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Transcriptomic Determinants of Response to
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ABSTRACT
◥

Purpose: To explore relationships between biological gene
expression signatures and pembrolizumab response.

ExperimentalDesign:RNA-sequencing data on baseline tumor
tissue from 1,188 patients across seven tumor types treated with
pembrolizumab monotherapy in nine clinical trials were used.
A total of 11 prespecified gene expression signatures [18-gene
T-cell–inflamed gene expression profile (TcellinfGEP), angiogen-
esis, hypoxia, glycolysis, proliferation, MYC, RAS, granulocytic
myeloid-derived suppressor cell (gMDSC), monocytic myeloid-
derived suppressor cell (mMDSC), stroma/epithelial-to-mesenchymal
transition (EMT)/TGFb, and WNT] were evaluated for their rela-
tionship to objective response rate (per RECIST, version 1.1). Logistic
regression analysis of response for consensus signatures was adjusted
for tumor type, Eastern Cooperative Oncology Group performance
status, and TcellinfGEP, an approach equivalent to evaluating the
associationbetween response and the residuals of consensus signatures
after detrending them for their relationship with the TcellinfGEP

(previously identified as a determinant of pembrolizumab response)
and tumor type. Testing of the 10 prespecified non-TcellinfGEP
consensus signatures for negative association [except proliferation
(hypothesized positive association)] with response was adjusted for
multiplicity.

Results: Covariance patterns of the 11 signatures (including
TcellinfGEP) identified in Merck–Moffitt and The Cancer Genome
Atlas datasets showed highly concordant coexpression patterns in
the RNA-sequencing data from pembrolizumab trials. TcellinfGEP
was positively associated with response; signatures for angiogenesis,
mMDSC, and stroma/EMT/TGFb were negatively associated with
response to pembrolizumab monotherapy.

Conclusions: These findings suggest that features beyond IFNg-
related T-cell inflammation may be relevant to anti–programmed
death 1 monotherapy response and may define other axes of tumor
biology as candidates for pembrolizumab combinations.

See related commentary by Cho et al., p. 1479

Introduction
Immune checkpoint inhibitor (ICI) therapy has significantly

improved clinical outcomes for patients with several tumor types (1).
A number of tumor-intrinsic and tumor-extrinsic factors have been
hypothesized to affect treatment responses (1), although the relative
impact of these factors on response to ICI therapy remains poorly
understood.

The degree of proinflammatory gene expression in the tumor
microenvironment (TME) can be correlated with response to ICI
therapy (2). For example, an IFNg-related, 18-gene T-cell–inflamed
gene expression profile (TcellinfGEP) has been associated with
response to pembrolizumab across multiple tumor types (3). Pro-
grammed death ligand 1 (PD-L1) RNA expression is a component of
the TcellinfGEP and evaluations of the correlation between PD-L1
combined positive score (by protein IHC) and the TcellinfGEP shows a
moderate correlation of 0.55 to 0.60 in datasets examined, but the two
are not deemed equivalent biomarkers (4). Furthermore, the anti-
tumor immune response is likely also influenced by other elements of
the TME, including immune and stromal cells, tumor vasculature,
extracellular matrix, and modulatory cytokines, in addition to tumor-
intrinsic pathways (5). Gene expression signatures associated with key
cell types (e.g., myeloid-derived suppressor and stromal cells; ref. 6),
oncogenic pathways [e.g., RAS andMYC (7)], and biological processes
[e.g., proliferation (8), immunosuppression by WNT inhibition (9),
hypoxia (10), glycolysis (11), and angiogenesis] may be relevant to
cancer progression and response to ICI therapy. To our knowledge,
no evaluation of transcriptomic correlates of response under a pre-
specified testing approach has been previously reported in a large
dataset from treated patients enrolled in clinical trials across tumor
types and characterized with rigorously assessed RECIST, version 1.1
(RECIST v.1.1).

This analysis employs a prospectively specified retrospective
evaluation undergirded with a rigorous statistical approach to
evaluate a short list of key gene expression signatures reflective of
the TME. In addition to the 18-gene TcellinfGEP, we developed a
selective but comprehensive consensus set of 10 RNA-sequencing
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(RNA-seq)–based gene expression signatures representing canon-
ical biological axes of gene expression that are common across
different tumor types and that may be associated with response or
resistance to pembrolizumab monotherapy. Using data from base-
line tumor tissue samples from 1,188 patients enrolled in pem-
brolizumab monotherapy studies across seven tumor types, we
prospectively tested for associations between these biologically
relevant RNA-seq–based gene signatures and objective response
rate after accounting for the explanatory information provided in
the TcellinfGEP using joint regression modeling. The hypothesis
tested for each signature (except the proliferation signature, which
was tested for a positive association with tumor response) was that
the specified signature score was negatively associated with pro-
pensity for a tumor to respond to pembrolizumab after adjustment
for the level of the TcellinfGEP.

