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Simple Summary: Nasopharyngeal carcinoma is a serious major public health problem in its endemic
countries. Up to 80% of NPC patients with locally advanced disease or distant metastasis at diagnosis
were associated with poor prognosis and with median survival less than 4 months. The mortality
rate of NPC metastasis is up to 91%. To date, there is no available curative treatment or reliable
early diagnosis or prognosis for NPC. Discovery and development of reliable early diagnosis and
prognosis biomarkers for nasopharyngeal carcinoma are urgent needed. Hence, we have here listed
the potential early diagnosis and prognosis biomarker candidates for nasopharyngeal carcinoma.
This review will give an insight to readers on the progress of NPC biomarker discovery to date, as
well as future prospective biomarker development and their translation to clinical use.

Abstract: Nasopharyngeal carcinoma (NPC) is an epithelial malignancy that shows a remarkable
ethnic and geographical distribution. It is one of the major public health problems in some countries,
especially Southern China and Southeast Asia, but rare in most Western countries. Multifactorial
interactions such as Epstein–Barr virus infection, individual’s genetic susceptibility, as well as envi-
ronmental and dietary factors may facilitate the pathogenesis of this malignancy. Late presentation
and the complex nature of the disease have led it to become a major cause of mortality. Therefore, an
effective, sensitive, and specific molecular biomarker is urgently needed for early disease diagnosis,
prognosis, and prediction of metastasis and recurrence after treatment. In this review, we discuss the
recent research status of potential biomarker discovery and the problems that need to be explored
further for better NPC management. By studying the aberrant pattern of these candidate biomark-
ers that promote NPC development and progression, we are able to understand the complexity
of this malignancy better, hence positing our stands better towards strategies that may provide a
way forward to the discovery of more reliable and specific biomarkers for diagnosis and targeted
therapeutic development.

Keywords: nasopharyngeal carcinoma (NPC); Epstein–Barr virus; epigenetics; biomarkers; therapeutic
resistance

1. Introduction

Nasopharyngeal carcinoma (NPC) is a cancer that arises from the squamous epithelial
cells that cover the lateral wall of the nasopharynx [1]. In contrast to head and neck cancers,
NPC has a distinct epidemiology, pathology, clinical characteristics, and treatment re-
sponse [2]. NPC is an endemic form of malignancy in certain parts of the world. It is highly
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prevalent in parts of North Africa, Alaska, Greenlanders, and Southern Asia especially
Southern China, with 50,000 new cases being reported annually (Figure 1) [3]. The top
ten countries with the highest number of cases of NPC are China, Indonesia, Vietnam,
India, the Philippines, Thailand, Malaysia, Myanmar, the United States of America, and
Algeria [4]. Despite its distinct geographical distribution, it is also more likely to occur in
certain ethnic groups including Bidayuh, Nagas, and Inuits [5]. Moreover, NPC is more
prevalent in men than women (2:1), with an incidence rate of up to 16 per 100,000 men
each year [6]. According to GLOBOCAN 2020 [7], 133,354 cases of NPC and 80,008 deaths
were reported in 2020 (Figure 1b,c). Owing to its very low prevalence in most developed
Western countries, it has often been considered an orphanage disease.

1 
 

 
Figure 1. Worldwide distribution of NPC in 2020. (a) Map view of estimated number of NPC prevalent cases (5-year) in
2020. Estimated number of (b) new cases and (c) mortality in 2020. Data from GLOBOCAN 2020.

A well-known risk factor of NPC is the Epstein–Barr virus (EBV). Despite that, distinct
ethnic and geographical dissemination of NPC indicates both genetic and environmental
factors (diet and tobacco smoking) play an important role in its aetiology [2]. Complex in-
teractions of multiple factors including viral infection, an individual’s genetic susceptibility,
environmental factors, and dietary factors have driven the pathogenesis of this malignancy.

Up to 80% of NPC patients are diagnosed at advanced stages (clinical stages III and
IV) and 10% at distant metastasis, which is associated with unfavourable outcome and poor
prognosis [8–11]. This is mainly due to the fact that it is asymptomatic in its early stages,
its high metastatic rate, and its inaccessibility for examination, whereby examination of the
local primary tumour in the small curved structure of the nasal cavity is difficult [12]. The
common symptoms of NPC include epistaxis, nasal obstruction, hearing loss, otitis media,
headache, diplopia, numbness, and neck lump [13,14].

In recent decades, the advancement of diagnostic imaging and the use of concurrent
radio and systemic therapy have improved overall prognosis and treatment outcomes [8].
The tumour-node-metastasis (TNM) staging system developed by the American Joint
Committee on Cancer and the National Comprehensive Cancer Network (NCCN) is used
in treatment decisions for NPC patients at different stages. Radiotherapy (RT) is used as a
standard treatment for early stage NPC, while concurrent chemotherapy (CT) followed by
adjuvant chemotherapy is the preferred treatment for stages III and IV NPC.

Although overall survival (OS) has improved due to these advanced treatments, there
are still many controversies regarding these treatment approaches. For example: (1) pa-
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tients still encounter tumour recurrence or develop distant metastasis after undergoing RT,
especially those in the advanced stages, resulting in death [2]; (2) most patients, especially
those in the advanced stages of NPC, did not benefit from the abovementioned NPC
treatments [15,16]; (3) a weak tolerance to the high toxic side effects of these therapeutics
has led to a delay in treatment, and ultimately death (for example, nasopharynx haemor-
rhage, a dangerous and serious condition resulting from radiotherapy has led to 35.7% to
100% mortality [13,17]); (4) these treatments eventually allow for tumour progression and
emergency due to radio- or chemo-resistance [18,19]; (5) the advanced stages of NPC are
associated with poor prognosis and poor response towards the available treatments; and
(6) the absence of a reliable prediction tool for NPC recurrence and metastasis. Treatment
failure for advanced stages (distant metastasis) is the primary cause of mortality from NPC,
accounting for 50,000 deaths annually [10]. Since the 10-year OS rate for stage I patients
is as high as 98%, it seems that the mortality rate can be reduced if the NPC is diagnosed
at an earlier stage [20]. Currently, the TNM staging system does not provide information
on predicting or identifying the risk of NPC progression. This has highlighted the issues
of NPC diagnosis and prognosis, as well as treatment. Hence, most studies now focus on
uncovering the molecular biomarkers in NPC to improve the early diagnosis approaches
and discover prognostic indicators. In the current review, we have reviewed the research
status of biomarkers in NPC for early diagnosis and prognosis (metastasis and recurrence).

2. Diagnostic and Prognostic Biomarker Discovery for NPC

The use of biomarkers in cancer management has recently been increased with ad-
vancements in genomics, proteomics, and transcriptomics, as well as associated technolo-
gies. Studying the biomarkers involved in NPC progression and metastasis enables us to
understand the disease, identify an individual’s susceptibility to the disease, and predict or
monitor patients’ response toward a therapeutic treatment. Based on their role in disease
management, biomarkers can be categorised into two groups: (1) prognostics, which allow
for the assessment of the risk of clinical outcomes including recurrence, metastasis, and
progression; and (2) diagnostic markers, which identify whether an individual has the
specific disease or condition.

Therefore, biomarkers can improve the early diagnosis and prognosis approaches
by assisting in identifying patients who are susceptible to developing NPC or who are
at a high risk or distant metastasis or recurrence. Biomarkers are the key to preventing
NPC progression, recurrence, and metastasis, as well as to developing effective thera-
peutic treatments. With the aid of high throughput ‘omics’ technologies, knowledge on
the aetiology, tumorigenesis, and progression of NPC has progressed much faster, thus
allowing researchers to identify potential molecular biomarkers. Several types of potential
NPC molecular biomarker, including DNA (genomic), mRNA (transcriptomic), protein
(proteomic), and metabolite (metabolomics) biomarkers, have been identified (Table 1).
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Table 1. Potential biomarkers for early diagnosis of NPC.

