this case and the case when R 0 , 1 <

R 0 , 2 : there is no conditioning on ω 2 . If the mutant strain has

a higher fitness, it does not matter how severely it is perceived

(since individuals respond to the weighted sum of mutant and resi-

dent prevalence and the mutant is initially rare, hence the early re-

sponse is dominated by the resident). It will fail to invade provided

that the perceived severity of the resident strain is high enough

and that efficacy of infection control against the mutant strain is

high enough relative to the resident strain (with ε2 > ε1 ). Once

again we require both inequalities to be satisfied and together they

provide necessary and sufficient condition for the mutant strain to

fail invasion. 

We finally turn our attention to the invasion of the mutant

strain when it is more transmissible. The invasion is conditional:

necessary and sufficient conditions for the invasion of the mutant

strain are: 

ω 1 < 

β1 

δ

1 

R 0 , 1 − 1 

, ε1 > 1 − R 0 , 2 

R 0 , 1 

(1 − ε2 ) . 

In this scenario, a low perceived severity of the resident strain

will allow invasion of the mutant strain provided that the efficacy

of infection control against the resident strain is high enough. 

The addition of adaptive social behaviour to the epidemic

model introduced four new parameters, and it is clear that the

model permits conditions for the mutant strain to invade on ac-

count of behaviour, even when the mutant strain has a lower basic

reproductive ratio, as long as certain conditions for efficacy of in-

fection control are satisfied and level of concern about the severity

of the mutant strain are satisfied. To gain further insight into how

adaptive social behaviour influences the invasion of the more viru-

lent strain, we turn to numerical simulation and generation of time

series and parameter planes. 

3.3. Model time series 

We use time series of model simulations to illustrate some of

the model’s dynamical regimes. We consider the case where ν1 = 0

and ν2 = 0 . 25 and therefore R 0 , 1 > R 0 , 2 while assuming (for sim-

plicity) that β1 = β2 and μ1 = μ2 . Hence, the mutant strain is

more virulent and kills its hosts more quickly, giving it a signifi-

cantly lower basic reproduction number. We use a simulation time

horizon on the order of hundreds of years–although both pathogen

and social parameters could vary over this period, a long time hori-

zon ensures that the asymptotic model states are correctly charac-

terized, and thus enables us to meet our objective of gaining in-

sight into the types of dynamics exhibited by the model. 

We first consider a scenario where the mutant strain, on ac-

count of its greater virulence, is perceived to be ten times more

severe than the resident strain ( ω 2 = 10 5 = 10 ω 1 ). Moreover, infec-

tion control against the resident strain is much more effective, on

account of less being known about the modes of transmission of

the mutant strain (baseline values: ε1 = 0 . 7 > ε2 = 0 . 4 ). In this sce-

nario, the mutant strain invades ( Fig. 1 a). This agrees with the con-

ditions determined in our invasion analysis. We observe that the

mutant strain quickly displaces the resident strain and converges

to an endemic state where the proportion of protectors x remains

relatively high ( Fig. 1 a). On shorter timescales, we see a transient

phase at the start of the simulation with a sharp epidemic of the

resident strain, followed by periodic epidemics with much lower

incidence of the mutant strain ( Fig. 1 b,c). The numerical simula-

tions agree with the values computed from analytical expressions

at equilibrium (for sufficiently large values of t ). 

Decreasing the efficacy of infection control against the resi-

dent strain and equating it to that of the more virulent strain

( ε1 = ε2 = 0 . 4 , with all other parameter values at baseline values)

prevents the invasion of the mutant strain ( Fig. 1 d). This occurs
ecause more susceptible individuals will be infected by the resi-

ent strain, thereby significantly decreasing the pool of susceptible

ndividuals available for infection by the mutant strain. 

