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Phantom limb pain (PLP) affects up to 80% of amputees. Despite the lack of consensus

about the etiology and pathophysiology of phantom experiences, previous evidence

pointed out the role of changes in motor cortex excitability as an important factor

associated with amputation and PLP. In this systematic review, we investigated changes

in intracortical inhibition as indexed by transcranial magnetic stimulation (TMS) in

amputees and its relationship to pain. Four electronic databases were screened to identify

studies using TMS to measure cortical inhibition, such as short intracortical inhibition

(SICI), long intracortical inhibition (LICI) and cortical silent period (CSP). Seven articles

were included and evaluated cortical excitability comparing the affected hemisphere

with the non-affected hemisphere or with healthy controls. None of them correlated

cortical disinhibition and clinical parameters, such as the presence or intensity of PLP.

However, most studies showed decreased SICI in amputees affected hemisphere. These

results highlight that although SICI seems to be changed in the affected hemisphere

in amputees, most of the studies did not investigate its clinical correlation. Thus, the

question of whether they are a valid diagnostic marker remains unanswered. Also, the

results were highly variable for both measurements due to the heterogeneity of study

designs and group comparisons in each study. Although these results underscore the

role of inhibitory networks after amputation, more studies are needed to investigate the

role of a decreased inhibitory drive in the motor cortex to the cause and maintenance

of PLP.

Keywords: short intracortical inhibition, long intracortical inhibition, phantom limb pain, transcranial magnetic

stimulation, cortical silent period

INTRODUCTION

Amputation is associated with significant cortical reorganization. After amputation, cortex’s
afferent inputs from amputated limb are interrupted, resulting in decreased cortical excitation,
affecting local inhibitory drive (1). Decreased cortical inhibition seems to be maladaptive and can
be related with other dysfunctional behaviors, like PLP (2, 3).

One approach to appraise maladaptive cortical reorganization is Transcranial Magnetic
Stimulation (TMS), a non-invasive brain stimulation technique that induces small current resulted
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from magnetic fields, allowing assessment of both cortical
excitability parameters and therapeutic modulation, inducing
plasticity (4). TMS has been used to evaluate changes in cortical
excitability following amputations. Different groups have shown
changes in motor evoked potential (MEP), including decreased
intracortical inhibition (ICI), cortical silent period (CSP), and
increased intracortical facilitation (5).

TMS evaluates cortical excitability by different parameters:
motor threshold, motor evoked potential, intracortical
facilitation and intracortical inhibition (measured by
intracortical inhibition, ICI, or cortical silent period, CSP). Short
intracortical inhibition (SICI) and ICI are responses triggered
when subthreshold stimulus is followed by a suprathreshold,
within a range of 1–6ms of interstimuli interval. Usually SICI
is performed with a <5ms interval and is thought to be related
with GABAA receptors (6) while ICI with GABAB (7). LICI can
be elicited by a subthreshold stimuli followed by a test stimulus
with a 50–200ms inter-interval (7). The mechanism is related
to suppression of neuronal activity by GABA receptors. Lastly,
CSP is defined as an interruption of electromyography activity
following a suprathreshold TMS pulse (8), being related to
GABA interneurons activation (9).

One study Cohen et al. (10) showed that amputees presented
larger MEP in affected hemisphere and increased number
of excitable stimulation sites for muscles proximal to the
stump. However, few studies analyzed these parameters
appropriately (11). Amputation studies are heterogeneous
regarding amputated limb location, time since amputation
and reimplantation. Investigation of maladaptive cortical
reorganization could contribute to developing novel treatments
for PLP.

Phantom pain and sensations affect up to 98% of amputees
(12). PLP is the most prevalent phantom phenomena (50–80%)
(11), with negative impact on quality of life (11, 13). Studies
suggest that cortical reorganization is reversible and related to
pain levels (14), sheding light on the potential minimization
or reversal of maladaptive plasticity through brain stimulation.
However, most articles do not correlate changes in excitability
with presence or intensity of PLP, implicating that changes in
these parameters have unknown mechanisms.