Biomolecules Full Name Role Aberration Sources

Genomic biomarkers

COX-2 Cyclooxygenase-2 Cell proliferation,
apoptosis

Polymorphism in
rs5275 [21]

MCP-1 Monocyte chemoattractant
protein-1

Monocytes or
macrophages migration
and infiltration

Polymorphism in
rs1024611 [22]

GRP78 Glucose-regulated protein Apoptosis Polymorphism in
rs3216733 [23]

DC-SIGN
Dendritic cells specific intercellular
adhesion molecule 3-grabbing
nonintegrin

Induced immune cells
Polymorphism in
rs7252229, rs735240,
rs4804803 or rs2287886

[24,25]

HLA-A2-B46 (Chinese) Human leukocyte antigen-A2-B46 Immune response
Polymorphism in
chromosome 6p21 [26,27]HLA-A2-B-17 (Chinese) Human leukocyte antigen-A2-B-17 Immune response

HLA-B5 (Caucasians) Human leukocyte antigen-B5 Immune response

IL-13 Interleukin-13 Polymorphism in
rs20541 (TT genotype) [28]

Chromosome 3p and 9p N/A N/A Chromosomal loss [29]

Chromosome 12 N/A N/A Gain number [30]

RASSF1 Ras association (RalGDS/AF-6)
domain family member 1A

Tumour suppression,
cell growth,
proliferation

copy number variant in
in 3p21 [1]

CDKN2A, CDKN2B Cyclin-dependent kinase
inhibitor 2A, 2B

Tumour suppression,
cell cycle

Allelic deletion in
9p21.3 [31]

EGFR Epidermal growth factor
receptor

Cell proliferation, cell
cycles, apoptosis Upregulation [32,33]

BamH1-W Bacillus amyloliquefaciens 1 WZhet Viral replicative cycle Upregulation [34,35]

A73 N/A Cell proliferation and
angiogenesis

Polymorphism in
A157154C

[20,36]

RPMS1 N/A Cell proliferation and
angiogenesis

Polymorphism in
G155391A

BALF2 N/A Viral infection and
replication

EBV variants with
162476_C or 163364_T [37]

miRNA biomarkers

miR17-92 MicroRNA17-92 Targeting PTEN and
apoptosis protein Upregulation [38]

miR-155 MicroRNA-155 Leucosis Upregulation [39]

miR-378 MicroRNA-378 Affect tumour
suppression, cell cycle Upregulation [40,41]

miR-141 MicroRNA-141

miR144-3p MicroRNA-144-3p

Targeting PTEN/Akt,
cell cycle, apoptosis

Upregulation [42]

miR-17-5p MicroRNA-17-5p

miR-20a-5p MicroRNA-20a-5p

miR-20b-5p MicroRNA-20b-5p

miR-205-5p MicroRNA-205-5p



Cancers 2021, 13, 3490 5 of 27

Table 1. Cont.

Biomolecules Full Name Role Aberration Sources

miR-16 MicroRNA-16 Cell proliferation,
invasion

Upregulation

[39]
miR-21 MicroRNA-21

Targets PDCD4, PTEN,
SPRY, ERCK, and Bcl-2
family proteins

miR-24 MicroRNA-24
Epithelial-to-
mesenchymal
transition

Upregulation

miR-146a Inflammation Upregulation [6]

miR-34 MicroRNA-34 Tumour suppression

Downregulation [38]miR-143 MicroRNA-143 Tumour suppression

miR-145 MicroRNA-145 Tumour suppression

let-7b-5p MicroRNA let-7b-5p Cell proliferation
Downregulation [42]

miR-140-3p MicroRNA-140-3p Cell proliferation

Platelet miR-34c-3p MicroRNA-34c-3p Tumour suppression
Upregulation [28]

Platelet miR-18a-5p MicroRNA-18a-5p Tumour suppression

MALAT1 metastasis associated with lung
adenocarcinoma transcript 1 Invasion

Upregulation [43]AFAP1-AS1 actin filament-associated protein
1-antisense RNA1 Invasion

AL359062 N/A N/A

EBER Epstein–Barr encoding region
Cell proliferation,
apoptosis, innate
immunity

Four base deletion
SNPs [44]

miR-BART7-3p BamH1 A rightward transcript
7-3p

Cell proliferation
targeting NF-κB
signalling,
angiogenesis targeting
AMPK/mTOR/HIF1
signalling

Upregulation [8,45,46]

miR-BART13-3p BamH1 A rightward transcript
13-3p

Cell proliferation
targeting NF-κB
signalling,
angiogenesis targeting
AMPK/mTOR/HIF1
signalling

Protein biomarkers

PAI-1 Plasminogen activator
inhibitor 1

Angiogenesis,
signalling activities

Upregulation [47]Fibronectin N/A Cell adhesion

Mac-2 BP Mac-2-binding protein Cell adhesion

CTSD Cathepsin D Apoptosis Upregulation [48]

POSTN Periostin Cell adhesion Upregulation [49]

CK18 Cytokeratin 18 Transcription Upregulation [50]
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Table 1. Cont.

Biomolecules Full Name Role Aberration Sources

KRT8 Keratin-8

Tumour necrosis
factor-mediated
signaling pathway, cell
differentiation

Upregulation [48]

STMN1 Stathmin-1 Signal transduction

LCP1 L-plastin Cell differentiation Upregulation [51]

LGALS1 Galectin-1 Apoptosis Upregulation [52]

S100A9 S100 calcium-binding protein A9
Cell proliferation,
innate immunity,
apoptosis

Upregulation [51]

CCL5 C-C motif chemokine 5 Cell adhesion,
migration, apoptosis Upregulation [53]

CLIC1 Chloride intracellular channel 1 Cell cycle, signal
transduction Upregulation [54]

LMP1 Latent membrane protein Signalling activities Upregulation [55]

P-Thr-sv-5 N/A Gene expression
(sub-variant of EBNA1) subvariant of EBNA1 [56]

EBNA1/IgA EBV nuclear antigens
immunoglobulin A

Antibody against EBV
antigen Increased level [57,58]

VCA/IgA Viral capsid antigen
immunoglobulin A

Antibody against EBV
antigen

BALF2/Ab BALF2 antibodies Antibody against EBV
antigen Increased level [37]

Metabolite biomarkers

kynurenine N/A Metabolism

Upregulation [59]N-acetylglucosaminylamine N/A Metabolism

N-acetylglucosamine
hydroxyphenylpyruvate N/A Metabolism

Pyroglutamate N/A Metabolism

Upregulation [60]Glucose N/A Metabolism

Glutamate N/A Metabolism

Glycerol 1-hexadecanoate N/A Metabolism

Upregulation [61]

b-hydroxybutyrate N/A Metabolism

Arachidonic acid N/A Metabolism

Stearic acid N/A Metabolism

Linoleic acid N/A Metabolism

Proline N/A Metabolism

N/A. Not available.

3. NPC Diagnostic Biomarkers
3.1. NPC Associated Genomic Biomarkers

The discovery of new pathogenic, susceptible genes or mechanisms to assess the risk
of NPC has become one of the goals of genomic studies. This is due to NPC being highly
complex and multifactorial and characterised by chromosomal aberrations, low mutation
occurrence, epigenetic alteration, and the harbouring of cancer specific single nucleotide
polymorphisms (SNPs) [1]. Genomic studies have focused on these factors to identify
potential biomarkers (Table 1).



