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cases got similar clinical risk scores as the two experts. The 
presented fully automatic labeling algorithm can identify 
and assign labels to the extracted coronary centerlines for 
both RD and LD circulations.

Keywords  Coronary computed tomography angiography 
(CCTA) · Coronary artery labeling · Coronary artery 
dominance

Introduction

As a non-invasive imaging modality, coronary computed 
tomography angiography (CCTA) is widely used for the 
diagnosis of cardiovascular disease [1]. It provides detailed 
information about the anatomy of the coronary arteries 
and the characteristics of coronary atherosclerosis such as 
the extent of calcifications, the volumetric plaque burden, 
degree of stenosis and occlusions. In clinical practice, radi-
ologists and cardiologists usually report these pathological 
findings per artery or per segment according to the soci-
ety of cardiovascular computed tomography (SCCT) image 
guidelines [2] and CAD-RADS™ reporting system [3].

Previous studies have demonstrated the clinical sig-
nificance of stenosis localization. For example, a different 
weight factor is applied to each coronary segment in the 
SYNTAX score [4] which is designed to determine the 
extent and complexity of coronary artery disease (CAD). A 
worse prognosis for patients with acute myocardial infarc-
tion is caused by a proximal located lesion compared to 
more distal located lesions [5, 6]. Also, previous studies 
have shown that automatic quantification of CCTA images 
is feasible [7, 8]. Therefore, automated lesion reporting and 
risk stratification requires an automatic coronary artery 
extraction and identification algorithm.

Abstract  An automatic coronary artery tree labeling 
algorithm is described to identify the anatomical seg-
ments of the extracted centerlines from coronary computed 
tomography angiography (CCTA) images. This method 
will facilitate the automatic lesion reporting and risk strati-
fication of cardiovascular disease. Three-dimensional (3D) 
models for both right dominant (RD) and left dominant 
(LD) coronary circulations were built. All labels in the 
model were matched with their possible candidates in the 
extracted tree to find the optimal labeling result. In total, 
83 CCTA datasets with 1149 segments were included in 
the testing of the algorithm. The results of the automatic 
labeling were compared with those by two experts. In all 
cases, the proximal parts of main branches including LM 
were labeled correctly. The automatic labeling algorithm 
was able to identify and assign labels to 89.2% RD and 
83.6% LD coronary tree segments in comparison with the 
agreements of the two experts (97.6% RD, 87.6% LD). The 
average precision of start and end points of segments was 
92.0% for RD and 90.7% for LD in comparison with the 
manual identification by two experts while average differ-
ences in experts is 1.0% in RD and 2.2% in LD cases. All 
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Identification of the coronary tree anatomy, i.e. auto-
matically assigning labels to the segments of coronary trees 
was limited to the right dominant (RD) coronary trees in 
most previous studies [9–12]. Although ~86% of patients 
have a RD [13] coronary system, a widely applicable sys-
tem should also be able to deal with left dominant (LD) 
coronary trees [14–16].

A number of previous methods have shown that the 
centerlines of coronary arteries in CCTA images can be 
extracted automatically [17–19]. This paper presents a 
labeling method to automatically identify and assign labels 
to the anatomical segments of the entire coronary tree. The 
assigned label and the location of the start and end points of 
the label are compared with the results from human observ-
ers. Furthermore, current clinical risk scores are computed 
to show the performance of the identification method in 
risk score assessment.

Materials and methods

Patients

The patient population consisted of 100 clinical datasets 
(62 RD cases and 38 LD cases), including: five RD cases 
to refine the RD model which was derived from Dodge 
et al. [20]; 11 LD cases to build and train the LD model; 
and the remaining 84 cases for testing and evaluation of the 
method. The 100 datasets did not include cases with severe 
lesions at the proximal parts of the main branches or coro-
nary anomalies. The institutional review board of the Lei-
den University Medical Center approved this retrospective 
evaluation of clinically collected data. The need for written 
informed patient consent was waived.

The labeling method was applied to the extracted cen-
terlines of the coronary trees. Cases with heavily calcified 
plaques or step/motion artifacts were handled similarly 
as long as the centerlines were successfully extracted or 

manually corrected by experts. The coronary centerlines for 
all the 100 datasets were extracted by a method presented 
by Yang et al. [18].

