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Abstract

Restoring gene function by the induced skipping of deleterious exons has been shown to be

effective for treating genetic disorders. However, many of the clinically successful therapies

for exon skipping are transient oligonucleotide-based treatments that require frequent dos-

ing. CRISPR-Cas9 based genome editing that causes exon skipping is a promising thera-

peutic modality that may offer permanent alleviation of genetic disease. We show that

machine learning can select Cas9 guide RNAs that disrupt splice acceptors and cause the

skipping of targeted exons. We experimentally measured the exon skipping frequencies of a

diverse genome-integrated library of 791 splice sequences targeted by 1,063 guide RNAs in

mouse embryonic stem cells. We found that our method, SkipGuide, is able to identify effec-

tive guide RNAs with a precision of 0.68 (50% threshold predicted exon skipping frequency)

and 0.93 (70% threshold predicted exon skipping frequency). We anticipate that SkipGuide

will be useful for selecting guide RNA candidates for evaluation of CRISPR-Cas9-mediated

exon skipping therapy.

Author summary

One form of genetic therapy is exon skipping, where a cell is forced to exclude problematic

exons from a mutant transcript such that the resultant protein is functional. Recent stud-

ies show that CRISPR technology can induce therapeutic exon skipping. By using a spe-

cific guide RNA, targeted disruption of an exon’s splice acceptor sequence can be

performed, which can result in its skipping. However, an exon may have many candidate

guide RNAs that target its splice acceptor, and not all guide RNAs will lead to a sufficient

level of exon skipping. A predictive method that can identify a guide RNA that will cause

an exon to be skipped would be useful for guiding therapeutic development efforts. We
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present SkipGuide, a machine learning method for predicting the exon skipping level

caused by a guide RNA that targets its splice acceptor region. To develop and evaluate

SkipGuide, we experimentally measured the skipping levels of a diverse set of exons tar-

geted by multiple guide RNAs in a mouse cell line. We demonstrate that SkipGuide can

accurately identify the guide RNAs that lead to high levels of exon skipping.

This is a PLOS Computational Biology Methods paper.

Introduction

Exon skipping therapies have emerged as a powerful method for treating genetic disorders by

restoring gene function. These therapies work by forcing the RNA splicing machinery to

bypass exons that contain deleterious point or frameshift mutations. The first clinical success

in exon skipping disease treatment uses antisense oligonucleotide strategies to alter RNA splic-

ing, and has recently received FDA approval for treatment of Duchenne muscular dystrophy

(DMD) [1, 2]. Several other disease exon skipping via antisense oligonucleotide treatments

have shown pre-clinical and clinical promise, and are in development for diseases including

cystic fibrosis [3], atherosclerosis [4], cardiomyopathy [4–7], and Pompe Disease [8]. How-

ever, oligonucleotide therapies are not only expensive, but also require lifelong dosing due to

their transient nature [9].

CRISPR (Clustered regularly interspaced short palindromic repeats) editing of genomic

regulatory elements that control exon splicing is a promising means of permanently alleviating

genetic diseases. CRISPR-Cas9 genome editing can be used to ablate the functioning of exon

splicing sequences, causing the RNA splicing machinery to skip a deleterious exon. Following

Cas9-induced DNA double-stranded break, non-homologous end joining and microhomol-

ogy-mediated end joining repair pathways often introduce variable indel mutations at the cut

site [10, 11]. By using an appropriate guide RNA (gRNA) to direct Cas9 to induce a double-

stranded break at the splice donor or acceptor sequence of a mutant exon, end-joining repair

can disrupt the genomic sequence of these splice sites sufficiently to cause skipping of the

mutant exon. This strategy of template-free Cas9 induced exon skipping has been shown to

provide efficient and permanent phenotypic alleviation in cellular and animal models of DMD

[12–14]. This strategy is also more therapeutically practical than an approach of CRISPR-

Cas9-mediated mutation reversion using template-directed homology-directed repair, because

it is limited by low efficiency (particularly in postmitotic adult tissues), undesired by-products,

and the need to deliver a DNA repair template [15–17].

An exon can have many candidate gRNAs for exon skipping, and the existence of an effec-

tive gRNA for a particular exon is not guaranteed or known a priori. A predictive method that

can identify effective gRNAs for a target exon would thus be useful for guiding therapeutic

development efforts.