Cancers 2021, 13, 3490 7 of 27

(a) NPC associated polymorphism and HLA

With high throughput technologies, including whole-exome sequencing, whole-
genome sequencing (WGS), and genome-wide association studies (GWAS), many SNPs
associated with NPC risk or pathogenesis have been investigated. For example, poly-
morphism allele rs5275 in cyclooxygenase-2 (COX-2), rs1024611 in monocyte chemoattractant
protein-1 (MCP-1), and rs3216733 in 78-kDa glucose-regulated protein (GRP78) gene promoter
are associated with NPC susceptibility [21–23]. MCP-1 is a member of the chemokine
family and acts as a potent chemoattractant for immune cells including memory T and
lymphocytes. Its association with NPC development via three distinct mechanisms has
been proven. These mechanisms are: (i) facilitating tumour cell growth; (ii) modulating the
tumour microenvironment (TME) by recruiting several immune cells; (iii) suppressing cyto-
toxic T-lymphocyte (CTLs) activities [22]. GRP78 encodes the HSPA78 protein (heat-shock
70-kDa protein 5), which is important for protein folding, where it promotes angiogenesis
by upregulating vascular endothelial growth factor (VEGF) and facilitates tumour survival
and proliferation [23]. Significant levels of COX-2 were found in 75.58% of NPC patients
when compared to people with healthy nasopharynxes. It promotes NPC development
by modulating the interaction between tumour cells and myeloid-derived suppressor
cells [21]. However, in one contrasting study, this SNP displayed a protective effect on NPC
development [62]. The environmental factors such as dietary pattern and geographic areas
may explain the contrasting role of this SNP in NPC susceptibility. Moreover, through
genetic analysis, the dendritic cells specific intercellular adhesion molecule 3-grabbing noninte-
grin (DC-SIGN) gene variants with SNPs rs7252229, rs735240, and rs4804803 were also
found to be associated with NPC susceptibility [24,25]. Polymorphism in DC-SIGN with
genotype GG at rs735240 and AA at rs2287886 enable dendritic cells to be easily infected
by cytomegaloviruses, which have similar a structure to EBV. The glycoprotein on the
cytomegaloviruses is able to bind to DC-SIGN and allow the virus to enter the B cells
and epithelial cells. In contrast, DC-SIGN with AA at rs735240 have reduced DC-SIGN
expression, which prevents the EBV from infecting DCs and epithelial cells, thus decreasing
the NPC risk.

A highly promising study suggested that NPC patients were observed with a high
frequency of polymorphic markers in HLA genes deposited in chromosome 6p21, which
encode MHC [63]. Southern Chinese and others Asian individuals with HLA-A2-B-46 and
-B17 have a 2–3 times higher chance of NPC development [26]. Chinese people in the
US with HLA-A2 were associated with high NPC susceptibility. Besides that, Caucasians
with HLA-B5 were also associated with NPC susceptibility [27]. Interestingly, Chinese
and Tunisians with HLA-B13, Caucasians with HLA-A2, and all races with HLA-A11 have
1/3 or 1/2 lower NPC risk [64]. In fact, EBV associated inhibition of HLA expression
in NPC, HLA gene polymorphism, and EBV have been consistently cited as etiological
cofactors that contribute to NPC susceptibility in various areas with varying levels of
risk [50]. Low epitope binding efficiency of HLA results in the abrogation of cytotoxic
T cell recognition, thus allowing EBV-infected cells to escape from immune surveillance.
For example, HLA-A2-restricted loss of variant epitope of LMP1 allows for the immune
recognition of infected cells in EBV-positive NPC high incidence areas (Southern China
and Taiwan) [50]. Although the association between HLA and EBV in NPC is remains
controversial, HLA undoubtedly plays a critical role in NPC predisposition as a modulator
of immune response against EBV. Further investigation into HLA restricted epitopes and
EBV proteins is encouraging.

(b) Chromosome aberration

Genomic studies on aberrant NPC chromosomes have found numerous susceptible
genomic events. The chromosomal loss of 3p and 9p was histologically detected in the
normal nasopharynx epithelial lining of people in endemic areas, and this seems to be
involved in the early stages of NPC transformation [29], while copy number gains in
chromosome 12 were found to be one of the signature hallmarks in the early stages of NPC
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pathogenesis [30]. Previous studies have also revealed that loss of chromosomes in the 1p,
3p, 9p, 9q, 11q, 14q, and 16q regions and frequent copy number gains in chromosomes
1q, 2q, 3q, 4q, 6q, 7q, 8p, 8q, 11q, 12p, 12q, and 17q are very common in the early stages
of NPC [1]. Among these chromosome abnormalities, loss of 3p is the most frequent
early event in NPC development. NPC patients with 3p loss were at higher risk of death
compared to those without 3p loss [30]. These chromosome abnormalities are heritable
and can be easily detected, thus screening of chromosome abnormalities could potentially
assist in identifying high risk populations.

(c) Copy number alterations

Copy number alteration (CNAs) events in EBV-positive and -negative NPC have also
been investigated, and it has been found that CNAs are more frequent in EBV-negative
NPC compared to EBV-positive NPC [65]. This suggests that EBV plays an important
role in promoting CNAs. Allele loss in 3p21.3 and 9p21 impair several TSGs such as
RASSF1A and CDKN2A. The homozygous deletion of CDKN2A (p16) and CDKN2B (p15)
located in the 9p21.3 region was observed in primary NPC tumours [31]. Homozygous
deletion caused CDKN2A inactivation and led to G1/S cell cycle deregulation, eventually
supporting EBV in promoting NPC pathogenesis [31].

(d) Signalling pathways

Detection of somatic mutations or aberrant gene regulation in pathways that are in-
volved in NPC is another genomic NPC research area in which we may discover biomarkers.
Overexpression of the epidermal growth factor receptor (EGFR) gene was observed to cause
abnormal cell proliferation by activating the downstream cascades RAS/ERK in NPC [32].
Individuals with a higher risk of NPC were observed to have more intense EGFR immunos-
tains, thereby suggesting that EGFR is also a promising target for NPC risk prediction [33].
Upon EGFR signalling, pyruvate kinase M2 (PKM2) was activated and it stimulated the
gene expression and cancer cell growth by binding to FOSL1 or ANTXR2 promoter [33].
Silencing of EGFR and PKM2 downstream genes such as FOSL1 or ANTXR2 could block
the EGFR signalling [33]. These reports collectively support that the inhibition of EGFR is
important in repressing NPC migration and invasion. Furthermore, correlation of EGFR
and mesenchymal-epithelial transition factor (c-MET) pathways has been reported, in
which c-MET was activated upon EGFR signalling [66,67]. Aberrantly, activation of MET
has triggered metastasis, whereby this aberration was found in up to 72% NPC patients.
Although EGFR and c-MET seem like promising biomarkers, they are also commonly
upregulated in other cancer metastases.

(e) Viral (EBV and HPV)

In addition to heredity and susceptible human genes, a carcinogenic virus, EBV, was
detected in 100% of undifferentiated non-keratinizing NPC patient (type II and III) and
up to 95% of NPC cases were EBV-positive in its endemic area [8,68–70]. The mechanism
of EBV infection in NPC development through carcinogenesis, escape immunosurvilence,
epigenetic alteration, and enabling the survival of the tumour has been clearly reviewed
in a past study [71]. Therefore, EBV associated biomarkers can be used for diagnosis of
early asymptomatic NPC and screening of high risk individuals. NPC patients have been
identified through the detection of the EBV DNA fragment BamH1-W found in plasma, and
the sensitivity ranges from 69% to 99% [34]. Consistent with these findings, a larger cohort
study using plasma EBV-DNA for early NPC diagnosis was reported with a specificity
of 97.1% and sensitivity of 98.6% [35]. However, there is also a study that reported that
EBV DNA circulating tests showed lower sensitivity in the early stages of NPC [72]. The
inconsistency of results among the different studies is probably due to the variations in
EBV content and pathological condition of the subject. Therefore, the low reproducibility
of this test among the different studies has limited its clinical accuracy in NPC diagnosis.
Nevertheless, recent studies have strengthened this biomarker with specific genotype, A73
gene with A157154C polymorphism and RPMS1 with G155391A polymorphism of EBV in
susceptibility to NPC development [20,36].
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More recent studies on EBV mediated NPC tumorigenesis has revealed that certain
genomic variations in the EBV virus are highly associated with NPC development [37].
Xu et al. identified two distinct EBV variants (162476_C and 163364_T) within the BALF2
gene from Southern China EBV isolates that contributed up to 83% of the overall risk of
developing NPC [37]. Therefore, early NPC can be diagnosed by conducting routine clinical
monitoring of high risk NPC populations who have a high risk EBV variant. However,
further validation of diagnostic efficacy and functional studies on high risk EBV variants in
promoting NPC tumorigenesis are needed.