CTA acquisition

Data acquisitions were performed with a 64-detector row 
CT scanner (Aquilion 64, Toshiba Medical Systems, 
Tokyo, Japan) or 320-detector row CT scanner (Aquilion 
One, Toshiba Medical Systems, Tokyo, Japan) according 
to a previous described protocol [21]. In short, if the heart 
rate was higher than 65 beats per minute, oral or intrave-
nous β blockers were administered, if not contra-indicated. 
In total, 60–110 mL non-ionic contrast material (Iomeron 
400, Bracco, Milan, Italy or Ultravist 370, Bayer Schering 
Pharma AG Berlin, Germany) was administered followed 
by a saline flush with a flow rate of 5 mL/second. Thereaf-
ter, images were reconstructed at the best phase of the R–R 
interval. The average image size and voxel size of the data-
sets were 512 × 512 × 512 and 0.307 × 0.307 × 0.25  mm, 
respectively.

Automatic tree labeling method

Figure 1 displays different steps in the identification of all 
the segments in the coronary artery tree. A three-dimen-
sional (3D) coronary tree model provides anatomical a 
priori knowledge of coronary arteries. With the 3D model, 
a three-step labeling method is used to perform the identifi-
cation: (1) Align the model with the patient coronary tree to 
identify the main branches, and separate the coronary tree 
into sub-trees according to the main branches; (2) Evaluate 
the matching costs for the segments in each sub-tree to find 
optimal correspondence between model and patient tree; 
and (3) Apply logical rules which were translated from the 
clinical experience to adjust and refine the labels on all seg-
ments to obtain the final labeling.

Fig. 1   Different steps in the identification of all the segments in the coronary artery tree
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Coronary artery tree model

Both RD and LD models are composed of three main 
branches: right coronary artery (RCA), left anterior 
descending (LAD), left circumflex (LCX), and their 
derived side-branches. The labels in the models are based 
on the 15-segments model defined by the American Heart 
Association (AHA) [22], which is widely adopted in the 
clinical practice. Additionally, ramus intermedius (RI) 
arteries which originate near the LAD-LCX bifurcation 
are added to the models. Furthermore, the obtuse marginal 
(OM) branches are distinguished as the first obtuse mar-
ginal (OM1) and the second marginal (OM2) according to 
the SCCT guidelines [2]. All the labels used in this paper 
are summarized in Table 1.

Right dominant model: The initial 3D RD model was 
created using the 2D angiography statistical information 
from Dodge et  al. [20]. Then five randomly selected RD 
cases were used to refine and obtain the final RD model. 
The initial results of this RD model were presented by 
Yang et  al. [12]. The balanced type cases were treated as 
RD in this paper.

Left dominant model: Coronary artery dominance is 
defined in terms of which artery supplies the posterior 
descending artery (PDA) [23]. Because of the difference in 
PDA and LD cases were not included in Dodge et al. [20], 
a separate LD model was created. The LD model was built 
from 11 randomly selected training-datasets using a leave-
one-in cross validation scheme as follows. Each time, one 
of the 11 cases was chosen as the initial LD model, after 
which the lengths of the branches of the model were nor-
malized to the average lengths of the 11 training datasets. 
The remaining ten training cases were used to validate the 
model. Finally, the model with the best validation results 
was defined to be the final LD model. Additionally, the 
LPDA was defined as the end of the LCX. The distal part 
(dRCA) of the RCA was excluded from the LD model, 
since the dRCA was not present in the selected training 
datasets. From a clinical point of view, the discrimination 

of proximal (p-), mid (m-) or distal (d-) RCA segment is 
not important in LD cases.

Main branch identification

The patient coronary tree has a different location, orienta-
tion and size compared to the model, so a point-set regis-
tration method [24] is introduced to align the 3D model 
with it. Before the alignment, centerlines of the patient 
coronary tree and the model are normalized and re-sampled 
to remove scale variance; all side-branches from the 3D 
model are removed to reduce their influence on the regis-
tration. Weight factors, defined as the number of all child 
arteries originating from the current segment, are assigned 
to the points in the patient coronary tree to ensure that their 
main branches attract the main branches in the model.