Materials and Methods
Datasets

Reference datasets: Merck–Moffitt (12) and The Cancer Genome
Atlas (TCGA) databases (https://www.cancer.gov/about-nci/organiza
tion/ccg/research/structural-genomics/tcga) were used to develop
consensus signatures. The Merck–Moffitt gene expression dataset
contains 16,000 primary and 4,000 metastatic tumors and represents
>25 different cancers (Supplementary Table S1; ref. 13). Gene expres-
sion data were obtained from primary and metastatic tumors of adult
patients treated through the Total Cancer Care initiative, which was
created by the H. Lee Moffitt Cancer Center (Tampa, FL; ref. 12).
Tumor tissue was snap frozen. Macrodissection was performed in
liquid nitrogen to maintain the frozen tissue and enrich the tumor
content, followed by RNA extraction. The specimens were then
arrayed on HuRSTA-2a520709 GeneChips (Affymetrix). These
chips contain >52,000 probe sets, representing >22,000 unique
genes. Additional details regarding the platform (e.g., probe set
annotation, chip definition files) have been made public and can be
accessed as platform GPL10379 at the NCBI Gene Expression
Omnibus website (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc¼GPL10379). TCGA data were obtained from the TCGA web-
site (https://www.cancer.gov/about-nci/organization/ccg/research/
structural-genomics/tcga).

Clinical trial (KEYNOTE) datasets: The current analysis includ-
ed pretreatment tumor samples from patients with available RNA-
seq data that passed quality control from nine single-arm
or randomized clinical studies of pembrolizumab monotherapy
(N ¼ 1,188; Table 1): KEYNOTE-001/KEYNOTE-006–melanoma

(NCT01295827/NCT01866319; n ¼ 476; first-line and later setting;
ipilimumab-treated and ipilimumab-naive); KEYNOTE-052–
urothelial carcinoma (NCT02335424; n ¼ 186; first-line setting);
KEYNOTE-012/KEYNOTE-055–head and neck squamous
cell carcinoma (NCT01848834/NCT02255097; n ¼ 147; first-line
and later setting; human papilloma virus–negative by whole
exome sequencing); KEYNOTE-086–triple-negative breast cancer
(NCT02447003; n ¼ 132; first-line and later setting); KEYNOTE-
059–gastric cancer (NCT02335411; n¼ 92; first-line and later setting);
KEYNOTE-427–renal cell carcinoma (NCT02853344; n ¼ 78; first-
line setting); and KEYNOTE-100–ovarian cancer (NCT02674061; n¼
77; recurrent setting). Detailed patient baseline and disease character-
istics have been published for each respective study. The study pro-
tocols and all amendments were approved by the appropriate ethics
committee at each center for each study. Each study was conducted in
accordance with the protocol and its amendments, the Declaration of
Helsinki, the International Conference on Harmonization Guidelines
for Good Clinical Practice, and local and national regulations. All
participants provided written informed consent.

RNA-seq
RNA-seq on formalin-fixed paraffin-embedded specimens from

KEYNOTE trials was performed using the HiSeq 4000 platform
(Illumina). The RNA-seq raw reads were processed using the custom-
ized RNA-seq data analysis pipeline inOmicSoft ArraySuite, version 9.
Specifically, the raw reads were first filtered on the basis of quality
control and then were aligned to the reference genome Human.B37.3
using OSA (14). After alignment, gene expression levels (raw read
counts and fragments per kilobase of exon per million mapped
fragments) were quantified using the RSEM algorithm (15) with the
gene model Ensembl.R75. All samples and data were obtained with
appropriate Institutional Review Board approvals.

Gene selection
A compilation of external resources, including the Merck–Moffitt

and TCGA databases, was used to identify genes and signatures
associated with the TcellinfGEP. Relatively good stability was observed
across these two databases in terms of the pattern of all gene correla-
tions with the GEP (Supplementary Fig. S1B). Beyond the 18 genes
included in the GEP, other genes showed strong or moderate correla-
tions with the GEP, and to account for FDR, we identified a cutoff for
the correlation to determine membership of genes with a specified
pattern. For example, all genes within the TcellinfGEP signature have a
Spearman correlation of ≥0.6 with the signature itself. We also note
that not all genes in the GEP signature are derived from the same cell
type; however, this association at a correlation of approximately 0.6
would seem sufficient to define a pattern of gene expression that is
highly replicable in terms of the member genes, ultimately showing
reliable statistically significant associationswith clinical outcome at the
level of the individual genes within the signature.

