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A focus on CXCR4 in Alzheimer’s 
disease
Hongyan Li1,2, Rong Wang1

Abstract:
Alzheimer’s disease (AD) is one of the most common and devastating aging‑related neurodegenerative 
diseases. Besides the well‑known role of chemokines and their receptors in the immune system, they 
are widely expressed in the nervous system, where they play roles in the regulation of cell migration 
and neurotransmission. The chemokine CXC motif receptor 4  (CXCR4) is evolutionarily highly 
conserved seven‑transmembrane G‑protein‑coupled receptors (GPCRs). It has been demonstrated 
that CXCL12/CXCR4 signaling pathway involved in the pathologic process of AD. In this review, 
we demonstrated the GPCR family proteins and summarized the relationship between CXCR4 and 
GPCR, CXCR4 and AD. The review aimed to provide the novel insight of CXCR4 into the early 
prevention of mild cognitive impairment and in the diagnosis and treatment of AD. 
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Introduction

G‑protein‑coupled receptors  (GPCRs) 
are integral membrane proteins that 

convert extracellular signals into intracellular 
responses including responses to hormones 
and neurotransmitters. GPCRs, also called 
seven transmembrane  (TM)‑spanning 
receptors, represent the largest family 
of cell surface receptors and are the 
targets of intense drug discovery efforts. 
While a number of available drugs on 
targeting GPCR signaling pathways, 
overall  <20% of GPCRs are targeted.[1] 
However, despite structural similarities, 
GPCRs have unique combinations of 
signal‑transduction activities involving 
G‑protein‑dependent signaling pathways, 
as well as G‑protein‑independent signaling 
pathways and complicated regulatory 
processes.[2‑4] Therefore, the development of 
new therapeutic targets on GPCRs could be a 
promising method to maintain the effect and 
control the side effects of inhibitors based on 
biased ligands or allosteric modulators.[5,6]

GPCR regulates and involves diverse 
system diseases including nerve system 
disease. Alzheimer’s disease  (AD) is one 
of the most common and devastating 
aging‑related neurodegenerative diseases. 
ADs pathological characteristics in the brain 
are senile plaques (SPs) and neurofibrillary 
tangles  (NFTs). Many mechanisms are 
involved in ADs pathological process 
including insulin signaling pathway,[7] 
mitogen‑activated protein kinases (MAPK) 
pathway, and inflammatory signaling.[8]

The chemokine CXC motif receptor 4 (CXCR4) 
is an evolutionarily highly conserved 
GPCR family member. CXCR4 belongs 
to seven‑TM GPCRs. CXCL12/CXCR4 
pathway has been known to be involved 
and regulated inflammatory response. 
Interestingly, ADs pathological changes 
also include a variety of inflammatory 
phenomenon. However, whether and how 
CXCL12/CXCR4 molecular transduction 
plays a role in AD, especially inflammatory 
process is to be investigated.

The main purpose of our review is to 
provide an overview of the involvement of 
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CXCR4 in AD. We summarized the signaling pathways 
and the current findings on the regulatory roles of 
CXCR4 in AD. It is expected that CXCR4 may serve as a 
novel target for treatment of AD.

G‑protein‑coupled receptor family
GPCR is one of the largest family of cell surface receptors. 
A  GPCR is basically composed of three parts: the 
extracellular region, the TM region, and the intracellular 
region. The extracellular region contains N‑terminus and 
three extracellular loops (ECL1–ECL3); the TM region 
contains seven TMα‑helices (TM1–TM7); the intracellular 
region contains three intracellular loops  (ICL1–ICL3); 
and an intracellular amphipathic short α‑helix  (H8) 
lying perpendicular to the membrane plane and the C 
terminus.[9,10] Although their molecules and functions 
are diverse, they consist of seven TM domains linked 
by intracellular and ECL.[11] Ligand was recognized 
and bind to extracellular domains, then it induces the 
conformation change of the receptor coupling to G 
proteins with intracellular domains.[12] This, in turn, 
leads to coupling and signaling activation of one or more 
G‑proteins inside the cell.