RCA, LAD, or LCX is identified as the centerline in the 
patient coronary tree with the minimal distance to the cor-
responding main branch in the aligned model. The over-
lapping part of the identified LAD and LCX is marked as 
LM. Branches derived from the LAD–LCX bifurcation are 
labeled as RI arteries. This step provides an initial identi-
fication of the main branches in the patient coronary tree, 
because the distal parts of the main branches have a lower 
weight factor as their side-branches. In the next section, an 
iterative algorithm is described to find the optimal corre-
spondence of each label in the 3D model.

Segment labeling

Before labeling all the segments, short side-branches (less 
than 1 cm) and side-branches that have obtuse angles (more 
than 120° away from the main branches) at the bifurca-
tions are removed. The rigid transformation obtained in 
the previous step is used to deform the 3D model with all 
side-branches.

By minimizing a cost function, an iterative algorithm is 
applied to find the optimal labeling result from all possible 
labeling results [12]. According to the identified three main 

Table 1   Labels used in the 
coronary artery tree labeling

LM left main artery, RCA right coronary artery, LAD left anterior descending, LCX left circumflex, LD left 
dominant, RD right dominant, p proximal, m mid, d distal

Main branch Labels of main branch Labels of side-branches

LM /
Sub-trees RCA pRCA, mRCA, dRCA Right posterior lateral (RPLB) branch

RD type: right posterior descending (RPDA) artery
LAD pLAD, mLAD, dLAD Two diagonal arteries (D1, D2)
LCX pLCx, LCx Two obtuse marginal (OM1, OM2) arteries, left 

posterior lateral (LPLB) branch
Anterolateral (AL) artery or ramus intermedius 

(RI) arteries
LD type: left posterior descending (LPDA) artery
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branches, the extracted coronary tree can be separated into 
three sub-trees with each sub-tree containing one identified 
main branch and several side-branches. Figure 2 illustrates 
the iterative process of labeling one of the sub-trees. Three 
sub-trees are subsequently matched with the corresponding 
sub-trees in the model to get all the segments labeled.

Labeling results refinement

In clinical practice, the proximal, mid and distal parts of 
LAD and LCX are separated at the bifurcations of the spe-
cific side-branches according to AHA coronary artery clas-
sification [22]. The labeling result obtained from the pre-
vious two steps as shown in Fig.  2 may not satisfy these 
requirements. Some criteria were defined in Yang et  al. 
[12] to adjust the obtained labeling result.

Additionally, by transforming clinical experience into 
logic rules, RI branches are discriminated into RI and ante-
rolateral (AL) branches based on the distance of their ori-
gin from the LAD–LCX bifurcation. The distance thresh-
old for RI branches is defined as 0.5 cm according to the 
clinical experience of cardiologists. If the side-branches 
originate from the LCX and the distance from its opening 
to the LAD–LCX bifurcation is less than 2 cm, these side-
branches are labeled as AL branches. Branches bifurcating 
after more than 2 cm from the LCX ostium are treated as 
OM branches.

If these cases mentioned above are not present in 
the labeling result, the initial labeling result will not be 
changed.

Evaluation measures

For each label, the presence and the accuracy of the start 
and end points are evaluated. In order to validate the 
clinical performance of the identification method on each 
patient or each coronary tree in the aspect of risk score 
assessment, the accuracy for clinical risk scores is also cal-
culated. Automatic labeling results were compared with 
the manual labeling from two experts. Two experts with at 
least 4 years of experience in cardiac CT imaging indepen-
dently assigned labels to the coronary tree segments, and 
subsequently verified the results for each other to correct 
any mistakes. As differences between the experts remained 
after their verification, inter-observer variability of the 
manual labeling is also analyzed.

Presence

In this step, evaluate the labels in Table 1 present or not. 
As the automatic method may omit or wrongly assign the 
label on some segments and different opinions also exist 
between the two experts, three situations are considered. 
For each label: (1) If both experts agreed with the result 
of the automatic method, the automatic assigned label is 
treated as definitely correct; (2) If both experts disagreed 
with the results of automatic method, automatic assigned 
label is treated as definitely wrong; (3) If expert1 disagreed 
with expert2, this means either of them would agree with 
the automatic method. In this situation, the presence of the 
label is ambiguous, automatic assigned label is treated as a 
semi-correct.