Consequently, using this 0.6 correlation as a guide, consensus
signatures beyond GEP were defined de novo from foundational
datasets external to our study and independent of any pembrolizumab
trial or exposure using an algorithm to select individual genes for
membership in a consensus signature based on correlation, with
reference signatures identified in the literature or from internal
discovery outside of pembrolizumab trials (10, 11, 16, 17). For the
current analysis, a reference signature was selected for a biological
process (e.g., angiogenesis), and the correlation of all genes to the
reference signature score in large datasets of gene expression pro-
files of human tumors was computed using data from both the

Translational Relevance

To investigate axes of biology beyond T-cell inflammation for
their relevance to response to anti–programmed death 1 therapy,
the Merck–Moffitt and The Cancer Genome Atlas transcriptome
datasets were used to define other key gene expression signatures
independent of data from any pembrolizumab clinical trial. Testing
of these other axes in a large cohort of multiple solid tumor types
showed that angiogenesis, monocytic myeloid-derived suppressor
cell, and stroma/epithelial-to-mesenchymal transition/TGFb were
negatively associated and thus may be predictors of resistance to
pembrolizumab monotherapy and potential targets for combina-
tion therapy strategies.

Determinants of Pembrolizumab Response in Solid Tumors
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Merck–Moffitt and TCGAdatabases. This approach allowed for deriv-
ation of coexpression patterns with expected high reproducibility
across datasets while avoiding signature redundancy by mapping
genes with similar behavior (with respect to the reference signature)
into a single signature, thereby limiting the statistical adjustments to
be applied for multiple hypotheses testing when evaluating these
consensus signatures in patients treated with pembrolizumab.

If the correlation between an individual gene in the transcriptome
and the reference signature score, as calculated using data from the two
databases, differed by >0.2, the gene was removed from consideration
for membership in that consensus signature. The two correlation
values from theMerck–Moffitt and TGCAdatabases for the remaining
genes were then averaged. Gene selection for the consensus sets then
followed a hierarchical process, starting with all genes with an average
correlation of ≥0.65 to the reference signature score being selected if
≥30 genes met this criterion. If not, the correlation threshold was
lowered to ≥0.60. If <30 genes met these criteria, all genes with an
average correlation of ≥0.55 were incorporated into the consensus
signature. The algorithm aimed to avoid small sized signatures while
staying consistent with our observation that genes in the 18-gene
TcellinfGEP, which are validated predictors of response in moderate to
large pan-tumor datasets (N > 500, but N < 1,000), tend to maintain a
correlation of approximately 0.6 with the GEP itself.

TcellinfGEP score and development of consensus signatures
The TcellinfGEP score, as assessed using the RNA-seq platform, was

calculated as the weighted sum of the predictor genes determined
during the development of the TcellinfGEP on the NanoString plat-
form (3). In addition to the TcellinfGEP, 10 consensus RNA expression
signatures representative of canonical pathways associated with tumor
biology and TME elements beyond the TcellinfGEP were defined using
gene RNA coexpression patterns in the Merck–Moffitt and TCGA
databases. These non-TcellinfGEP signature scores were calculated
as the average of the genes (in log scale) in each signature gene set.
The analytical framework for the development of these consensus
signatures combined biological knowledge of tumor gene expres-
sion patterns in large foundational datasets with reference signa-
tures from the literature (18, 19) to define a parsimonious set of
signatures with a robust covariance structure related to a number of
relevant biological patterns.

Our method generalizes the immune-centric approach taken by
Thorsson and colleagues (20) by further synthesizing nonimmune
elements of the TME into a small set ofmolecular signatures.We relied
on observations related to the covariance of genes with TcellinfGEP
in the Merck–Moffitt and TCGA databases as a template. The
TcellinfGEP identifies a parsimonious gene expression pattern asso-
ciated with response to programmed death 1 (PD-1) blockade using
the NanoString platform as described in Ayers and colleagues (3).
The resultant core set of genes, referred to as the 18-gene TcellinfGEP,
captures a dominant predictive signature of response to PD-1
blockade in a pan-tumor setting (3). Several other reports have
identified gene expression signatures significantly associated with
an IFNg-activated T-cell–inflamed microenvironment: immuno-
score (21), chemokine signature (22), and cytolytic signature (23).
All these signatures and GEPs (3, 21–23), as well as PD-L1/
PD-L2 gene expression, exhibited similar covariance patterns in
the Merck–Moffitt database (Supplementary Figs. S1 and S2).