Although these biomarkers look promising, there are still no susceptibility genes that
have gained approval for early diagnosis or prognosis to date. Firstly, due to the genomic
status it is hard to match with the respective clinical disease phenotype, thus repetitive
verification studies in large cohorts with different omics approaches are required [73].
Secondly, most of the SNPs investigated via GWAS are minor alleles that lack downstream
function verification, introducing difficulties for further study in large cohorts [74]. Thirdly,
heterogeneity of racial, geographic, and pathological characteristics are a cause of the
irreproducibility of studies or variation in research results [75]. Lastly, there are a lack of
studies that further discover the interaction of multiple genes instead of single genes in
this complex tumour [74]. Hence, multiple genomic biomarkers may require the accurate
prediction of NPC susceptibility, metastasis risk, and recurrence possibility. Although
the interaction among multiple genes makes the complex mechanism of NPC difficult
to understand, advanced technology and mature research design are still pushing the
research ahead.

Despite EBV playing an important aetiological role in type II and III NPC, human
papillomavirus (HPV) is also suggested as a critical virus in EBV-negative NPC aetiology,
especially type I EBV-negative NPC in non-endemic areas such as Finland and America [76].
A study conducted among NPC patients in Finland found that around 62% of NPC patients
were EBV-positive, 12% of NPC patients were HPV-positive, and 24% of NPC patients were
negative for both [76]. The HPV prevalence in Asia, Europe, and America are 26%, 19%,
and 24%, respectively, whereas the HPV prevalence in China is 19%, which is lower than
regions outside of China with an HPV prevalence of 23% [77]. Therefore, the prevalence of
HPV-positive NPC in endemic areas is lower when compared to non-endemic areas [78,79].
Furthermore, Stenmark et al. (2014) identified a unique subset of Epstein–Barr virus (EBV)-
negative nasopharyngeal carcinoma among Caucasian patients that is strongly associated
with oncogenic HPV [79]. Hence, this suggests that HPV is a strong surrogate biomarker
for HPV-positive NPC [80]. In addition, HPV-positive NPC has distinct clinical features
compared to EBV-positive NPC, such as having a better survival rate after radiotherapy [78].
However, HPV-positive NPC has been found to come with an increased risk of locoregional
reoccurrence and mortality [79].

Moreover, several studies have demonstrated that HPV and EBV infection are exclu-
sively existent [78,81–83]. Intriguingly, there are also studies reporting co-infection of EBV
and HPV with NPC from endemic areas [84–86]. Therefore, the association between HPV or
EBV and NPC remains to be discovered. Furthermore, another study reported no evidence
of HPV associated with NPC [87]. This inconsistency is likely due to its relatively low case
number, as well as ethnic and geographic differences. Besides that, knowledge about HPV
in NPC development is still limited. Further studies are required to confirm these claims.
Nevertheless, there are a significant number of NPC cases that are not associated with
either EBV nor HPV infection. Hence, screening for EBV and HPV may be insufficient to
accurately diagnose NPC.

3.2. NPC Associated mRNA Biomarkers

In recent years, miRNA studies have become a focal point in the transcriptomic field
as miRNA has been known to play an important role in the cell proliferation, migration,
metabolism, invasion, metastasis, and immune escape of NPC [6]. Besides that, the stable
expression of miRNA in peripheral circulation allows it to be a reliable marker for early
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diagnosis. Aberrant expression of miRNA in NPC is related with NPC pathogenesis by
abnormal regulation of multiple genetic pathways, thus affecting the cell cycles [88]. Cell
phenotypes and functional transcriptomic studies of variation in gene expression may
assist in revealing the oncogenic gene and its mechanism in certain pathological states.
Therefore, an evaluation and understanding of the miRNA expression profile in NPC might
help us to discover a reliable biomarker for diagnosis of early NPC as well as screening
high risk populations.

Numerous miRNAs with good diagnostic value have been discovered by using ad-
vanced technology, including polymerase chain reaction (PCR) and microarray technology
(Table 1). A study revealed that miRNA profiling in between NPC and adjacent nasopharyn-
geal tissues possessed a different expression pattern [38]. Notably, the oncogenic miR17-92
and miR-155 were upregulated, whereas tumour suppressor miR-34, miR-143, and miR-145
were downregulated [38]. Oncogenic aberrant expression of miR-378, miR-141, miR-144,
and miR-205 in NPC have been found to promote NPC pathogenesis by affecting tumour
suppression, cell cycle (phosphatase and tensin homolog (PTEN)), and enhanced cell
proliferation, invasion, and migration [40–42,89].

Consistent findings have revealed that NPC diagnostic accuracy could be enhanced
by using a panel of miRNA biomarkers. Liu et al. (2013) reported the sensitivity and
specificity of an NPC diagnostic method using five plasma mi-RNAs (miR-16, miR-21,
miR-24, miR-155, and miR-378) were 87.7% and 82.0%, respectively [39]. Another study
compiling 12-miRNA signatures for early diagnosis of NPC demonstrated an accuracy of up
to 100% [90]. These 12-miRNA were found to play an important role in NPC development
by modulating its target genes to inhibit NF-κB kinase regulator apoptosis and regulate
platelet-derived growth factor receptor α. Collectively, these findings have provided an
encouraging message on the use of miRNA as a biomarker for the early diagnosis of NPC.

Recently, tumour-educated platelets that have accurate diagnostic efficiency in various
other types of cancer look like a promising avenue for NPC diagnostic marker discovery.
Two platelet miRNAs, namely miR-34c-3p and miR-18a-5p, which have been detected
in NPC patients and healthy controls, were found to have high diagnostic ability with
a sensitivity of 92.59% and specificity of 86.11% [28]. However, further functional and
validation studies were not carried out. Nevertheless, it still seems to be promising as
the platelets can alter the transcriptome and molecular signal by affecting its pre-mRNA
splicing upon instructions given by the tumour [91]. Additionally, in contrast to other
samples, its RNA expression is not affected by the genomic DNA, thus the RNA expression
truly corresponds to the pathological condition of the cancer.

Furthermore, up to 44 EBV mature miRNAs have been validated to be involved in
NPC development and progression [8]. For instance, different polymorphisms in the EBER
locus are associated with NPC high risk populations [44]. EBER detection was reported as
the most efficient and reliable approach due to its high expression (~1 million copies) in
NPC cells and its expression is tumour specific [12]. It has been reported to promote cell
proliferation and anti-apoptotic functions and manipulate innate immunity. A GWAS study
has identified an EBV variant, designated as HKNPC-EBERvar, having four base deletion
SNPs downstream of EBER and highly associated with NPC [44]. Based on this, a genetic
risk score can be assigned to each EBV variant that can help to identify high risk populations.
Another two EBV miRNAs, miR-BamHI A rightward transcripts (BART)7-3p and miR-
BART13-3p, which promote cell proliferation and angiogenesis through the NKIRAS2/NF-
κB and AMPK/mTOR/HIF1 signalling pathways, respectively have demonstrated their
significant potential for early diagnosis of NPC [8,45,46].