GPCR is the largest and most diverse protein families 
in the mammalian cells. The G‑proteins consist of three 
subunits: α, β, and γ. It has been demonstrated that five 
identified genes encode the β subunit, 12 encode the 
γ subunit, and 17 encode the α subunit.[13] Activation 
of G proteins dissociates the Gα subunit from the 
Gβγ subunits of GPCRs. The Gβγ subunits activate 
the downstream effectors such as enzymes and ion 
channels.[14] Moreover, the Gα subunits have a key role 
in determining the receptor coupling specificity and 
influencing the efficiency of ion channel modulated by 
Gβγ subunits.[15] On the basis of their G protein‑coupling 
preference, it can be broadly classified into four 
subfamilies: Gs, Gq/11, Gi, and G12/13.[16]

All chemokines exert their biological effects through 
the activation of an extended family of seven TM 
GPCRs. Approximately 19 chemokine receptors (CKR) 
have been characterized to date, including six 
CXC receptors  (CXCR1–6),  ten CC receptors 
(from CCR1‑10), one lymphotactin receptor (XCR1), 
and one fractalkine receptor  (CXC3CR1). CKRs are 
notoriously promiscuous. Chemokines are small 
proteins consisting of about 100 amino acids. More 
than 50 different chemokines have been identified in 
higher vertebrates.[17] Chemokines have been classified 
into four families: C, CC, CXC, and CX3C according 
to their conserved N‑terminal cysteine residues.[18] 
These residues can be adjacent (CC) or separated by 
amino acids  (CXC and CX3C). Most chemokines are 
members of the CC  (CC motif and β‑chemokine) 
and CXC  (α‑chemokine) subfamilies. CC subfamily 

chemokines contain two contiguous cysteines near the 
amino terminus of the molecule, whereas a single amino 
acid separates the two cysteines in members of the CXC 
subfamily. Chemokines in the CX3C  (δ‑chemokine) 
subfamily have three amino acids between the two 
cysteines. The fourth subfamily comprises chemokines 
with a single cysteine designated the C (γ‑chemokine) 
subfamily. Each subfamily of chemokines acts on a 
group of related GPCRs.[18] It has been observed in 
in vitro that a single chemokine can activate more than 
one receptor; conversely, a single cloned receptor can 
frequently be activated by more than one chemokine 
although it is probable that their selectivity is actually 
higher in vivo.[19] There are, however, instances when a 
CKR is activated by a single chemokine, i.e., the CXCR4 
receptor has only one known ligand, stromal‑derived 
factor‑1 alpha (CXCL12).

CXC motif receptor 4 and G‑protein‑coupled 
receptor
Besides the well‑known role of chemokines and their 
receptors in the immune system, they are widely 
expressed in the nervous system, where they play roles in 
the regulation of cell migration and neurotransmission. 
Meanwhile, chemokine signaling is also important in the 
regulation of neuroinflammatory responses. Chemokines 
are small chemoattractant cytokines that are expressed 
in discrete anatomical locations. Chemokines are 
responsible for specific recruitment of leukocytes during 
inflammation.[10] Chemokines act on CKR, members of 
the seven‑TM domain GPCR superfamily. Classically, 
one of the CKR ICLs interacts with heterotrimeric, 
pertussis toxin‑sensitive G proteins called Gαi, initiating 
a cascade of signal transduction events in response to 
ligand binding.[18]

CXCR4, encoded on chromosome 2q21, is an 
evolutionarily highly conserved GPCR expressed on 
monocytes, B‑cells, and naïve T‑cells in the peripheral 
blood. Human CXCR4 was originally identified as a 
receptor for CXCL12 by screening CKR orphan genes 
for their ability to induce intracellular Ca2+ in response 
to human CXCL12. Its ligand, CXCL12, is a homeostatic 
chemokine, which controls hematopoietic cell trafficking, 
adhesion, immune surveillance, and development. The 
amino‑terminal domain of CXCL12 binds the second ECL 
of CXCR4 and activates downstream signaling pathways. 
The ICL3 of CXCR4 is necessary for Gαi‑dependent 
signaling, and ICL as well as the C‑terminus of CXCR4 
are required for chemotaxis.[10,20,21]