Consensus RNA signatures reflective of TME and tumor bio-
logy, including signatures of proliferation, stroma/epithelial-to-
mesenchymal transition (EMT)/TGFb, RAS, MYC, WNT, hypoxia,
glycolysis, angiogenesis, and granulocytic and monocytic myeloid-

derived suppressor cells (gMDSC and mMDSC, respectively), were
developed. A list of member genes for each consensus signature is
provided in Supplementary Table S2 in the Supplementary Data and
descriptions of each consensus signature are given in Supplementary
Table S3 in the Supplementary Data; the overlap of gene membership
between the signatures is minimal, reflecting the relative orthogonal
nature of their biological substrate.

Evaluation of the pairwise correlation, indicating patterns for the
10 consensus signature scores plus the TcellinfGEP, led to similar
results when using either the tissue-adjusted residual versions of the
signature scores or the standard versions, suggesting these consen-
sus signatures represent fairly robust patterns of coexpression
across solid tumor types.

Tests for association between non-GEP consensus signature scores
and confirmed objective response rate as per RECIST v.1.1 by inde-
pendent central review (where objective response equals complete
response plus partial response) were based on logistic regression
analysis and adjusted for tumor type, Eastern Cooperative Oncology
Group performance status, and the TcellinfGEP. Adjustment for the
TcellinfGEP was performed to understand the additional explanatory
value that any non-TcellinfGEP signatures had for objective response
rate, an approach equivalent to evaluating the association between
objective response rate and the residuals of consensus signatures after
detrending for their relationshipwith theTcellinfGEP. Testing of the 10
prespecified consensus signatures for a postulated negative association
(except proliferation, which had a hypothesized positive association)
with objective response rate was adjusted for multiplicity using the
Hochberg step-up procedure. Area under the receiver operating
characteristic (AUROC) curve for the residual consensus signature
score (after detrending the associations of tumor type and the GEP on
the signature score) on objective response was used as a general
measure of the discriminatory ability of the consensus signatures.

Importantly, the consensus signature gene sets were prespecified,
and corresponding scores were calculated, prior to connecting RNA-
seq data to clinical outcomes from the studies evaluated, thus ensuring
blinding of the clinical data to the genomic analysts to avoid the risk of
overfitting the data.

Data availability
Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc.,

Kenilworth, NJ, USA (MSD), is committed to providing qualified
scientific researchers access to anonymized data and clinical study
reports from the company’s clinical trials for the purpose of conduct-
ing legitimate scientific research. MSD is also obligated to protect the
rights and privacy of trial participants and, as such, has a procedure in
place for evaluating and fulfilling requests for sharing company clinical
trial data with qualified external scientific researchers. The MSD data
sharing website (available at: http://engagezone.msd.com/ds_docu
mentation.php) outlines the process and requirements for submitting
a data request. Applicationswill be promptly assessed for completeness
and policy compliance. Feasible requests will be reviewed by a com-
mittee of MSD subject matter experts to assess the scientific validity of
the request and the qualifications of the requestors. In line with data
privacy legislation, submitters of approved requests must enter into a
standard data-sharing agreement with MSD before data access is
granted. Data will bemade available for request after product approval
in the United States and European Union or after product develop-
ment is discontinued. There are circumstances that may prevent MSD
from sharing requested data, including country or region-specific
regulations. If the request is declined, it will be communicated to the
investigator. Access to genetic or exploratory biomarker data requires a
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detailed, hypothesis-driven statistical analysis plan that is collabora-
tively developed by the requestor and MSD subject matter experts;
after approval of the statistical analysis plan and execution of a data-
sharing agreement, MSD will either perform the proposed analyses
and share the results with the requestor or will construct biomarker
covariates and add them to a file with clinical data that is uploaded to
an analysis portal so that the requestor can perform the proposed
analyses.

Access to data
Andrey Loboda had full access to all the data in the study and

takes responsibility for the integrity of the data and the accuracy of
the data analysis.

Results
Details on consensus signatures and their correlation patterns are

shown in Table 2 and visualized for the Merck–Moffitt dataset
(Fig. 1A), TCGA dataset (Fig. 1B), and the independent pembroli-
zumab clinical trial patient analysis population (Fig. 1C), consisting of
1,188 patient samples collected from clinical trials with pembrolizu-
mab monotherapy (which were not used to develop the consensus
signatures). RNA-seq data from pembrolizumab clinical trials dem-
onstrated highly concordant coexpression patterns for the signatures
defined in the Merck–Moffitt and TCGA datasets.

The TcellinfGEP demonstrated the strongest association with
response to pembrolizumab (Table 3), as previously described in a
smaller sample size set (13). TcellinfGEP showed a moderate correla-
tion with PD-L1 assay values, suggestive of their consistent readouts of
an inflamed microenvironment, but nonredundant role in selecting
patients most likely to benefit from pembrolizumab monotherapy.