Fig. 2   The iterative algorithm for labeling all segments. Abbreviations can be found in Table 1
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Overlap

After the evaluation of the presence of labels, the start 
and end points of a labeled segment are compared with 
the results of the two experts. An overlap measurement is 
defined in Fig. 3 to quantify the labeling accuracy for each 
presented label. Along the extracted centerline, the points 
with the same label in both automatic and experts labeling 
results are marked as true positive (TP), otherwise (i.e. 
longer or shorter part of the segments), marked as false 
positive (FP). The overlap measure for the label A between 
automatic and experts labeling results is defined as.

Accuracy for clinical risk scores

The labeling accuracy for current clinical risk scoring mod-
els is evaluated for all patients. In current literature, several 
risk scores of the coronary plaques in the coronary tree are 
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available to provide an estimate of prognosis of cardiovas-
cular diseases [25, 26].

In order to fit the clinical meaning, assume that all the 
segments have plaques in this method, four scores are cal-
culated. (1) The ability to identify all segments of the three 
main branches (i.e. RCA, LAD, LCX). (2) The ability to 
label the proximal segments of these three main branches 
including LM. (3) The segment involvement score (SIS) 
[27] per patient is calculated. SIS is defined as the total 
number of correctly labeled segments with regard to the 
segments labeled by experts. (4) The Leaman score [25], 
as also applied in the SYNTAX-Score [4], is computed by 
assigning a weight factor ranging from 6 (LM in LD) to 0 
(p-, m-, d-RCA in LD) to each coronary segment. For each 
patient, the Leaman scores are calculated as the summation 
of the weight factors of all the correctly labeled segments. 
The labeling of OM in the Leaman score is correct if one 
of the OM1 or OM2 is labeled correctly. Both SIS and the 
Leaman score are shown as the proportion compared to the 
results of experts.

Statistical analysis

The presence of each label is reported as an absolute num-
ber. Agreements or disagreements of the presence are 
expressed as percentages. The accuracy for overlap and 
clinical risk scores are illustrated as absolute numbers or 
percentages ± standard deviation (SD) where appropriate.

Results

The automatic labeling of one coronary tree took less than 
3 s on a PC with a Quad Core 2.4Ghz processor and 8 GB 
RAM. One dataset was excluded from the RD evaluation 
datasets because of an extraction problem of LAD. In total, 
83 (56 RD and 27 LD) cases were used in the evaluation. 
Baseline characteristics of the 83 patients are depicted in 
Table 2. 61 patients were male and the mean age was 59.9. 
A total number of 1149 (795 for the RD cases and 354 for 
the LD) segments were included on which the automatic 
method or experts assigned any labels. Figure 4 shows the 
results of applying the automatic labeling approach on a 
RD and a LD case.

Figures 5 and 6 show an overview of agreements and 
disagreements on the presence of labels among the auto-
matic method, expert1 and expert2 for RD and LD cor-
onary trees, respectively. For each label, numbers show 
the amount of agreed or disagreed segments, and by add-
ing all the numbers in a, b and c, one can get the total 
numbers of the segments involved. For instance, in the 
RD datasets (Fig.  5) the total number of segments with 
label OM2 can be computed as follows. Starting with 11 

Fig. 3   Definition of the overlap measure used in the evaluation. TP 
true positive, FP false positive

Table 2   Patient characteristics

Data are represented as mean ± SD or as number and percentages of 
patients
CAD coronary artery disease
*Defined as the presence of coronary artery disease in first-degree 
family members at age <55 years in men and <65 years in women
a Defined as systolic blood pressure ≥140  mm Hg and/or diastolic 
blood pressure ≥90 mmHg or the use of antihypertensive medication
b Defined as serum total cholesterol ≥230 mg/dL or serum triglycer-
ides ≥200 mg/dL or treatment with lipid lowering medication

Total (83)

Age (years) 59.9 ± 11.4
Gender (% male) 61 (73%)
Diabetes 20 (24%)
Hypertensiona 34 (41%)
Hypercholesterolemiab 37 (45%)
Family history of CAD* 26 (31%)
Smoking 15 (18%)
Obesity 22 (27%)
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segments in which all agree from Fig.  5a plus 9 where 
the experts disagree with the automatic from Fig.  5b, 
and plus 3 where both experts disagree from Fig.  5c 
makes a total of 23 segments. The percentages of these 

agreements and disagreements with respect to the total 
segments involved are illustrated in different colors, and 
green color shows a 100.0% agreement (Fig. 5a) or 0.0% 
disagreement (Fig. 5b, c).