Despite no consensus about etiology and pathophysiology
of phantom experiences, studies associate PLP with peripheral,
psychogenic, and central neural mechanisms (15, 16) and with
cortical reorganization after an amputation (17, 18). Other
studies show that peripheral systems contribute to neuromas’
formation, followed by hyperexcitability and spontaneous
discharges (19), while psychological systems may influence its
intensity (20). Different patterns of change were observed in
amputees with or without PLP: (1) decreased ICI in affected
hemisphere; (2) decreased ICI in non-affected hemisphere; (3)
unchanged ICI in affected hemisphere; and (4) changes in CSP
response pattern.

Therefore, the purpose of this review is to evaluate if
CSP and SICI are modified when comparing the affected vs.
unaffected motor cortex and whether it provides additional
insights to the role of motor cortex in the modulatory circuitry of
chronic pain.

MATERIALS AND METHODS

Sources and Study Selection
Literature search was performed in four electronic databases
(PubMed, Web of Science, ScienceDirect, and LILACS) until
February 2018, using multiple keywords and combinations—
“phantom limb” AND “neuromodulation” OR “transcranial
magnetic stimulation” OR “cortical excitability” OR “neuronal
plasticity.” The conjunction “phantom limb AND transcranial
magnetic stimulation” was combined with “intracortical
inhibition” OR “cortical silent period” OR “neuromodulation.”
Initial search identified 2,284 articles.

Pairs of researchers analyzed selection criteria and a third
person resolved conflicts. Included articles had to: (1) be related
to amputation; (2) evaluate phantom sensation; (3) use TMS
as an assessment tool; (4) have data on ICI or CSP. Studies
were excluded if: (a) not related to amputation; (b) related to
congenitally absent limbs; (c) just included finger amputation;
(d) applied different techniques of stimulation as DBS, spinal
cord stimulation, tDCS, TENS, fMRI; (e) applied TMS for
cortical mapping; (f) did not use neurostimulation; (g) had only
pharmacologic interventions; (h) had solely psychotherapeutic
approaches; (i) analyzed mirror therapy not combined with
TMS/TDCS; (j) had different studies designs as posters, reviews
or meta-analysis; (k) were not in English; (l) studies in animals.

The selected articles were inputted into COVIDENCE R©

software, which excluded duplicates, resulting in 1313 articles.
Three articles were included in a manual search due to discussion
of cortical excitability using TMS in amputees with PLP (21).

RESULTS

Studies Selection
After screening titles and abstracts, 42 articles remained. After
full text reading, seven articles were then selected.

Demographic Findings
One hundred and eighteen patients were analyzed, healthy
subjects (45) and amputees (73).Most amputees weremale young
adults with traumatic upper limb amputation (5, 22–24). Six
articles reported PLP (5, 22–26). Sample size, population profile,
measurements, comparisons, and etiology of amputation were
diverse (Table 1).

Study Design
From the studies selected, there were three cross-sectional (22,
25, 27), two case reports (5, 24), one part of a clinical trial (23),
and one case-control (26). Regarding technical aspects, some
(5, 24–26) used a figure-of-eight-coil, while others (22, 23, 27),
a circular coil. The muscles chosen for surface electromyography
were deltoid (5, 22–24), biceps (22, 23), first dorsal interosseous
(FDI) (23–25), and quadriceps (26, 27) (Table 1).

Five articles used TMS as assessment tool for cortical
excitability: one study (5) performed functional MRI and TMS
and four studies used TMS only (22, 25–27). Furthermore, one
article (23) added pharmacological intervention (memantine)
and another (24) applied TMS-fMRI as intervention.
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TABLE 1 | General characteristics of selected papers.