After adjusting formultiple testing, tumor type andother covariates,
including the TcellinfGEP, the angiogenesis, mMDSC, and stroma/
EMT/TGFb signatures, exhibited significant negative associations
with response (P < 0.05; Table 3), although the P values and the
AUROC curve estimates indicated that the size of the effect was less
than that observed for the TcellinfGEP and was modest (AUROC <
0.6) overall. The distributions of tumor type and TcellinfGEP-
detrended versions of the signature scores are shown for responders
and nonresponders (Fig. 2), demonstrating the consistency across
cancer types in distribution differences between responders and
nonresponders in the TcellinfGEP, angiogenesis, mMDSC, and
stroma/EMT/TGFb signatures.

When the AUROC was compared by tumor type, considerable
variation was observed (Fig. 3). Consensus sets tended to be more
accurate predictors of response in patients with triple-negative breast

cancer or head and neck squamous cell carcinoma and less predictive
for patients with melanoma, gastric cancer, or renal cell carcinoma,
suggestive of particularities of individual cancer types that cannot be
fully explained by the universal signatures we propose here.

The consensus signatures that were significant across solid tumor
types can be mapped to corresponding parsimonious signatures
analyzed by other groups in a clinical setting. A number of studies
have explored signatures that are composed of overlapping but not
identical sets of genes as ours but that generate scores highly concor-
dant with corresponding scores from the consensus signatures devel-
oped in the current analysis (24, 25). For example, core biological
pathways explored by Mariathasan and colleagues (25) in molecular
profiles in tumors from patients with urothelial carcinoma receiving
anti–PD-L1 therapy uniquely and strongly map to TcellinfGEP, stro-
ma/EMT/TGFb, proliferation, and angiogenesis consensus signatures
(Supplementary Fig. S3A). Among these core biological pathways,
CD8þ T-effector GEP and TGFb (stroma/EMT/TGFb) demonstrated
significant associations with response and resistance, respectively. In
another study with patients with renal cell carcinoma treated with
anti–PD-L1 therapy, a different set of signatures was explored by
McDermott and colleagues (24); these signatures again demonstrated
significant correlations with TcellinfGEP, gMDSC, and angiogenesis
signatures (Supplementary Fig. S3B). All genes illustrated in the study
by McDermott and colleagues (24) showed a high correlation with
the corresponding consensus signatures in our study.

Discussion
This analysis of prespecified RNA-seq–based consensus signa-

tures of canonical biological pathways of the TME from a large
dataset of patients treated with pembrolizumab confirms the
importance of the IFNg-related TcellinfGEP and demonstrated
additional pathways that may be relevant to response and resis-
tance to ICI therapy across multiple solid tumor types. Whereas
the TcellinfGEP demonstrated a robust positive association with
response to pembrolizumab, this analysis also indicates that sig-
natures for angiogenesis, mMDSC, and stroma/EMT/TGFb may be
negative predictors of response to pembrolizumab monotherapy
after adjusting for the levels of the TcellinfGEP, providing impor-
tant directions of biological variation that currently are or can be
exploited therapeutically.

The goal for the development and selection of consensus signa-
tures was to choose a short but comprehensive list of coherent,
reproducible, and nonredundant signatures consistent with litera-
ture that have a clear connection to canonical pathways, key cell
types, and biological processes. These signatures were prespecified

Table 2. Overview of consensus gene sets.

Signature TcellinfGEP Proliferation

Stroma
EMT/
TGFb RAS MYC WNT Hypoxia Glycolysis Angiogenesis gMDSC mMDSC

Number of genes in consensus 18 227 51 11 32 13 20 30 16 43 218
Correlation with TcellinfGEP,
TCGA

1 0.07 0.23 0.11 �0.09 �0.20 0.20 0.21 0.10 0.47 0.81

Correlation with TcellinfGEP,
Merck–Moffitt

1 0.10 0.22 0.10 0.04 �0.11 0.20 0.25 0.02 0.46 0.80

Abbreviations: EMT, epithelial-to-mesenchymal transition; gMDSC, granulocytic myeloid-derived suppressor cell; mMDSC, monocytic myeloid-derived suppressor
cell; TcellinfGEP, T-cell–inflamed gene expression profile; TCGA, The Cancer Genome Atlas; TGFb, transforming growth factor b.
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for prospective testing of RNA expression datasets across the set of
MSD’s pembrolizumab monotherapy studies. Our approach is
novel for biomarker development and qualification and provides
platform-independent evaluation of the proposed gene expression
signatures across solid tumor types.