A surprising scenario under which the invasion of the mutant

train fails is when both perceived severity of the mutant strain

nd the efficacy of infection control against are low ( Fig. 1 e,f,

 2 = 10 2 and ε2 = 0 . 3 with other parameter values at baseline).

t is worth noting in this case that we initially have a few out-

reaks of the mutant strain with high incidence. Fig. 1 f represents

he same dynamics as Fig. 1 e but on a longer time scale. The oscil-

ations in the prevalence of infection and the prevalence of protec-

ors is typical of coupled behaviour-disease models with adaptive

ocial behaviour ( Bauch, 2005 ). 

It is difficult for both strains to co-exist without imposing ω 1 =
0 5 > ω 2 = 10 4 . If the resident strain is perceived to be ten times

ore severe, then co-existence is achieved via a transient but very

ong-term pattern of switching between oscillatory regimes be-

ore the system finally converges to an equilibrium of co-existence

 Fig. 1 g). The system switches between a longer-lived regime with

elatively small epidemics of the resident strain, and a shorter-lived

egime with very large epidemics of the mutant strain. Changes

n the proportion adopting contact precautions, x , facilitates the

witching. As x rises, it allows a series of periodic outbreaks of the

utant strain which in turn decreases the proportion of people

dopting prevention and starts a series of outbreaks of the resi-

ent strain. This loop continues with diminishing switching-period

s well as amplitude. If we bring back efficacies of infection control

o baseline values, this phenomenon persists but with wilder oscil-

ations in x . This happens because lower values of ε increase the

ffective transmission rate which in turns leads to rapid changes in

 . Fig. 1 h shows the same dynamics as in Fig. 1 g but on a shorter

imescale. 

We also allowed the perceived severities to be equally high

 ω 1 = ω 2 = 10 4 ) and we have increased the efficacies from their

aseline values ( ε1 = 0 . 9 and ε2 = 0 . 6 ) ( Fig. 1 i). We observe that

he mutant strain fails to invade and the prevalence of the resi-

ent strain remains relatively close to the initial condition. 

In order to refine our understanding of the influence of social

arameters on the invasion of the mutant strain, we proceed in

he next subsection with phase plane analysis that studies the in-

erplay between the parameters determining regions of invasion. 

.4. Parameter plane analysis 

Surprisingly, there are parameter regimes where increasing the

erceived severity of the resident strain ( ω 1 ) allows the mutant

train to invade ( Fig. 2 a–c). This occurs across a nontrivial portion

f parameter space despite the fact that R 0 , 2 < R 0 , 1 . This regime

hift occurs because a sufficiently high perceived severity of the

esident strain creates a large pool of susceptible individuals, and

oupled with a higher efficacy of infection control against the res-

dent strain, this means that the invading mutant strain can take

dvantage of the increased pool of susceptible individuals to in-

ade. This effect occurs only when the efficacy of infection con-

rol against the resident strain is relatively high (e.g. ε1 = 0 . 9 and

2 = 0 . 6 ). However, this phenomenon does not hold when ε1 and

2 are low, in which event the model behaves similar to the SI 1 I 2 R

odel where the strain with the higher basic reproductive number

nvades, as expected. Similarly, increasing ω 2 can push the system

rom a regime of co-existence of the two strains to a region where

nly strain 2 persists. 

In ε1 − ε2 parameter planes we again find parameter regimes

here the more virulent strain can invade due to adaptive social

ehaviour, despite the fact that R 0 , 2 < R 0 , 1 , if there is an imbal-

nce in the perceived severity of the two strains. When perceived

everities are sufficiently low, the mutant strain can never invade
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Fig. 1. Numerical simulations for the SI 1 I 2 RX model at various values for the social and infection control parameters. (a,b,c) show baseline values where the mutant strain is 

perceived to be 10 times more severe ( ω 2 = 10 ω 1 = 10 5 ) and where efficacy of infection control against the resident strain is greater ε1 = 0 . 7 > ε2 = 0 . 4 . The dynamics are 

shown at different timescales in (a), (b) and (c). (d) ε1 = 0 . 4 . (e,f) ω 2 = 10 2 , ε2 = 0 . 3 . (g,h) ω 1 = 10 ω 2 = 10 5 . (i) ω 1 = ω 2 = 10 4 . ε1 = 0 . 9 , ε2 = 0 . 6 . All other parameters are 

held at their baseline values. Red line represents prevalence of protectors x . Blue line represents prevalence of the resident strain I 1 . Black line represents prevalence of the 

more virulent mutant strain I 2 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 1 

Baseline parameter values. Strain 1 is taken to be an avirulent resident strain, and strain 2 is taken to be a 

more virulent mutant strain. 