Author Type of study Sample size

(Amputees/

controls)

Intervention Assessment Comparison Reported ICI

measurement

Results Cortical Inhibition Results

CSP

Level of

amputation

Etiology of

amputation

TMS coil

type

ISI (ms) Muscles for

surface EMG

Bestmann

et al. (24)

Case report 1 (1/0) N/A TMS during

fMRI

N/A ICI (2–3ms ISI)

(%)

Left FDI 45%; Left Del 68%;

Right Del 84%

Left FDI:

124ms; Left

Del: 95ms;

Right Del

112ms

Right arm

amputee

Traumatic

injury

Figure of

eight

2–3 (pool) Deltoid and FDI

Chen

et al. (27)

Cross-sectional 23 (16/7) N/A TMS Healthy vs. affected

hemispheres; Healthy

controls vs. amputees

MEP at Inhibitory

ISIs 2–4ms (%)

MEP amplitude on the

amputated side (240 ±

121% of control) was

significantly larger compared

with the intact side (60.1 ±

7.6%) and with normal

subjects (59.6 ± 7.5%)

N/A Lower limb

amputees

Traumatic

injury, tumor,

diabetes/vascular,

infectious

causes

Circular 2 and 4

(average)

Quadriceps

Dettmers

et al. (5)

Case report 1 (1/0) N/A TMS, fMRI Healthy vs. affected

hemispheres; Healthy

controls vs. amputees

N/A Reduction of ICI (no

numerical data)

Aa:

110.1ms;

Naa:

142.0ms

Upper limb

amputees

Traumatic

injury

Figure of

eight

1–4 (individual

values)

Deltoid muscle

Fitzgibbon

et al. (25)

Cross-sectional 25 (14/11) N/A TMS Healthy vs. affected

hemispheres; Healthy

vs. mirror pain vs. no

mirror pain

Mean SICI Controls: SICI LH 34.5

(17.38), SICI RH 44.04

(26.32);

Mirror Pain +: SICI LH

40.92 (22.80), SICI RH

45.05 (18.20);

Mirror Pain -: SICI LH

57.77 (47.54), SICI RH

36.92 (16.59)

N/A Lower limb

amputees

Traumatic

injury, tumor,

diabetes/vascular

Figure of

eight

2 FDI

Hordacre

et al. (26)

Case control 26 (13/13) N/A TMS Healthy vs. affected

hemispheres; Healthy

controls vs. amputees

Laterality index

LI* (mean, SD)

SICI: M1CON Control 0.86

(0.1), AA 0.91 (0.1), AD 0.79

(0.2); M1IPSI: Control 0.89

(0.1), AA 1.03 (0.1), AD 0.82

(0.2);

LICI: M1CON Control 0.64

(0.3), AA 0.70 (0.3), AD 0.61

(0.4); M1IPSI: Control 0.73

(0.3), AA 0.73 (0.2), AD 0.69

(0.3)

N/A Unilateral

transtibial

amputees

Did not provide

this information

Figure of

eight

2 Quadriceps

Schwenkreis

et al. (22)

Cross-sectional 18 (12/6) N/A TMS Healthy vs. affected

hemispheres; Healthy

controls vs. amputees

Averages of MEP

ratios obtained at

inhibitory

interstimulus

intervals of 1 ±

5ms

UAA: 42.7 ± 19.8%; UANAS

31.9 ± 17.8%; FA: 69.9 ±

16.5%; FNAS 47.7 ± 14.1%

UAA: 58.3 ±

22.9ms;

UANAS:

76.4 ±

20.1ms; FA:

111.5 ±

38.2ms;

FNAS: 117.1

± 38.8ms

Upper limb

amputees

Traumatic

injury, tumor

Circular 1–5 (pool) Deltoid or

biceps

Schwenkreis

et al. (23)

Part of RCT 24 (16/8) Memantine TMS Healthy controls vs.