A review of key clinical publications that document response to
anti–PD-1/PD-L1 therapy highlights unequivocally strong pairwise
relationships between the biomarker scores generated using our
consensus signatures and the signatures proposed in these other
studies. Although gene expression signature definitions and naming
will differ across different investigational groups, a high degree of
concordance at the level of their signature scores is likely in many
instances. Examining the relationships between the signature scores
used across multiple studies published by different groups is necessary
to understand where consistent findings have been observed. For
example, our consensus profile for the stroma/EMT/TGFb consensus
signature not only demonstrated an association with resistance to
anti–PD-1/PD-L1 treatment in the current analysis but also showed
high concordance with anti–PD/PD-L1 resistance signatures defined
in two other clinical studies (25, 26). Differently named signatures, but
similar in terms of signature scores, mapping to our stroma/EMT/
TGFb signature were explored byMariathasan and colleagues (25) and
Wang and colleagues (26) and showed a significant association with a
lack of response in PD-1 inhibitor–treated patients with urothelial
carcinoma. Although these studies have assigned the signatures dif-
ferent names and have provided alternative explanations with regard
to biological interpretation of the data, the proposed biomarkers are
highly concordant and reflect the same convergent biology, likely
related to the mesenchymal state of the tumors, infiltration of cancer-
associated fibroblasts, and activation of the TGFb pathway.

The selection of signatures in this report was somewhat similar
to that in a previous report, which analyzed TCGA transcriptome data
(N > 10,000) and a collection of previously published human immune
signatures to determine a sparse, but comprehensive, set of five
signatures to summarize the immune landscape of cancer (20). Those
five signatures showhigh internal coherence (Supplementary Fig. S4A)
and map to some of the consensus signatures we defined (Supple-
mentary Fig. S5). Interestingly, the mMDSC consensus signature in
our study and the monocytes/macrophages signature proposed by
Thorsson and colleagues (20) demonstrate a 0.99 correlation coeffi-
cient in both the Merck–Moffitt and TCGA databases, consistent with
our interpretation of the biology behind this consensus signature.

Liberzon and colleagues (27) also sought to reduce redundancy in
large datasets by generating a hallmark gene set. However, they did not
consistently use large cohorts of human tumor samples, and the genes
within the signatures are typically less coherent (with an average
correlation to signature score of <0.5; Supplementary Fig. S4B) com-
pared with the consensus signatures we developed (Supplementary
Fig. S4C).

The significant findings for the association with an outcome
reported for the angiogenesis, mMDSC, and stroma/EMT/TGFb
signatures were consistent with the proposed role of these pathways
as immune-suppressive axes, whichmay negatively impact the efficacy
of single-agent immunotherapy (5). For example, MDSCs can pro-
mote tumor evasion and growth (5). Notably, the mMDSC signature
score evaluated here demonstrates a strong positive association with
the TcellinfGEP, whichmay reflect the biology of concurrent antitumor
and compensatory immunosuppressive response at the tumor site.
Complementary to mMDSCs, the production of angiogenic factors
is known to suppress antigen-presenting cells and immune effector
cells, augmenting the activity of regulatory T cells, MDSCs, and

mMDSC

T-cell–inflamed GEP

gMDSC

Hypoxia/Glycolysis

RAS
Angiogenesis

Stroma/EMT/TGFβ

Proliferation

MYC

WNT

WNT
MYC

Prol
ife

rat
ion

Ang
iog

en
es

is

RAS
T-ce

ll–
inf

lam
ed

 G
EP

Stro
ma/E

MT/TGFβ

po
xia

/G
lyc

oly
sis

g
DSC

MDSC

mMDSC

gMDSC

Hypoxia/Glycolysis

RAS

Angiogenesis

Proliferation

MYC

WNT

WNT
MYC

Prol
ife

rat
ion

Ang
iog

en
es

is

RAS
Hyp

ox
ia/

Glyc
oly

sis

gM
DSC

MDSC

T-cell–inflamed GEP

Stroma/EMT/TGFβ

T-ce
ll–

inf
lam

ed
 G

EP

Stro
ma/E

MT/TGFβ

mMDSC

gMDSC

Hypoxia/Glycolysis 

RAS

Angiogenesis 

Proliferation 

MYC

WNT

WNT
MYC

Prol
ife

rat
ion

RAS po
xia

/G
lyc

oly
sis

MDSC
MDSC

T-cell–inflamed GEP

Stroma/EMT/TGFβ

T-ce
ll–

inf
lam

ed
 G

EP

Stro
ma/E

MT/TGFβ

Ang
iog

en
es

is

A

B

C

Figure 1.