In addition, long non-coding (lnc) RNAs also play an important regulatory role in NPC
epigenetics. NPC complex regulatory network is formed by the interaction of lncRNAs,
miRNAs, and EBV products [92]. The expression of three lncRNAs, such as metastasis
associated with lung adenocarcinoma transcript 1, actin filament-associated protein 1-
antisense RNA1, and AL359062, were decreased after treatment, and NPC from healthy
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controls with an area under the curve (AUC) value of 0.918 was identified [43]. This has
evidenced the potential early diagnostic role of these three lncRNAs for NPC.

In view of the progression of current studies in transcriptomics, the use of miRNA or
lncRNAs as diagnostic biomarkers for NPC is still a huge gap to explore. This is mainly
due to a lack of functional verification and clinical analysis of identified miRNA [93]. High
specificity and sensitivity are the most important criteria of diagnostic biomarkers for
clinical application. Nevertheless, quantification of miRNA can be a challenging aspect
of normalisation and processing, and a comes with a high chance of false negatives or
positives [94]. Moreover, it is hard to detect the abundance expression of these biomarkers
due to their low molecular weight and the concentration of miRNA in the plasma.

3.3. NPC Associated Protein Biomarkers

Proteins are found to be involved in regulating many physiological processes, includ-
ing immune response, metabolism, and cellular signalling pathways, while tumour cells
can utilise the protein by-product to make their favourite proteins, thus affecting anabolism
and catabolism, eventually leading to an alteration of protein expression patterns. There-
fore, these tumour synthesised oncogenic proteins can be used to reflect the real time state
of diseases and used for NPC biomarker research.

Proteomic studies have revealed cancer cell secretomes and found several secreted
biomolecules that participate in modulating the TME. Some of these biomolecules are
responsible for assisting tumour growth, survival, invasion, and immunosurveillance [95].
Three secreted proteins, namely plasminogen activator inhibitor 1 (PAI-1), fibronectin,
and mac-2-binding protein (Mac-2 BP), that are involved in cell migration, differenti-
ation, cell adhesion, morphogenesis, and oncogenic transformation were found to be
highly expressed in NPC cells, but either weakly or not expressed in healthy nasopharynx
cells [47]. Although they can serve as a potential diagnosis biomarker, their specificity
is still uncertain as these proteins were also highly expressed in other cancer types such
as lung and breast cancers [47]. Nevertheless, several studies have further identified a
panel of secreted protein including cathepsin D, stroma-associated protein periostin, cy-
tokeratin 18, keratin-8, stathmin-1, L-plastin, galectin-1, S100 calcium-binding protein A9
(S100A9, C-C motif chemokine 5) (CCL5), and chloride intracellular channel 1 (CLIC1)
were deregulated in NPC only, thereby suggesting these as potential NPC biomarkers for
diagnosis [48,49,51–54,96,97].

Apart from human proteins, oncoproteins encoded by EBV, including EBV latent mem-
brane protein (LMP1, LMP2A and LMP2B) and EBV nuclear antigens (EBNAs) (EBNA1,
EBNA2, 3A, 3B, 3C and -LP), are known to take part in NPC development [20,57,58]. The
NPC diagnosis sensitivity and specificity of LMP1 are 91.4% and 98%, respectively [55].
A subvariant of EBNA1, P-Thr-sv-5 was identified as a viral marker for undifferentiated
NPC screening [56]. Furthermore, the screening of EBV serological markers such as IgA
antibodies against early antigen (EA), viral capsid antigen (VCA), and EBNA1 has allowed
early diagnosis of NPC as these antibodies are elevated years before NPC is diagnosed [98].
Their sensitivity and specificity were further enhanced by using both EBV-viral capsid
antigen (VCA) IgA and EBV-early antigen IgA to screen high risk individuals [99]. For
example, examining signature enriched antibodies against early lytic antigens, BALF2 in
the two aforementioned high risk EBV variants, as identified in Xu et al., is able to predict
the NPC risk [37]. Nevertheless, further diagnostic efficacy studies are necessary. A com-
parison study on EBV associated NPC biomarker has found that combination of BamHI-W
and VCA IgA or EA IgG detection was able to improve the specificity or sensitivity of NPC
diagnosis [100]. However, although it looks promising for facilitating NPC diagnosis, the
detection rate could vary from 20–100% [101]. This is mainly due to the efficacy varying
with different screening tools, thus a standardised tool for serology marker examination is
required for further confirmation [98]. Secondly, only ~2% of individuals have elevated
VCA/IgA and eventually develop NPC [20]. In addition, the elevation of these antibodies
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can also be triggered by physical or mental stress [20]. Therefore, these factors mean that
these EBV-antibodies have low specificity.

Moreover, there are numerous problems that need to be solved before applying these
proteomic biomarkers in clinical diagnostics. Primarily, less advanced high throughput
technologies used in past studies have limited the investigation of potential clinical signif-
icance biomarkers [102,103]. Secondly, the research design should be able to fully verify
and evaluate the biomarker with its cofactors that can affect the result, sensitivity, and
specificity of the biomarker [104]. Lastly, similar to the genomic biomarker, there is a lack
of further clinical validation of these identified proteins. Nevertheless, the proteomic based
biomarker studies have been decreasing recently, probably due to the high cost of the
equipment and the difficulty of sample isolation.

3.4. NPC Associated Metabolite Biomarkers

Metabolites are a main component that directly execute effector action onto biological
processes, which are instructed by upstream genes and proteins [105]. Metabolic disorders
are an important feature in cancers because the tumour cells alter the metabolism and
retrieve nutrition to sustain cell growth continuously. Therefore, an alteration in the
metabolism may reflect the disease phenotypes. Studies into metabolomics have gained
increasing attention in recent years for tumour biomarker discovery.

Most of these studies have used high throughput mass spectrometry technology, data
processing, system integration, cluster index analysis, and integration with information
modelling to look for metabolites that reflect clinical disease phenotypes [106]. Numerous
metabolites, including kynurenine, N-acetylglucosaminylamine, N-acetylglucosamine
hydroxyphenylpyruvate, pyroglutamate, glucose, and glutamate, have been evaluated
as potential biomarkers for early NPC diagnosis [59,60]. Further studies conducted in
larger NPC cohorts also validated that a panel of seven metabolites including glycerol
1-hexadecanoate, b-hydroxybutyrate, linoleic acid, arachidonic acid, stearic acid, glucose,
and proline provided strong NPC diagnosis from disease free controls, with a sensitivity of
88.0% and a specificity of 92.0% [61].

However, certain metabolites are not NPC specific as glucose and metabolic pathways
have often been deregulated in cancer cells due to the oxidative stress and mitochondrial
respiration injury. Nevertheless, a panel of metabolites change instead of single metabolites
could display the real disease condition. Additionally, NPC metabolomics studies are
currently in their infancy stage, hence there is still a lot of potential research value for
biomarker discovery.

3.5. Cigarette Smoking Associated Biomarkers

Smoking is a confirmed risk factor for NPC development. Many studies have demon-
strated cigarette smoking confers a two- to six-fold higher risk of NPC development, with
the risk increasing the longer one is a smoker and the more cigarettes one smokes in a
day [107–111]. Cigarette smoke is known to contain carcinogenic compounds that cause
DNA damage (genome), recruit DNA methyltransferase, hypoxia, activate DNA-binding
proteins, and can eventually lead to genome alteration (mutation), disruption of cellular
metabolic processes, and epigenetic change [112,113].