CXCL12 binding to CXCR4 triggers multiple signal 
transduction pathways that are able to regulate 
intracellular calcium flux, chemotaxis, transcription, 
and cell survival.[22] CXCL12 binding promotes CXCR4 
conformation changing Gαi protein dissociation into 
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α and βγ subunits.[22,23] In turn, different subtypes of the 
α subunit impart different signals: Gαi subunits inhibit 
cyclic adenosine monophosphate formation through 
inhibition of adenylyl cyclase activity, and αq subunits 
activate phospholipase C‑β, generating diacylglycerol 
and inositol 1,4,5 trisphosphate, controlling the release 
of intracellular Ca2+. While inhibiting adenylyl cyclase, 
the Gαi subunits activate the nuclear factor‑kappa B, 
Janus‑activated kinase‑signal transducers and activators 
of transcription  (STAT), and phosphatidylinositol 
3‑kinase‑AKT pathways as well as mammalian target of 
rapamycin, and the Jun N‑terminal kinase/p38 MAPKs, 
regulating cell survival, proliferation, and chemotaxis.

CXCR4 is a major type of receptor for CXCL12. 
CXCL12/CXCR4 chemokine signaling plays a critical role 
in modulating various nervous system developmental 
processes and in regulating synaptic plasticity. CXCR4 is 
widely expressed in the peripheral and central nervous 
system  (CNS) and exerts functions as modulation of 
neurotransmission, synaptic plasticity, and neuroglial 
interactions.[22,24] In a central neuropathic diseases 
model, CXCL12/CXCR4 were upregulated in neurons, 
astrocytes, microglia/macrophages, and leukocytes 
in the lumbar spinal cord.[24] Unlike the α subunits, 
βγ dimer subunits promote RAS‑mediated MAPK 
signaling, thereby regulating cell proliferation and 
chemotaxis.[20] Finally, in addition to these classic 
signaling pathways, CXCR4 triggers Bruton tyrosine 
kinase (BTK) phosphorylation and downstream MAPK 
in mantle cell lymphoma and primary acute myeloid 
leukemia blasts, suggesting a potential interaction of 
CXCR4 on BTK and a potential for concomitant CXCR4 
and BTK inhibition, as the treatment targets.[24]

CXC motif receptor 4 and Alzheimer’s disease
Alzheimer’s disease and aging
Since older individuals  (those over  65  years of age) 
will double between 2000 and 2050, the population is 
aging.[25] Aging is a natural physiological process, a 
progressive deterioration of the overall homeostatic 
brain mechanisms, accompanied by cognitive decline. 
A consequence of normal aging is a greater susceptibility 
to learning and memory impairments generally 
attributed to a decrease in neuronal plasticity of the 
cortex and hippocampus. Cognitive processes mediated 
by hippocampus and prefrontal cortex are most 
vulnerable to aging process.[26] Both brain regions suffer 
cellular and synaptic changes during aging that can be 
directly related to the decline of cognitive performance.[27] 
Considering that the life expectancy of the population 
has increased, the senescence has been the primary risk 
factor for the development of aging‑related diseases 
such as AD.[28] Cognitive deficits are the most common 
consequences of aging process and AD.[29] Both aging 
process and AD are characterized by a progressive 

deterioration of learning and memory.[28,.30,31] This strong 
relationship between aging and AD is important to 
investigate the pathophysiological mechanism in each 
event such as the involvement of the neurotrophic factors 
in these processes.

Many cel lular  mechanisms in AD including 
insulin signal pathway,[7] MAPK signaling,[8] and 
extracellular‑signal‑regulated kinase pathway[32] have 
been well explored. Nowadays, chemokine/CKR offers a 
novel navigation in AD managements and mechanisms. 
It is well known that chemokine/CKR pathway involved 
the inflammation. Inflammatory phenomenon also occurs 
in AD. It might not be a surprise that chemokine/CKRs 
may affect ADs pathological progress. However, the 
exact molecular mechanisms are unknown and need to 
be further determined.