Parameter Definition Value 

δ death rate 1/18250 per day, ( Bauch and Earn, 2004 ). 

μ birth rate 1/18250 per day, ( Bauch and Earn, 2004 ). 

γ 1 recovery rate for strain 1 0.2 per day (assumed). 

ν1 disease death rate for strain 1 0.0 per day (assumed). 

γ 2 recovery rate for strain 2 0.2 per day (assumed). 

ν2 disease death rate for strain 2 0.05 per day (assumed). 

β1 transmission rate for strain 1 0.4 per day (assumed). 

β2 transmission rate for strain 2 0.4 per day (assumed.) 

κ sampling rate 1/365 per day, ( Oraby et al., 2014 ). 

w 1 perceived severity from strain 1 10,0 0 0 (assumed) 

w 2 perceived severity from strain 2 10 0,0 0 0 (assumed) 

ε1 efficacy of infection control against strain 1 0.7 (assumed) 

ε1 efficacy of infection control against strain 2 0.4 (assumed) 

(  

r  

fi  

t  

s  

t  

t  

i  

s  

i  

r  

i

4

 

t  
 Fig. 2 d). But when ω 2 > > ω 1 , the mutant strain can invade and

emove the resident strain if ε1 is sufficiently large and ε2 is suf-

ciently small ( Fig. 2 e). When ω 1 > > ω 2 , the mutant strain and

he resident strain coexist, when ε1 is sufficiently large and ε2 is

ufficiently small ( Fig. 2 f). Increasing the efficacy of infection con-

rol against the resident strain ( ε1 ) or decreasing efficacy of con-

rol against the mutant strain ( ε2 ) can allow the mutant strain to

nvade ( Fig. 2 e–f). We note again that, surprisingly, invasion can re-

ult in the elimination of the resident strain if the perceived sever-

w  
ty of the mutant strain is significantly higher than that of the

esident strain ( ω 2 > > ω 1 ), but when the opposite applies, coex-

stence results. 

. Discussion 

We have showed how adaptive social behaviour greatly impacts

he evolution of virulence in a coupled behaviour-disease model. If

e neglect social behaviour, the basic reproductive numbers of the
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Fig. 2. Parameter plane analysis of the SI 1 I 2 RX model. These dynamics are more complex than those exhibited by the SI 1 I 2 R model, which only predicts persistence of strain 

1 for equivalent parameter values. The epidemiological parameters are at baseline values ( Table 1 ). The social parameters are varied. (a) and (d) show no invasion of the 

mutant strain when ε1 = 0 . 2 and ε2 = 0 . 1 in the ω 1 − ω 2 parameter plane (a) and when ω 1 = ω 2 = 10 2 in the ε1 − ε2 parameter plane (d). (b) and (c) represent similar 

qualitative results when for large ε1 = 0 . 9 we get invasion of the mutant strain in the black region and co-existence with the resident strain in the red region. The invasion 

region is bigger when ε2 is lower ( ε2 = 0 . 1 in (b) and ε2 = 0 . 6 in (c) ). Finally, in (e) and (f) we observe qualitatively different results when we vary ω 2 in the ε1 − ε2 

parameter plane. In (e) , 10 8 = ω 2 > ω 1 , we have invasion of the mutant strain. In (f) , ω 1 = 10 6 > ω 2 , we have co-existence of the strains. The light gray region in the 

lower-left hand corner of subpanel (b) corresponds to both strains being extinct. (For interpretation of the references to colour in this figure legend, the reader is referred to 

the web version of this article.) 
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l  
two strains are sufficient to predict which of the strains will in-