amputees; Placebo

vs. memantine

Averages of MEP

ratios obtained at

inhibitory

interstimulus

intervals of 1 ±

5ms

MG: baseline 51.8%

(41.0–105.0), day 21 43.2%

(11.0–77.0) PG: baseline

51.6% (14.0–116.0), day 21

47.7% (15.0–138.0)

Control: baseline 20.9%

(10.0–36.0)

N/A Upper limb

amputees

Traumatic

injury, tumor

Circular 1–5 (average) Deltoid,

biceps, or FDI

Left FDI, Left first dorsal interosseous; Left Del, Left Deltoid; Right Del, Right Deltoid; Aa, affected arm; Na, non affected arm; LH, left hemisphere; RH, right hemisphere; AA, amputee admission; AD, amputee discharge; UAA, upper

arm amputation affected side; UANAS, upper arm amputation non affected side; FA, forearm amputation affected side; FNAS, forearm amputation non affected side; MG, memantine group; PG, placebo group; w, week.

*LI: (MEP amplitudeM1CON – MEP amplitudeM1IPSI).

(MEP amplitude M1CON + MEP amplitude M1IPSI).

M1, motor cortex; CON, contralateral; IPSI, ipsilateral.
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FIGURE 1 | Summary results and comparisons of intracortical inhibition. The first panel shows comparisons between affected and non-affected hemisphere in

amputees; most authors reported a decreased SICI in the affected hemisphere. The second panel shows the comparison between amputees and healthy subjects;

while some authors report a decreased SICI in the affected hemisphere of amputees, others found no difference.

Qualitative Analysis of the Studies
Single and paired-pulse TMS were applied to investigate SICI;
however, paired-pulse TMS assessment protocols were highly
heterogeneous (Table 1). Conventionally (28), subthreshold
conditioning stimulus (usually at 80% of the motor threshold)
is followed by suprathreshold test stimulus at interstimulus
intervals (ISIs) of 1–5ms. Therefore, SICI is measured by
the reduction of relative MEP amplitude by subthreshold
conditioning stimuli, compared to average MEP size. In this
review, ISIs varied from 1 to 5ms and were reported separately
or as intervals average.

The comparison types of SICI varied (Table 1). Some
compared non affected with affected hemispheres (5, 22, 24,
26, 27), others compared amputees with healthy controls (22,
23, 25–27). However, Schwenkreis et al. (23) evaluated SICI
measures before and after treatment (memantine vs. placebo),
and Bestmann et al. (24) contrasted right with left deltoid,
and also with FDI muscle independent of stimulation side.
All CSP values were measured for both non-affected and
affected hemispheres.

Studies Showing Decreased ICI in the
Affected Hemisphere
Regarding SICI findings, three studies (5, 22, 24, 27) compared
amputee’s SICI in affected vs. non-affected hemispheres, verifying
a larger conditioned MEP amplitude in affected hemisphere
(lower SICI).

Both Schwenkreis studies (22, 23) reported a significant
decreased SICI response in affected side compared to controls
(Figure 1).

Studies Showing Decreased ICI in the
Non-affected Hemisphere
Only Hordacre et al. (26) found reduced SICI response in non-
affected hemisphere (Figure 1). He assessed amputees’s SICI
at four time points: admission, prosthetic casting, first walk
and discharge, and contrasted with healthy controls’ SICI at

admission. The mean SICI response was reduced in amputees’
non-affected hemisphere compared to controls.

Studies Showing Unchanged ICI in the
Affected Hemisphere
Concerning SICI, while Schwenkreis et al. (22) found no
differences between affected and non-affected hemispheres
within each participant, Fitzgibbon et al. (25) found no
differences between amputees and healthy controls’ SICI
(Figure 1). Subgroup analysis within amputees showed no
differences between patients regardless of mirror pain. Chen et al.
(27) found that mean MEP amplitude was significantly larger in
affected hemisphere, compared with healthy controls.