Pairwise Spearman correlation of consensus signatures. Merck–Moffitt dataset
(A), TCGA dataset (B), and pooled pembrolizumab trial analysis population (C).
EMT, epithelial-to-mesenchymal transition; GEP, gene expression profile;
gMDSC, granulocytic myeloid-derived suppressor cell; mMDSC, monocytic
myeloid-derived suppressor cell; TCGA, The Cancer Genome Atlas; TGFb,
transforming growth factor b.
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tumor-associated macrophages. Furthermore, the vascular phenotype
associated with excessive expression of angiogenic factorsmay have an
additional immunosuppressive effect, preventing the efficient traffick-
ing of T cells within the TME (5). Excessive TGFb may also have an
immunosuppressive effect, acting as an additional mechanism of
resistance to ICI therapy (5). Potential actionable targets behind
biomarker-associated resistance in these signatures include multiple
potential checkpoint and regulatory receptors, such as ILT3, ILT4,
LAIR1, PILRA, SIRPA, SELPLG, and CSF1R, among those associated
with the mMDSC signature. Similarly, angiogenesis modules con-
tain multiple known targets, such as TIE1, TIE2, KDR, VEGFR, and
additional potential targets critical for the biology of endothelial
cells that contribute to this consensus signature. The stroma/EMT/
TGFb signature contains potential targets related to fibroblast
biology (e.g., CD93 and PDGFRB), TGFb signaling (e.g., sLRRC32),
and EMT induction (e.g., AXL).

Identifying factors that may limit the efficacy of ICI therapy
may also identify patients who could benefit from combination
therapy with antiangiogenic, anti-TGFb, or other targeted therapies
(5, 28–30). These data provide opportunities for bedside-to-bench
exploration of relevant biology, and a rational basis for combination
strategies. For example, multiple combinations of ICIs with anti-
angiogenesis agents have been approved by the FDA, affirming their
viability as an effective combination strategy (31, 32) and under-
scoring the importance of the relationship between angiogenesis
and response to ICI. These results are consistent with our identi-
fication of angiogenesis as a signature negatively correlated to
response and suggest that our described analytic approach may
have mechanistic relevance to clinical development strategies. For
instance, TGFb-modulating agents (33) are being tested in combi-
nation with ICIs, with promising results (30). Finally, agents that
modulate the mMDSC axis are also being evaluated in the clin-
ic (34). Future evaluation of signatures in combination studies may

Table 3. Association of TcellinfGEP and consensus signatureswith
response to pembrolizumab.

Signature
AUROC curvea

(95% CI)
Nominal
one-sided Pb

Multiplicity-
adjusted Pc

TcellinfGEP 0.63 (0.60–0.67) 3.6 � 10–12 N/A
Proliferation 0.53 (0.49–0.56) 0.09 0.45
Stroma/EMT/TGFb 0.56 (0.52–0.60) 0.0003 0.0023
RAS 0.52 (0.48–0.56) 0.11 0.45
MYC 0.51 (0.47–0.55) 0.41 0.82
WNT 0.52 (0.48–0.56) 0.10 0.45
Hypoxia 0.51 (0.47–0.54) 0.38 0.82
Glycolysis 0.48 (0.44–0.52) 0.83 0.83
Angiogenesis 0.58 (0.54–0.61) 0.0001 0.0009
gMDSC 0.53 (0.50–0.57) 0.032 0.22
mMDSC 0.56 (0.53–0.60) 0.0001 0.0009

Abbreviations: AUROC, area under the receiver operating characteristic; CI,
confidence interval; EMT, epithelial-to-mesenchymal transition; gMDSC, gran-
ulocytic myeloid-derived suppressor cell; mMDSC, monocytic myeloid-derived
suppressor cell; N/A, not applicable; TcellinfGEP, T-cell–inflamed gene expres-
sion profile; TGFb, transforming growth factor b.
aFor the TcellinfGEP, predictor is residual score after adjusting for tumor type
and for non-TcellinfGEP residual score after adjustment for tumor type and
TcellinfGEP.
bFor the TcellinfGEP and for proliferation, statistical testing and AUROC curve
estimationwere based on hypothesized positive associations, whereas negative
associations were posited for the remainder.
cConsensus signature tests were adjusted using Hochberg step-up procedure.
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Figure 2.

Associations of gene signatures with response to pembrolizumab across tumor
types. T-cell–inflamedGEP (A),mMDSC (B), angiogenesis (C), and stroma/EMT/
TGFb signatures (D). CR, complete response; EMT, epithelial-to-mesenchymal
transition; GEP, gene expression profile; HNSCC, head and neck squamous cell
carcinoma; mMDSC, monocytic myeloid-derived suppressor cells; NR, nonre-
sponder; PR, partial response; R, responder; RCC, renal cell carcinoma; TGFb,
transforming growth factor b; TNBC, triple-negative breast cancer.
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provide insight into the biological context in which combination
therapy has the greatest incremental impact.