In this study, we describe a machine learning pipeline, SkipGuide, that predicts the skipping

level of an exon given a Streptococcus pyogenes Cas9 (SpCas9) gRNA that targets its splice

acceptor site. In conformity with notations of previous literature [18–21], we quantify exon

skipping as the percent spliced-in (PSI, C), defined as the fraction of transcripts that contains

the exon. Thus, the frequency of exon skipping is 1 −C. SkipGuide employs inDelphi [22] to
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predict DNA repair genotypes and frequencies caused by Cas9 in combination with a given

SpCas9 gRNA, and a linear model we call MetaSplice, that combines predictions from SpliceAI

[23], and the intronic, acceptor site, and exonic modules of the Modular Modeling of Splicing

framework (MMSplice) [24], to predict C for each repair genotype (CR, Fig 1B). The overall

predicted C for a given gRNA (CG) is then taken to be the mean predicted CR over all its pre-

dicted repair genotypes, weighted by the predicted frequency of each repair genotype (Fig 1C).

inDelphi has demonstrated high accuracy at predicting SpCas9 genotypic outcomes [22]. Spli-

ceAI is a splice junction prediction model shown to outperform other models such as GeneS-

plicer [25] and NNSplice [26]. MMSplice is a model of exon skipping ranked first at the recent

fifth Critical Assessment of Genome Interpretation group [27, 28], shown to outperform state-

of-the-art models such as COSSMO [20], HAL [19], SPANR [18], and MaxEntScan [29].

To evaluate SkipGuide, we constructed a diverse genome-integrated library of splice accep-

tor sequences targeted by multiple gRNAs in mouse embryonic stem cells (mESCs), and exper-

imentally measured CG resulting from each gRNA (Fig 1A). We found that SkipGuide is able

to identify gRNAs that lead to lowCG with high precision. Thus, we expect our method to

facilitate studies in CRISPR-Cas9-mediated therapeutic exon skipping, by enabling a priori
selection of likely effective gRNAs.

Fig 1. Genome-integrated reporter system, and machine learning pipeline for predicting exon skipping levels from SpCas9 gRNAs that target

splice acceptors. (A) A simplified illustration of the genome-integrating high-throughput CRISPR-Cas9 splicing reporter system. (B) MetaSplice

combines predictions from SpliceAI, and MMSplice’s intronic, acceptor site, and exonic modules using a linear model tuned on experimental data from

(A). (C) The full machine learning pipeline, SkipGuide, predictsCG for a given SpCas9 gRNA, by chaining inDelphi and MetaSplice. Probabilistic

interpretations are shown in red.

https://doi.org/10.1371/journal.pcbi.1008605.g001

PLOS COMPUTATIONAL BIOLOGY Machine learning based CRISPR gRNA design for therapeutic exon skipping

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008605 January 8, 2021 3 / 24

https://doi.org/10.1371/journal.pcbi.1008605.g001
https://doi.org/10.1371/journal.pcbi.1008605


Results

Genome-integrated high-throughput assay for CRISPR-Cas9-mediated

exon skipping

To observe Cas9-mediated end-joining repair products and their eventualCR across a wide

variety of intron-exon junctions, we designed a genome-integrated gRNA and intron-exon tar-

get library (lib-SA), in which each 61 base pair target site is accompanied by a corresponding

SpCas9 gRNA on the same DNA molecule (Fig 1A and S1 Fig and S1 Text). To explore effects

representative of the human genome, we designed 1,927 target sites derived from human

intron-exon junctions, each targeted by at least one gRNA (4,000 total, see Methods). Each con-

struct includes three Exons (A, B, and C) that are part of a single mRNA transcript, and the

assay is designed to produce sequencing reads that indicate the observed frequency of Exon B

skipping. Each of the 1,927 target sites is a splice acceptor for Exon B, and a constant alternative

splice acceptor is at the Exon B and Exon C boundary (S1 Text). Depending on the severity of

splice acceptor disruption from Cas9-mediated repair at the target site, differential splicing of

the resultant primary RNA transcripts may favor the skipping of Exon B (Fig 1A). Thus, theCR

of a particular repair outcome refers to the fraction of their transcripts that contain Exon B.