Changes in CSP Response Pattern
Regarding CSP, three articles (5, 22, 24) measured it once
and compared affected with non-affected hemispheres (Table 1).
While Schwenkreis et al. (22) found similar CSP measurements
for both hemispheres, Bestmann et al. (24) suggested it was
markedly longer when recorded at the affected side and finally
Dettmers et al. (5) showed a shortened silent period on the
affected side. Only Schwenkreis et al. (22) compared CSP
between amputees and healthy controls and found no statistically
significant differences.

DISCUSSION

In this review, we evaluated cortical excitability changes
following upper/lower limb amputation to investigate whether it
helps understand the cortical mechanisms associated with PLP
development. Both measurements can be assessed by TMS and
were investigated due to their role in cortical motor functioning.
Most studies (5, 22, 24, 27) found a decreased mean SICI in
the affected hemisphere compared with non-affected hemisphere
and healthy controls. CSP results were inconclusive, especially
because of scarcity of data. However, contrary to what was
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initially expected, most studies did not show any correlation of
cortical excitability changes with presence or intensity of pain.

Central structural and function brain changes are described
in several chronic pain conditions (29–32); while some are
thought to be consequences of pain (29), others are not well-
characterized. Regarding PLP, these alterations have gained more
attention because different imaging studies have showed that
cortical and plastic changes are involved with the presence of
pain. In fact, these changes have opposite direction—while some
showed PLP correlation with strong motor cortex reorganization
and the missing representation of the amputated area (18,
33–35), others showed that it is actually correlated with the
maintenance of amputated area representation (3). Despite the
direction, all seem to agree on amaladaptive reorganization of the
sensorimotor cortex after amputation involving a reduction in
ICI mechanisms, an imbalance between inhibitory and excitatory
neurotransmitters, and increased excitability of corticospinal
neurons (36). Nonetheless, this reorganization does not seem
to be related to pain intensity, being therefore a consequence
or a cause of pain; but not related if the intensity perception
or only a response to the deafferentation process occurring
in amputees.

Studies Showing Decreased ICI in the
Affected Hemisphere
After amputation, the motor cortex undergoes modifications
previously associated with the presence or intensity of PLP.
However, reorganization is observed in amputees with Lotze et al.
(35) and without pain, or with other chronic pain syndromes
(37). Although mechanisms that lead to pain after amputation
remains unknown, some TMS studies showed that changes in
cortical excitability are frequently observed in amputees that
experience PLP (10). They early found excitability enhancement
in amputee’s affected hemisphere due to larger MEPs and
increased number of excitable stimulation sites, when compared
with the intact limb (10). Moreover, studies using techniques
such as functional magnetic resonance (fMRI) and positron
emission tomography (PET) demonstrated larger blood-oxygen-
level-dependent (BOLD) activity in the affected hemisphere
of amputees with PLP, compared with amputees without PLP
(38). This data suggests lack of affected hemisphere’s inhibitory
function after amputation. Mechanistic studies showed that in
early phases after amputation, motor cortex reorganization is
partially driven by downregulation of GABA-related inhibitory
circuits (39), which also contributes to increased excitability
observed then. Indeed lack of sensory afference likely drives
changes that decrease inhibitory drive in cortical circuits, and
also in pain-related circuits, resulting in PLP. Accordingly, SICI
can be used to measure intracortical circuits within the motor
cortex and is an indirect measure of GABA-mediated inhibition.
Altered SICI can modify motor outputs and cortical-subcortical
connectivity. A recent meta-analysis (37) showed a significant
SICI reduction in patients with chronic pain when compared
with healthy subjects, possibly relating to pain chronicity.

These data indicate motor cortex disinhibition in amputees’
affected hemisphere, remaining unclear its relation with

pain. Therefore, rather than predicting pain intensity,
decreased inhibitory drive may relate to its presence
according to studies that compared amputees against
healthy subjects, however does not detangle amputation as its
leading factor.