Fig. 4   Coronary artery tree 
labeling result with their labels 
surrounded by a RD coronary 
tree, b LD coronary tree. All 
segments including proximal, 
mid and distal parts as well 
as side-branches were labeled 
correctly

Fig. 5   Agreements and disagreements among expert1, expert2 and 
the automatic method for RD cases. a Agreements among expert1, 
expert2 and automatic method, b disagreements between experts and 
automatic method, c disagreements between expert1 and expert2. 
For each label, numbers show the amount of agreed or disagreed 
segments, and by adding all the numbers in (a), (b) and (c) can get 
the total numbers of the segments involved. The percentages of 
agreement and disagreement in comparison with the total segments 

involved are illustrated in different colors, and green color shows a 
100.0% agreement (a) or 0.0% disagreement (b) and (c). For instance, 
0 (100.0%) out of total three LPLB segments get agreements among 
both experts and automatic method in (a) while in 2 (66.6%) LPLB 
segments, both experts disagreed with automatic method in (b) and 
in 1 (33.3%) LPLB segment that expert1 didn’t agree with expert2 in 
(c). Abbreviations can be found in Table 1
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Presence

The agreement on the labeling of the two experts is 776 
(97.6%) RD segments and 310 (87.6%) LD segments by 
adding the numbers in Figs. 5a, b and 6 a, b, respectively. 
Seen from Figs. 5a and 6a, the presence of the labels on 709 
(89.2%) RD and 296 (83.6%) LD segments were definitely 
correct, on which both experts and the automatic approach 
assigned the same labels. For all the cases, the labels of the 
proximal segments (pRCA, pLAD and pLCx) including 
LM were always present and got a 100.0% agreement.

Figures  5b and 6b show the segments with definitely 
wrong labels where both experts disagreed with automatic 
method. However, only 67 (8.4%) RD and 14 (4.0%) LD 
segments had definitely wrong labels and most of the dif-
ferences (RD 55.2%; LD 78.6%) were on diagonal and OM 
branches.

Figures  5c and 6c show the segments (91.6% in RD, 
and 96.0% in LD) with semi-correct labels where expert1 

disagreed with expert2 but either of them agreed with auto-
matically assigned labels. Expert1 disagreed with expert2 
about the presence of the labels on 19 (2.4%) RD segments 
and 44 (12.4%) LD segments. Specifically, for segments 
with OM2 labels in the LD cases, expert1 disagreed with 
expert2 on 12 (75.0%) out of 16 segments.

In RD cases, 0 out of 3 segments with LPLB labels were 
definitely correct, while the disagreements between expert1 
and expert2 were also 33.3%. In LD cases, no OM2 seg-
ments got definitely correct labels, and 4 (25.0%) got defi-
nitely wrong labels, while on the remaining 12 (75.0%) 
OM2 segments, either expert1 or expert2 agreed with the 
automatic method.

Overlap

The average overlap accuracy of the definitely correct 
labeled segments (as shown in Figs. 5a, 6a) is depicted in 
Fig.  7. All labels got at least 70.0% overlap and the LM 

Fig. 6   Agreements and disagreements among expert1, expert2 
and automatic method for LD cases. a agreements among expert1, 
expert2 and automatic method, b disagreements between experts and 
automatic method, c disagreements between expert1 and expert2. 
For each label, numbers show the amount of agreed or disagreed 
segments, and by adding all the numbers in (a), (b) and (c) can get 

the total numbers of the segments involved. The percentages of 
agreement and disagreement in comparison with the total segments 
involved are illustrated in different colors, and green color shows a 
100.0% agreement in (a) or 0.0% disagreement in (b) and (c). Abbre-
viations can be found in Table 1
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even has a 100.0% overlap. 18 labeled RD segments and 7 
LD segments have no overlapping regions which appeared 
more often in certain segments, such as D2 (3 in RD, 2 in 
LD), LCx (4 in RD), and the posterior branch (4 RPLB and 
2 LPLB).