TP53 is a commonly mutated TSG in smokers that is associated with an increased risk
of cancer development [114]. This cancer related mutation typically occurs in mucosal cells
that line the airway, which initiates cancer formation. Intriguingly, compared to other cancer
types, NPC was reportedly associated with more epigenetic change (DNA methylation)
than mutations [71,115]. The epigenetic effect of cigarette smoking has an impact on TSGs
and oncogenes through DNA methylation. For example, hypermethylation in RASSF1A
and CDKN2A is one of the epigenetic changes under NPC development [113]. A study
reported that RASSF1A and CDKN2A were upregulated among smokers compared to non-
smokers [116]. This has shed a light on the discovery of smoking associated biomarkers
for NPC susceptibility. Nevertheless, there are studies that show no association between
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DNA methylation in RASSF1A and CDKN2A and smoking in NPC patients. Therefore,
further assessment using other TSGs or oncogene pathways is required to determine the
correlation between smoking and epigenetic change in NPC.

Numerous endemic studies have demonstrated no association between smoking
and risk of NPC [107,117,118]. However, smoking has been reported to assist in EBV
activation [119]. Anti-EBV IgA antibodies (VCA and EBNA1) were found to be higher
in smokers with increased NPC risk compared with non-smokers [119]. This has led
to the possible role of smoking in increasing NPC risk by altering the host response to
EBV infection. Nicotine, a hazardous component in cigarette smoke, is known to have
an impact on the immune system, and its long term exposure leads to defection in T-cell
proliferation and suppression of antibody production [120]. Therefore, elevation of anti-
EBV IgA antibodies among the healthy population (especially smokers) could be a sign of
NPC development risk. Nonetheless, the correlation between smoking and EBV infection is
still indecisive. There is also a possibility that smoking-associated NPC carcinogenesis may
work through other mechanisms. Noteworthy, there are other environmental factors, such
as diet, lifestyle, and drug use, that may also contribute to DNA methylation or affect the
host immune system. Therefore, it is imperative to conduct a more comprehensive study
by incorporating the other environmental factors to validate the aforementioned findings.

4. NPC Prognosis Biomarkers

Up to 40% of NPC patients have disease recurrence or distant metastasis even after
they receive a series of CT or RT [121]. This indicates that tumour cells are able to recover
from damaged cells and survive by having resistance to current therapies (CT or RT).
Therefore, prediction of NPC recurrence or metastasis risk after treatment is crucial since it
is the major cause of mortality in NPC patients. Particularly, molecular components that
are metastasis susceptible or capable of affecting the radio- or chemo-sensitivity can be
used as a prognosis biomarker (Table 2).

Table 2. Potential prognosis and predictive biomarkers for NPC therapeutic resistance or metastasis and recurrence
after treatment.

Biomolecules Name Role Aberration Sources

β-catenin 1 Beta-catenin1
Activate multiple downstream
growth signalling components
such as cyclin D1 and c-Myc

Polymorphism in
rs1880481 or rs3864004

[122]
GSK-3β glycogen synthase kinase-3β

Cell growth, metabolism, gene
transcription, protein
translation, cytoskeletal
organisation

Polymorphism in
rs3755557

APC adenomatous polyposis coli Cell adhesion Polymorphism in rs454886

XRCC1 X-ray repair
cross-complementing 1 DNA repair Polymorphism in rs25489

or Codon399

[123–126]CT Calcitonin receptor Calcium homeostasis Polymorphism in
rs2528521

VCP Valosin-containing protein Proteolysis Polymorphism in
rs2074549

IL-13 Interleukin-13 Chinese population with IL-13
rs20541 Polymorphisms in rs20541 [28]

ERCC1 Excision repair 1 endonuclease
non-catalytic subunit DNA repair Polymorphism with C118T

genotype [127]

EBV-DNA Epstein–Barr virus-DNA EBV genome Upregulation [33]
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Table 2. Cont.

Biomolecules Name Role Aberration Sources

YBX3 Y-Box Binding Protein 3 Apoptosis, Gene expression

Upregulation

[128]

CBR3 Carbonyl reductase 3 Xenobiotic metabolic process

LRIG1
Leucine-rich repeats and
immunoglobulin-like
domains 1

Negative regulator of tyrosine
kinases signalling

CXCL10 Chemokine C-X-C motif
ligand 10

Chemokine receptors recruit
tumour infiltrating
T-lymphocytes, tumour
microenvironment

DCTN1 Dynactin-1 G2/M transition of mitotic cell
cycle

Downregulation

GRM4 Glutamate metabotropic
receptor 4 Tumour suppression

HDLBP High density lipoprotein
binding protein Cholesterol metabolic process

ANXA1 Annexin Cell cycle, apoptosis

POLR2M RNA polymerase II subunit
M

Negative regulator of
transcriptional

CLASP1 Cytoplasmic linker
associated protein 1

Dynamic microtubules
stabilization

FNDC3B
Fibronectin type III
domain-containing protein
3B

Positive regulator of
adipogenesis

WSB2 WD repeat and SOCS
box-containing protein 2

Protein ubiquitination,
post-translation modification

WNK1 lysine deficient protein
kinase 1

T-cell receptor signalling
pathway

miR-203 MicroRNA-203 Targeting IL-8/Akt signalling Downregulation [129]

miR-324-3p MicroRNA-324-3p Tumour suppression

Downregulation

[130,131]

miR-93-3p MicroRNA-93-3p Targeting Wnt/β-catenin
signalling

miR-4501 MicroRNA-4501 Cellular process

miR-371a-5p MicroRNA-371a-5p Cellular pathway, apoptosis

UpregulationmiR-34c-5p MicroRNA-34c-5p
Cell proliferation, apoptosis,
targeting JAK2/STAT3
signalling pathway

miR-1323 MicroRNA-1323 DNA repair

miR-9 MicroRNA-9
MHC class I and
interferon-regulated gene
expression

Downregulation [132]

miR-92a MicroRNA-92a Invasion, migration Upregulation [133]

miR-574-5p MicroRNA-574-5p Mesenchymal transition Downregulation [9]

miR-296-3p Micro-296-3p Cytoplasmic Translocation of
c-Myc Downregulation [134,135]

RNA_0000285 homeodomain interacting
protein kinase 3 (HIPK3) Upregulation [136]
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Table 2. Cont.

Biomolecules Name Role Aberration Sources

EGFR Epidermal growth factor
receptor

Cell proliferation, cell cycles,
apoptosis Upregulation [137]

GSTP1 Glutathione S-transferase P1
Cell adhesion, apoptosis,
negative regulator of NF-kB
signaling

Methylation [138]

IGF-1R Insulin-like growth factor-1
receptor

Cell proliferation, cell cycles
and apoptosis Upregulation [137]

Jab1 C-Jun activation
domain-binding protein-1

Cell proliferation, targeting
negative regulator proteins
and tumour suppressors (p27
and p53)

Upregulation [139]

EMT Epithelial-to-mesenchymal
transition

Carcinogenesis and metastatic
progression Upregulation [140]

β-catenin N/A
Activate multiple downstream
growth signalling components
such as cyclin D1 and c-Myc

Upregulation
[141]

E-cadherin N/A Cell adhesion, tumour
suppression Downregulation

GnT-V
N-
acetylglucosaminyltransferase-
V

Protein glycosylation, cell
proliferation Upregulation [142]

Bcl2 B-cell lymphoma 2 Apoptosis Upregulation [143,144]

SPARC Secreted protein acidic and
Cysteine rich

Extracellular matrix synthesis,
cell shape

Upregulation [145]

ERPIND1 Serpin family D member 1S Invasion

C4B Complement C4B Component of the classical
activation pathway

PPIB Ppeptidylprolyl lsomerase B Cyclosporine A-mediated
immunosuppression

FAM173A Family with sequence
similarity 173 member A

Adenine nucleotide
translocase

Maspin Mammary serine protease
inhibitor Tumour suppression

Upregulation

[146,147]