vade a population. However, adding adaptive social behaviour with

asymmetric stimulation and effects on either strain to an epidemi-

ological system completely shifts how we view whether a more

virulent strain will be selected for. As we have seen, social be-

haviour can either act in favour or against the invasion of a more

virulent strain, and we can describe these effects with reference

to specific social parameters ( ω 1, 2 ) quantifying how concerned in-

dividuals are about the two strains, and control parameters ( ε1, 2 )

quantifying how well infection control measures like hand-washing

work. Most interestingly, adaptive social behaviour enables inva-

sion of the mutant strain under plausible epidemiological and so-

cial conditions even when it has a lower basic reproductive num-

ber. 

Future work can generate further insights into how behaviour

and virulence interact for specific infectious diseases, by build-

ing on existing research on the coupled dynamics of behaviour

and infection transmission. For instance, an increase in the aver-

age number of sexual partners of an individual has been predicted

by mathematical models to cause increased HIV virulence ( Massad,

1996; Park and Bolker, 2017 ). These models use a fixed param-

eter to quantify the number of sexual partners, but the number

of sexual partners could be made to evolve dynamically based on

the number of infected individuals in a particular population, sim-

ilar to seminal work using compartmental models to model core

group dynamics ( Hadeler and Castillo-Chávez, 1995 ). An increase
n the number of sexual partners will decrease the efficacy of in-

ection control against the more virulent strain and effectively in-

rease its transmission and hence leads to higher virulence. Other

uture research could explore how adaptive social behaviour in-

eracts with evolutionary trade-offs to determine virulence evolu-

ion. One of the most common hypotheses is that a trade-off ex-

sts for between-host transmission and virulence. To increase its

robability of transmission, the parasite must replicate within the

ost. This replication, on the other hand, must be controlled be-

ause otherwise it might lead to the host’s death and therefore

revent transmission. However, other trade-offs have been sug-

ested, such as between transmission rate and host recovery rate

 Alizon, 2008 ). Moreover, complicated host life cycles imply that

any other types of trade-offs are also possible ( De Roode et al.,

008 ), and the presence of multiple trade-offs may complicate the

elationship between transmission rate and virulence ( Alizon and

ichalakis, 2015 ). Social behaviour could interact with evolution-

ry trade-offs to alter the virulence evolution of an emerging

athogen, and this process could be modelled by building on ex-

sting virulence evolution models. 

While the model discussed in this paper serves as a general

ramework for studying the influence of social behaviour on strain

ompetition and emergence, further research needs to be carried

ut to understand the interplay between the epidemiological and

ocial parameters. For instance, we did not model virulence evo-

ution explicitly but rather by assuming two strains have already
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merged due to mutation and addressing conditions under which

he more virulent mutant strain is more fit. Future research could

nstead model virulence by defining transmission and recovery

ates in terms of a virulence parameter, or by using an adaptive

ynamics approach. Future research could also explore different

ossible relationships between the virulence parameters ν1, 2 and

he perceived severity parameters ω 1, 2 , or the interaction between

ocial learning timescales and pathogen evolutionary timescales.

e did not study the influence of the social learning parameter κ
n this paper, but previous research on other socio-ecological and

ocio-epidemiological systems suggests that the social learning rate

an destabilize interior equilibria ( Bauch et al., 2016; Henderson

t al., 2016 ). A model that accounts for multiple rounds of muta-

ion would enable studying how pathogen evolutionary timescales

nteract with social learning dynamics. Finally, we assumed no spe-

ific relationship between the perceived severity ω 1, 2 and the vir-

lence ν1, 2 although a non-trivial relationship certainly exists, and

uture research could explore possible assumptions for their formal

elationship. 

In conclusion, our model shows how social behaviour can in-

uence the virulence of emerging strains under plausible param-

ter regimes when using standard models for social and infection

ynamics. When analysing emerging and re-emerging pathogens

nd continually evolving infectious diseases such as influenza, it is

orthwhile further considering aspects of social behaviour in ef-

orts to mitigate serious threats. 
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