Studies Showing Decreased ICI in the
Non-affected Hemisphere
Longitudinal studies aiming to report changes in corticomotor
excitability pre and post-amputation are uncommon. Hordacre
et al. (26) compared motor cortex excitability before and
after transtibial elective amputation and observed SICI
reduction in both hemispheres after amputation (40).
Whereas, decreased amputee’s SICI agrees with our findings,
most reviewed studies showed a reduction in the affected
hemisphere, not bilaterally. The assessment shortly after an
amputation allowed Hordacre et al. (26) to document the early
modulation of intracortical excitability. This could indicate
that cortical environment at this period is optimized for
reorganization, representing potential timeframe favorable to
successful interventions.

Studies Showing Unchanged ICI in the
Affected Hemisphere
Most studies (5, 22, 24, 27) showed decreased mean SICI
in affected hemisphere, but Fitzgibbon et al. (25) showed
no difference in SICI comparing amputees with healthy
controls, and amputee’s cortical excitability with and
without mirror pain with no difference to healthy controls.
The authors concluded that cortical disinhibition seems
to be disassociated with mirror pain. However, acquired
mirror pain likely has different mechanisms (2) compared
to PLP.

Changes in CSP Response Pattern
Mixed results were observed in three manuscripts (5, 22, 24) that
compared affected vs. non-affected hemispheres on amputees,
with similar findings for both groups (amputees vs. healthy
controls. Future studies on CSP can elucidate ICI mechanisms
in amputated patients.

Current evidence supports CSP association with GABA
interneurons activation (37, 41), hypothesizing that irregular
GABA activation could be monitored during increased CSP
values in the affected hemisphere. Analyzing CSP alone could
bring ambiguous results; the silent period cannot predict
the motor cortex excitatory state, as other variables change
simultaneously in a dynamic pattern. More extensive trials
focused on CSP could address the issue of heterogeneity of study
designs, sample size, and parameters. Then, it would be possible
to analyze its applicability, investigating its potential use to tailor
therapies focused on cortical activity and neuroplasticity, rather
than only treating effects.

The persistent cortical representation of the missing limb and
reassignment of brain areas, may explain why mirror therapy
(42) is known as a promising tool for PLP management: volitive
activation of cortex area of the phantom limb allows modulation
and decreases thalamic processing (12, 15, 43). Mirror therapy
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studies showed that pain relief may be due to neuron firing
when a person performs actions with the contralateral limb or
observes someone’s movements (44). Some studies correlated
PLP severity and location with the onset of pain relief,
indicating that more severe and intense types of PLP take longer
periods to respond to mirror therapy. Still, patient variability
and pain subtypes might interfere on the efficacy of mirror
therapy (33, 45).

There is evidence that magnitude of cortical reorganization
is associated with pain severity, and that the extent of
somatosensory cortex involvement is related to intensity of
phantom limb experience (46, 47).

Limitations
This review included a limited amount of studies (7), composed
of small samples (1 to 25) and a total of 118 individuals.
Heterogeneity of parameters was concerning, as authors diverged
on concept definitions for SICI, LICI, and CSP. Moreover,
three of eight selected studies (22, 23, 27) used circular coil
in TMS, which is not used anymore, thus not comparable to
current studies.

These considerations emphasize the importance of leading
research on biomarkers for PLP, so its underlying mechanisms
could be better understood. These tools would enable follow
up of patients’ progression and allow individualized treatments,
potentially decreasing the condition’s burden.

CONCLUSION

In conclusion, the SICI changes in amputees’ affected motor
cortex demonstrate lack of inhibitory stimuli, suggesting it
could be a useful marker to understand the consequences
of amputation. However, none of the studies were able to
associate this finding with clinical correlates; thus additional
studies would be worthwhile to answer this question. Regardless,
we showed combined evidence that amputees have decreased
cortical inhibition in the affected motor cortex. Future studies
evaluating differences in SICI and CSP between amputees
with and without pain could provide new insights regarding
maladaptive changes occurring after limb amputation and its
relationship with PLP.
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