GRP78 Glucose-regulated protein Apoptosis

Mn-SOD Manganese superoxide
dismutase Apoptosis

14-3-3σ 14-3-3 protein sigma Cell cycle arrest, DNA damage
response, signal transduction Downregulation

ANXA1,3 Annexin A1, A3 Cell cycle, apoptosis Downregulation

[148–150]Nm23 H1 Non-metastatic clone 23,
isoform H1 TGF-β signaling Upregulation

KRT1 Keratin 1 Angiogenesis Upregulation [151]

SAA Serum amyloid A MAPK activities, innate
immune response Downregulation [152]

HSP27 Heat shock protein 27 Apoptosis, cell differentiation Upregulation [153]

N/A. Not available
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Several studies have revealed that numerous SNPs in different genes are correlated
with poor prognosis toward RT and even the development of dermatitis and oral mucositis
after treatment. For example, Yu et al. (2016) reported gene polymorphisms in Wnt/β-
catenin including catenin β-1 gene rs1880481, rs3864004, glycogen synthase kinase-3β (GSK-
3β) gene rs3755557 and adenomatous polyposis coli (APC) gene rs454886 were associated
with poor responses to RT [122]. Other gene polymorphisms, such as X-ray repair cross-
complementing 1 (XRCC1) rs25489, calcitonin receptor rs2528521, XRCC1 Codon399, and
valosin-containing protein rs2074549, which can predict therapeutic outcomes and toxic side
effects, were also investigated [123–126]. Besides that, certain polymorphisms were found
to be susceptible to metastasis. For instance, the Chinese population with IL-13 rs20541
polymorphisms was reported to be susceptible to metastasis [154]. Furthermore, the TT
genotype of rs20541 and T-C-T haplotype are significantly associated with a higher risk of
metastasis and poor prognosis, whereas CT/CC genotypes are associated with decreased
risk of metastasis in NPC. SNPs in excision repair 1 endonuclease non-catalytic subunit (ERCC1)
of C118T genotype was discovered as a strong indicator for excellent prognosis in RT for
EBV-negative NPC, thus it can help to avoid excess or overtreatment with CT in these
patients [127]. All these SNPs could be useful as a prognostic biomarker for NPC treatment.

One study acknowledged the value of EBV-DNA for early NPC recurrence after treat-
ment [155]. Most of the patients had EBV-DNA elevated prior to the disease recurrence [33].
The accuracy, sensitivity, and specificity of recurrence diagnostic using EBV-DNA were
87.0%, 82.3%, and 80.0%, respectively [33]. In another study, the circulating EBV-DNA
concentration was found to be higher in recurrent NPC plasma compared to primary
NPC plasma, thus implying that recurrence risk can be predicted by detecting the circu-
lating EBV-DNA [156]. The National Comprehensive Cancer Network also recommends
monitoring NPC patients with EBV-DNA [157]. This EBV-DNA biomarker was further
strengthened by combination with a predictive tool, namely distant metastasis gene sig-
nature (DMGN), which constitutes 13 genes including DCTN1, YBX3, GRM4, HDLBP,
POLR2M, CLASP1, CBR3, FNDC3B, WSB2, LRIG1, ANXA1, WNK1, and CXCL10 to examine
whether the patients can benefit from concurrent CT. The patients with the higher predicted
metastasis risk would have less sensitivity to concurrent CT [128].

Moreover, by looking at mRNA involved in NPC progression, the subtype of disease,
prognosis, and therapeutic effect in NPC could be predicted [93,158,159]. For example,
analysed miRNA expression profile of radioresistant and radiosensitive NPC cell lines
by next generation deep sequencing have revealed that downregulation of miR-203, miR-
324-3p, miR-93-3p, and miR-4501 and upregulation of miR-371a-5p, miR-34c-5p, and
miR-1323 contribute to mediating radio-resistance in NPC [129,130,148]. Additionally,
miR-574-5p, miR-9 and miR92a, which modulate the expression of MHC class I and
interferon-regulated genes associated with NPC metastasis, could potentially be non-
invasive blood-based biomarkers for metastasis prediction [132,133]. RNA sequencing
of NPC patients’ peripheral blood mononuclear cells (PBMC) before and after RT has
revealed 11 potential mRNA prognostic biomarkers for NPC for post-RT evaluation [160].
RNA_0000285 at homeodomain interacting protein kinase 3 (HIPK3) was observed in high
level radio-resistance NPC patients and low radiosensitive NPC patients, thus showing its
ability to predict NPC radiosensitivity [136].

Furthermore, as mentioned previously, the residue of cigarette smoke promotes can-
cer progression. Cigarette smoke was found to be associated with poor prognosis of
chemotherapy and radiotherapy. Nicotine in cigarette smoke promoted chemoresistance
by affecting the ATP-biding cassette transporter G2 via downregulation of miR-296-3p
and Akt-mediated pathways [134,135]. Furthermore, hypoxia induced through smoking
can facilitate tumour angiogenesis, invasion, reoccurrence, and metastasis. Therefore, the
downregulation of miR-296-3p in patients could be a potential prognosis or predictive
biomarker for recurrence and metastasis.

In contrast to DNA and RNA based biomarker studies, proteomics studies are more
efficient in their evaluation and prognosis of NPC treatment. The interaction among the
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proteins in various signalling pathways involved in NPC carcinogenesis can be used to re-
flect the real-time condition of the disease progression [145,161,162]. Therefore, the clinical
outcome of each NPC treatment can be evaluated. Several proteins in the cellular signalling
pathway have been reported to contribute resistance towards CT or RT. Initially, simul-
taneous overexpression of insulin-like growth factor-1 receptor (IGF-1R) and EGFR was
found to be involved in chemo- and radio-resistance [137,138]. Other signalling molecules
in this pathway, like an activated protein, C-Jun activation domain-binding protein-1 (Jab1)
and its downstream protein, namely glutathione S-transferase P1 (GSTP1), were found
overexpressed and abnormally methylated, respectively [139,163]. This aberration con-
tributed to radio- and drug-resistance (such as resistance to paclitaxel) [138]. Secondly,
Notch signalling, Wnt/β-catenin, and the NF-κB signalling pathway, which is involved in
tumorigenesis of many cancer types, has been reported to be relevant to radio-resistance
in NPC cells. In the NF-κB signalling pathway, NF-κB p65 and Akt Epithelial cell adhe-
sion molecule (EpCAM) promoted EMT, which initiates metastasis by endowing cancer
cells with radio-resistance. Increasing levels of phosphorylated GSK-3β in EBV infected
individuals results in higher levels of β-catenin [141]. β-catenin can activate multiple
downstream growth signalling components, such as cyclin D1 and c-Myc, and interact
with interleukin-8 (IL-8), RASSF1, E-cadherin, and N-cadherin, thereby leading to NPC
carcinogenesis [164]. β-catenin forms a complex with E-cadherin for cell adhesion, and
also suppresses metastasis [165]. However, in metastatic NPC, the E-cadherin was highly
downregulated and the level of E-cadherin is lowest when compared to non-cancerous and
primary NPC cells [140,166]. Correlation of N-cadherin and β-catenin in NPC highlighted
that both expressions promoted NPC metastasis and poor prognosis. Therefore, the progno-
sis or metastasis risk of NPC patients can be predicted by looking at the level of β-catenin
and E-cadherin complex. Despite that, Post-translational modifications like protein glyco-
sylation involved in malignant transformations also confer therapeutic resistance in NPC.
N-glycosyltransferase-V (GnT-V), an enzyme function in glycosylation, upregulation was
associated with promoting cell proliferation, anti-apoptosis functions, and upregulation of
Bcl2 gene expression, thus conferring radio-resistance to NPC [142–144].