It is also important to note that we could not replicate some
previously reported negative associations for the WNT, MYC, and
gMDSC signatures and clinical outcome. WNT- and MYC-related
pathways are hypothesized to be involved in immune exclusion
processes (35, 36). However, the overall influence of these signa-
tures on response was not observed, and no noteworthy negative
correlation between these signatures and GEP was observed in this
analysis of specimens from pembrolizumab studies across solid
tumor types. We anticipated that the gMDSC signature would be
associated with resistance to pembrolizumab, as has been reported
by McDermott and colleagues (24) for atezolizumab in advanced
renal cell carcinoma; however, we did not identify such a relation-
ship. Several differences in our analysis may account for this. First,
we used RECIST-defined response as the primary clinical endpoint,
given the noncontrolled single-arm treatment setting. Our analysis
was also inherently aimed at an approach across multiple solid
tumor types. In contrast, McDermott and colleagues (24) used
overall survival as the primary endpoint and was focused on renal
cell carcinoma.

Our study, which investigated outcomes in patients treated
with pembrolizumab, is inherently limited by its retrospective,
uncontrolled, and exploratory nature. The tumor types represent
a convenient sample of single-arm trials with data available at the
time the analyses were conducted. The tumor types represented in
our combined RNA-seq dataset are not equally distributed (albeit
all modeling was adjusted for tumor type as a covariate). By
convention, for the evaluation of tumor response, patients whose
best overall response was stable disease were treated as nonrespon-
ders; however, in the evaluation of “resistance” or “suppressive”

TME axes, we acknowledge that this stable disease group represents
a mixed population in terms of long-term prognosis and that
treating this entire group as nonresponders may not be the most
powerful approach to defining drug activity.

Our focus was an approach across multiple solid tumor types
aimed at evaluating some well-recognized TME dimensions using
prespecified set features; no de novo discovery effort to find
tumor-specific resistance patterns was pursued. The strengths of
our results are in the prespecified testing of key consensus
signatures and in the large sample size (N ¼ 1,188) of patients
treated with pembrolizumab. To our knowledge, this is the largest
dataset of pembrolizumab monotherapy evaluated with transcrip-
tome analysis and our approach may serve as an important
benchmark for evaluation of RNA-seq–based biomarkers in future
studies and analyses. Further evaluation of these molecular sig-
natures in these and other tumor types, and in randomized trials,
may provide additional insight into their prognostic or predictive
character, or both.

Conclusions
A set of prespecified consensus gene expression signatures using

RNA-seq data derived frommultiple tumor types external to studies of
pembrolizumab were confirmed as resistance patterns of pembroli-
zumab studies across multiple solid tumor types. Our findings rep-
resent important additions in the exploration of RNA-seq–based
biomarkers in the anti–PD-1 monotherapy setting due to power of
the dataset, prospective testing of a parsimonious list of predefined
signatures, and introduction of novel signatures into a clinical setting
that can continue to be followed for further validation in more
homogeneous, large, late-phase randomized trials. In addition, TME
elements beyond IFNg-related T-cell inflammation show promise for

T-ce
ll–

infla
med

 G
EP

Angiogen
es

is

mMDSC

Stro
ma/E

MT/TGFβ

gMDSC

Prolife
rat

ion
WNT

RAS

Hyp
oxia MYC

Glyc
oly

sis
0.4

0.5

0.6

0.7

0.8
A

U
R

O
C

Gastric

TNBC

Melanoma

Bladder

Ovarian

RCC

HNSCC

Figure 3.

AUROC curve by signature and tumor type estimated in the direction of the hypothesized association. The symbols are sized to represent the population sizes of the
different cohorts that influence the AUROC curve estimates shown in Table 2. Non-TcellinfGEP consensus signatureswere evaluated after detrending for TcellinfGEP.
AUROC, area under the receiver operating characteristic; EMT, epithelial-to-mesenchymal transition; GEP, gene expression profile; gMDSC, granulocytic myeloid-
derived suppressor cells; HNSCC, head and neck squamous cell carcinoma; mMDSC, monocytic myeloid-derived suppressor cells; RCC, renal cell carcinoma;
TcellinfGEP, T-cell–inflamed gene expression profile; TGFb, transforming growth factor b; TNBC, triple-negative breast cancer.

Determinants of Pembrolizumab Response in Solid Tumors

AACRJournals.org Clin Cancer Res; 28(8) April 15, 2022 1687



understanding the biology of ICI therapy response and highlight the
potential to develop rational combination strategies.
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