There are also inter-observer differences in the overlap 
on some labels as shown in Fig.  7, which is 1.0% in RD 
cases and 2.2% in LD cases in average. In both RD and LD 
cases, there was a larger inter-observer variability on the 
labels of LCX sub-tree segments, especially on LPDA seg-
ments of LD cases that there was an average 10.0% overlap 
difference.

By averaging the overlap differences between the 
experts, the average overlap accuracy on RD labeling is 
92.0% (±6.7%), and on LD is 90.7% (±9.5%).

Accuracy for clinical risk scores

Clinical risk scores of RD and LD cases are shown in 
Table 3 with the differences in experts averaged. The tree 
labeling method was able to accurately identify all the 
proximal segments and LM segments for all patients and at 
least one main branch was labeled correctly. From all clini-
cal risk scores listed in Table 3, RD and LD coronary trees 
got similar labeling results.

All segments of the three main branches were identi-
fied in more than 70.5% of the RD cases and 96.3% of the 
LD cases and the wrongly labeled segments all occurred 
in the distal part (dLAD or dLCx). The SIS percent-
ages are 92.6% (±7.3%, RD) and 93.3% (±8.1%, LD) in 

comparison with manual labeling results. Specifically, in 
only 1.8% of the RD patients and 9.3% of the LD patients, 
the SIS score is less than 80.0% compared to the experts. 
For the segments which have a weight >0 in the Leaman 
score system, the automatic method got at least 96.0% 
similar Leaman scores compared to the manual labeling 
results. In only 4.5% of the RD patients and 3.7% of the 
LD patients, the automatic method is less than 90.0% 
similar to the Leaman scores from the experts.

Discussion

In this paper, an automatic coronary artery tree labeling 
algorithm for centerlines extracted from CCTA images 
is presented. The labeling algorithm can automatically 
identify coronary tree segments and assign labels to the 
identified segments for both RD and LD circulations. 
This can be used to facilitate automatic lesion reporting 
and risk stratification in a large cohort of patients [8] and 

Fig. 7   Overall overlap results of the methods. a and b show the 
overlap of each segment with two experts for RD tree and LD tree, 
respectively. RD right dominant, LD left dominant; The other abbre-
viations used here are the same as in Table 1

Table 3   Clinical risk scores of RD and LD cases

Data are represented as percentages or mean ± SD. N represent the 
numbers of branches. The SIS and Leaman scores are shown as the 
percentages of automatic method results in comparison with the aver-
aged results of experts. For example, there were 37.5% RD and 46.3% 
LD patients got the same SIS score as the experts
RD right dominant, LD left dominant, LM left main branch, SIS seg-
ment involvement score, SD standard deviation

RD LD
Patients (n = 56) 
auto/expert (%)

Patients (n = 27) 
auto/expert (%)

Identify three main branches
 N = 1 100.0% 100.0%
 N = 2 98.2% 98.1%
 N = 3 70.5% 96.3%

Proximal segments and LM 100.0% 100.0%
SIS
 Mean(±SD) 92.6% (±7.3%) 93.3% (±8.1%)
 =100.0% 37.5% 46.3%
 ≥90.0% 68.8% 70.4%
 ≥80.0% 98.2% 90.7%
 <80.0% 1.8% 9.3%

Leaman score
 Mean(±SD) 96.0% (±3.8%) 96.7% (±4.1%)
 =100.0% 37.5% 50%
 ≥95.0% 67.9% 70.4%
 ≥90.0% 95.5% 96.3%
 <90.0% 4.5% 3.7%
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allow automatic follow-up comparison of quantitative 
parameters on certain segments.