Additionally, RT resistant patients can be identified by assessing the expression pat-
terns of certain serum proteins that participate in tumorigenesis. For example, secreted
protein acidic and high cysteine, serpin family D member 1S, complement C4B, peptidyl-
prolyl isomerase B, and a family with sequence similarity 173 member A can discriminate
RT resistance patients with a sensitivity of 94.1% and specificity of 92.6% [145]. In a
comparative study on radioresistant and sensitive control NPC cell lines, upregulation
of non-metastatic clone 23, isoform H1 (Nm23 H1), maspin, GRP78, and manganese su-
peroxide dismutase (Mn-SOD) and downregulation of 14-3-3 protein sigma (14-3-3σ) and
annexin A1/A3 were found to be associated with radio-resistance [131,146,147,149,150].
Another comparative study on proteomic profiles of NPC and healthy nasopharynx cells
also revealed that deregulation of stathmin, 14-3-3σ, annexin, and cathepsin D were associ-
ated with NPC metastasis and recurrence [167,168]. In addition, differentially expressed
serum proteins such as keratin 1, serum amyloid A protein (SAA), and heat shock pro-
tein (HSP70), which are involved in chemoresistance (cis-Diamminedichloroplatinum) and
radio-resistance in NPC, were reported as a potentially useful biomarker in NPC recurrence
diagnosis [151–153,169,170].

Nevertheless, none of these candidates have been approved for clinical application
to date. This is because most of the studies did not evaluate the sensitivity and specificity
of biomarker prognosis. The research design also did not consider the aforementioned
cofounding factors such as type of treatment and clinical stages, which could affect the
results. For instance, the efficacy of a prognostic biomarker should be evaluated in the dual
effects of RT and CT. A standard prognostic biomarker efficacy evaluation and result verifi-
cation procedure should be developed. This procedure should include the variable factors
that can affect the reproducibility of biomarker validation results, which are conducted
across different laboratories.
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5. Future Perspective and Challenges

An ideal biomarker for early detection of NPC should be specific to individuals who
are about to develop NPC and stable across time. Besides that, an ideal prognosis biomarker
should be able to predict the clinical outcome of a specific treatment given to the patients
and predict which NPC patients are about to develop metastasis or disease recurrence after
treatment. In addition, the level of biomarker should be able to correlate with the tumour
burden in order to reflect the progression and regression. With new biomarker-based
diagnostic or prognostic tools, personalised medicine that is tailored to the characteristics
of respective individual NPC patients can be developed. Over the long term, patients’
welfare can be improved by preventing the disease progression, thus enhancing the disease
management and eventually leading to better health outcomes.

The advancements in genomic, transcriptomic, proteomic, and metabolomic research
has allowed us to study the disease and discover biomarkers that facilitate the identification
of the diagnosis, prognosis, and characteristics of patients. However, although many NPC
biomarkers discovered to date look promising, none of these biomarkers are approved
for clinical application. This is mainly due to a lack of reproducible validation of result of
identified biomarkers across different laboratories like previously mentioned. In fact, there
are several factors that can lead to variation of efficacy evaluation for the same biomarker.
Firstly, it is due to the genomic instability feature of the tumour and multiple genetic aber-
rations needed to trigger NPC development and metastasis. The detection of biomarkers
at a particular time might not reflect future genetic alteration due to the underlying ge-
nomic instability. Secondly, the complexity of the tumorigenesis process and heterogeneity
across individual and tumour microenvironments make it unlikely that a single diagnosis
biomarker can be effective. Cancers are made up of numerous cell types. Therefore, there is
a complex cross talk of interaction between tumour and surrounding stromal cells (tumour
microenvironment) in facilitating the progression of early lesion and metastasis, which
are not captured by these biomarkers, while more advanced 3D heterotypic multicellular
cells with more aggressive metastasis and therapeutic resistance features than 2D cancer
cells will provide better simulation of the in vivo TME for biomarker discovery [171,172].
However, most of the studies used 2D NPC cell line instead of 3D heterotypic multicellular
tumour cells. Turning our attention to aberrant alterations in TME could potentially direct
us towards discovering reliable biomarkers, as well as targets for therapy or personalised
medicine development. Thirdly, it is likely that additional genetic events are involved in
NPC progression but have yet be discovered. Besides that, the small sample sizes and lack
of replicated studies also limits the progress of developing diagnosis biomarkers.

Moreover, cancer involves synergistic pathogenesis alteration such as change in gene
mutation, protein synthesis, transcription, and metabolism. Hence, it is impossible to
explore the whole complex network of cell signalling pathways and biological processes
of NPC carcinogenesis and progression by just looking at a single omics. Integration of
multi-omics is required for tumour marker development. Integration of two or more kinds
of omics can allow more comprehensive study of the specific molecules at multiple levels
(phenotype and regulatory mechanisms), thereby compensating for the lack of data in any
single omics, and therefore enhancing the reliability of the biomarker.

Furthermore, it is also impossible to diagnose and monitor this complex disease with
only a single biomarker. Therefore, multiple biomarkers with different omics should be con-
sidered. The development of cost-effective multiplex diagnosis assays is required to cross
detect several NPC biomarkers in order to achieve a more accurate diagnosis. However,
using different types of biomarkers for diagnosis is tedious, expensive, and patients might
suffer when numerous biopsies need to be done. Despite that, technology advancements in
detection assays or screening approaches are important to propel biomarker development.
For example, advancements in molecular sequencing will help in identifying genomic
change events, including DNA methylation, structural rearrangement, high risk alleles,
miRNA, etc.
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In addition, there are several challenges that need to be overcome before the biomarker
can be translated to clinical use. Firstly, biomarker based diagnostic or prognostic ap-
proaches are less adapted to the healthcare systems of many countries. It is to do with the
current reimbursement system and less to do with referring the value of these biomarker
based diagnostic or prognostic tools in health care settings. In order to support the in-
tegration of biomarkers into healthcare systems, evidentiary standards and procedures
need to be developed to assess and manipulate the biomarkers based on diagnostic or
prognostic tools. For example, EBV DNA has been known to have potential uses in early
NPC diagnosis and prognosis, but its efficacy varies with different testing approaches.
Hence, in order to evidence its efficacy in NPC detection, a harmonised validation approach
should be developed and conducted across different laboratories [173]. Secondly, similar
stringent test designs and randomised clinical trials in biomarker development should also
be practiced prior to the approval of a pharmaceutical for clinical use.

Apart from this, socio-economic factors are another set of issues that affect cancer care
pathways, especially predictive biomarker tests. Undoubtedly, low socio-economic status
remains a barrier for patients to access treatment and cancer care, as well as lack of practice
using predictive biomarker tests in health care systems. Cancer Research UK highlighted
that most cancer patients received targeted therapy without prior molecular biomarker
testing [174]. This may result in poor prognosis or overtreatment. In fact, less access to
biomarker testing has overwhelmed the value of biomarkers. Hence, Medicaid and other
relevant programs should be expanded in order to increase the awareness, patient’s per-
spective, experience, and access to biomarker-based technology. Furthermore, the industry
should also involve new business models that provide support for the development of
molecular diagnostic biomarkers.

In short, future research on NPC biomarkers should have: (1) sufficient efficacy evalu-
ation to provide supportive data for further clinical research; (2) integration of multiple
disciplines, including regional, environmental, lifestyle, and dietary factors of NPC pa-
tients; (3) integration of multi-omics; (4) a call for an international collaboration and effort
to involve larger cohorts and diversified populations to demonstrate its usefulness and
reliability; (5) further exploration including novel clinical issues in study design.
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