Chemokines and chemokines receptors in Alzheimer’s 
disease
AD is one of the most common and devastating 
aging‑related neurodegenerative diseases. The disease 
poses a great threat to older individuals and their 
families, becoming a serious social problem with 
increasing longevity. The clinical manifestation of 
disease occurs usually after the age of 65.[33] This illness 
is characterized by massive neuronal loss, cognitive 
dysfunction, and loss of memory. The incidence and 
prevalence continuously increase with advancing 
age.[34]

AD is the most common cause of dementia in the 
elderly. AD is characterized by pathological findings in 
the brain: SPs and NFTs. The former are extracellular 
aggregates composed of amyloid β peptides,[35] while 
the latter are intracellular aggregates composed of 
hyperphosphorylated Tau protein. Its pathological 
changes also include a variety of “inflammatory” 
phenomenon such as activation of microglia and 
astrocytes. The pathological significance of inflammatory 
responses elicited by resident CNS cells has drawn 
considerable attention in recent years.[5] Chemokines 
belong to a rapidly expanding family of cytokines, 
the primary function of which is control of the correct 
positioning of cells in tissues and recruitment of 
leukocytes to the site of inflammation. Study of this 
very important class of inflammatory cytokines may 
greatly help our understanding of inflammation in the 
progress of AD, as well as other neurodegenerative 
diseases. So far, a number of chemokines and CKR 
have been demonstrated in resident cells of the CNS, 
and upregulation of some chemokines and receptors 
is found associated with AD pathological changes. The 
expressions of chemokines and their receptors in the 
CNS are significantly different under physiological and 
pathological conditions.
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CXCL12/CXC motif receptor 4 axis signaling as a novel 
target of Alzheimer’s disease management
Chemokines are small chemoattractant molecules 
playing a key role in inflammation and immunity.[36,37] In 
addition to their role in neuroinflammation, chemokines, 
such as CXCL12, have been shown to participate in 
neuronal signaling.[38,39] Chemokine CXCL12 and 
its receptor CXCR4 have been previously shown 
to modulate neuronal firing and neuron/glia 
communication.[40] Moreover, it has been previously 
shown that inflammatory responses in AD correlated 
with cognitive decline.[41,42] Decreased mRNA and protein 
levels of CXCL12, a chemokine involved in neuron‑glia 
communication, may affect memory through altered 
communication in the CNS. CXCR4, the receptor for 
CXCL12, is concurrently decreased at the protein level in 
transgenic mice compared to age‑matched nontransgenic 
controls. Importantly, it is demonstrated that CXCL12 
and CXCR4 levels are decreased in AD patients as 
compared to nondemented controls, supporting a role for 
this chemokine in cognitive functioning. The decreased 
levels of CXCL12 might interfere with proper neuronal 
signaling and may therefore negatively affect memory. 
The results of young nontransgenic mice treated with a 
CXCL12 receptor antagonist AMD3100 show deficits in 
learning and memory.[43]

In addition, the lack of CXCL12/CXCR4 impaired 
memory provides further evidence supporting a role 
of this chemokine and its receptor in learning and 
memory. In conclusion, a potential new pathway is in 
part responsible for aspects of cognitive functioning and 
can thus represent a novel target in disorders affecting 
learning and memory. Hence, it has been identified a 
novel pathway mediated through CXCL12 that directly 
affects learning and memory and may be responsible for 
the dementia component of AD.

Conclusion

The pathologic changes in dendritic spines and synapses 
play key roles in cognitive dysfunction. Downregulated 
CXCR4, as a traditional GPCR, inhibits learning and 
memory. Therefore, the signaling CXCL12/CXCR4 
might be involved in the pathological dysfunction 
of AD. The prevalence of AD is increasing as the 
population ages, posing serious threats to the health 
and lives of elderly people and creating significant 
socioeconomic burdens for families and the society. 
Effectively preventing and managing AD has become 
an important aim. However, the exact mechanisms of 
CXCL12/CXCR4 axis regulating downstream molecular 
in AD still need to be further determined. Therefore, 
targeting on the mechanisms of action, regulatory 
molecules, and signaling pathways of CXCR4 will 
be helpful for a comprehensive understanding of the 

pathogenic mechanisms of AD, particularly early stages. 
In addition, such studies will provide evidence for early 
clinical interventions for learning, memory, and for the 
discovery effective AD diagnosis and therapy.
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