Evaluation of the algorithm

Presence

The accuracy for the presence of D1, D2, OM1 and OM2 
labels are lower compared to other segments, because 
labels of the D1 or D2 and OM1 or OM2 were often 
switched, especially when one of the diagonal branches 
or marginal branches did not exist or were absent from 
the extraction. More disagreements in experts on these 
segments show that it is also difficult for human experts 
to discriminate the D1 or D2 and also OM1 or OM2 seg-
ments. However, with regard to risk assessment, whether it 
is the D1 or D2 is not important as long as they are iden-
tified as diagonal branches. The same applies to the mar-
ginal branches.

Overlap

On LPDA segments of LD cases, there is a large overlap 
inter-observer variability (10.0%) which is caused by the 
different start point definition of LPDA. In this method, the 
start point of LPDA is defined at the position where LCx 
starts to go to the ventricle groove which is consistent with 
expert1, while expert2 used the bifurcation point of LCx 
and LPLB as a start point.

In general, the middle segment of a branch usually has a 
lower overlap score compared to the proximal segment of 
the same branch. Due to the definition of pLAD, a miss-
ing label of the D1 or the lack of extraction of the D1 will 
create an incorrect end point for the pLAD. Similarly, if 
the D2 and OM1 are not extracted, it will influence the 
accuracy of the mLAD and pLCx. Furthermore, if one of 
the segments was assigned the wrong label or wrong start 
and end points, the following segment will inherit or even 
enlarge this error.

Accuracy for clinical risk scores

The presented labeling method is capable to accurately 
identify all the proximal segments of main branches and 
can get similar results as the experts with respect to SIS 
and Leaman scores. Although, only 70.5% RD cases were 
labeled correctly in all three main branches compared to 
experts, the errors all occurred in distal parts of the main 
branches. It should be taken into account that the lesions 
in the distal parts have less clinical relevance than in the 
proximal parts [5, 6].

Comparison to other labeling methods

Several approaches [9, 28] focused on the coronary tree 
labeling in 2D X-ray angiography. Since 2D X-ray angi-
ography is a different imaging modality with CCTA, 
assigning the anatomical labels to coronary arteries in 
CCTA images has different challenges. To the best of 
our knowledge, the literature on automatic coronary tree 
labeling in CCTA images is very limited.

Akinyemi et  al. [10] presented an automatic labe-
ling method which used geometric features of coronary 
arteries to train a multivariate Gaussian classifier. In 
this method, the large anatomical variation of the train-
ing datasets such as the size of the heart might decrease 
the accuracy of the labeling results, while our method is 
robust to the scale of the coronary trees. The proximal, 
mid and distal parts of the main coronary arteries were 
not identified, which is widely adopted in clinical prac-
tice for CCTA image reporting and evaluating.

Recently, Mehmet et  al. [11] proposed a coronary 
labeling method through calculating the geodesic paths 
between coronary tree of a standard model and the 
patient. In the method, labeling a whole coronary tree 
took 3  min by parallelized implementation, while we 
only need less than 3 s without parallelization. Anatomi-
cal prior location, such as the position of four chambers, 
was used to set the coordinates of the coronary tree, 
while only coronary centerline points were needed in our 
automatic method. Furthermore, their approach was not 
used on LD cases or on cases with a RI. A similar over-
lap measurement was used to evaluate the labeling accu-
racy. Compared to their labeling results (87.0% for left 
coronary tree and 86.0% for right coronary) on automatic 
detected centerlines, our method got a slightly higher 
labeling score (92.0%, RD). Since the datasets, the cen-
terline detection methods and coronary segments model 
are different, it’s hard to put these results side-by-side.

Limitations

The following limitations of the present study should be 
considered. First, two models for RD and LD cases are 
needed, thus the dominance type of the coronary tree 
should be known before labeling. Automatic detection 
of the dominancy to choose the correct model or build-
ing a generic model for all the three main dominant types 
will be investigated in future work. Second, the quality 
of the tree labeling is highly dependent on the automatic 
extraction results. In follow up work, we will study if 
the method could determine whether there are missing, 
shortened or wrongly extracted arteries. In this way, the 
labeling of the coronary arteries will allow to improve 
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the tree extraction results by automatically extending 
short branches and remove veins from an extracted tree.

Conclusion

The presented labeling algorithm can successfully identify 
the coronary tree anatomy in CCTA automatically for both 
RD and LD cases in a fully automatic manner.
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