We stably integrated lib-SA into the genomes of mESCs, treated the cells with Cas9, and

performed paired-end high throughput DNA sequencing on the gRNA sequence of lib-SA, the

primary RNA transcripts, and the spliced RNA transcripts. We also sequenced control cells

prior to Cas9 treatment. We processed the resulting sequencing data (see Methods, and S9

Fig) to identify and quantify the genomic repair outcomes associated with each gRNA, and to

identify the presence or absence of Exon B in all transcripts associated with each repair

outcome.

The resulting dataset that identifies the genotypic outcomes of splice acceptor repair we call

‘dat-A’, and the dataset that identifies the skipping frequency we call ‘dat-B’. Dataset dat-A is

constructed from 1,998,925 primary transcript sequencing reads. It represents 1,695 gRNAs

that target 1,549 lib-SA targets, and consists of a mean of 45 unique repair genotypes per asso-

ciated gRNA (S2 Table). Since primary transcript sequences reflect the genomic repair geno-

type of lib-SA targets, we estimated the frequency of each unique repair genotype from a mean

of 1,180 primary transcript sequencing reads per associated gRNA. The dataset dat-B is con-

structed from 520,196 spliced transcript sequencing reads. It represents 1,063 gRNAs that tar-

get 791 lib-SA targets, and consists of a mean of 246 spliced transcript sequencing reads per

associated repair outcome, for 2,113 unique repair outcomes (S3 Table). From this dataset, CR

for each of the 2,113 repair outcomes was computed, and by aggregating the spliced transcript

sequencing reads by associated gRNA, theCG associated with each of the 1,063 gRNA was

computed. A similar dataset, dat-B WT, was constructed from 3,443,915 spliced transcript

sequencing reads of control cells before Cas9 treatment (S4 Table). The wild type Exon B skip-

ping level (WT C) for 1,697 lib-SA targets were derived from this dataset.

We report the performance of inDelphi in predicting the observed repair outcomes in dat-

A, the performance of MetaSplice in predicting CR derived from dat-B, the comparison

between CG and WT C, and the performance of SkipGuide in predicting the observed CG

from the associated gRNAs.

inDelphi accurately predicts genotypes and frequencies of experimentally

observed Cas9-mediated end-joining repair products

From dat-A, we found that end-joining repair of Cas9-mediated DNA cuts of our lib-SA in

mESCs primarily led to deletions (83.3% of all products) and single base pair (1-bp) insertions
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(13.5% of all products) that overlap the cutsite (Fig 2A). The remaining 3.2% of repair out-

comes consist of multiple base pair insertions at the cutsite, combinations of insertions and

deletions that overlap the cutsite, and insertions and/or deletions (indels) that do not overlap

the cutsite.

To ensure that a meaningful evaluation of inDelphi’s accuracy and generalizability is possi-

ble, we first confirmed that the sequences used to train inDelphi [22] do not overlap, and are

not homologous to, the lib-SA target sequences that make up dat-A. Through a pairwise local

sequence alignment procedure (see Methods), we found that the distribution of the best-

aligned sequence identities between lib-SA sequences in dat-A and inDelphi’s training set is

right-tailed (S2 Fig). Except for one lib-SA sequence in dat-A (out of 1,549) that shares 67%

sequence identity with a sequence from inDelphi’s training set, all lib-SA sequences in dat-A

share less than 37% sequence identity with inDelphi’s training set, with a median and mean

(best-aligned) sequence identity of 24% and 23% respectively.

We then compared inDelphi’s indel frequency predictions and the observed genotypes in

dat-A, and found that there is a high correlation between the two (median r = 0.75) across the

1,695 gRNAs represented (Fig 2C and 2D). For each of the 1,695 gRNAs, we considered only

repair genotypes that resulted from either 1 to 60-bp deletions spanning the cutsite, or 1-bp

Fig 2. inDelphi accurately predicts editing outcomes. (A) The categories of editing products at 1,549 lib-SA target sites in mESCs. “Other” denotes

products such as multiple base pair insertions and combination indels. (B) 1-bp insertion frequencies among 1,549 lib-SA target sites, compared to the

−4 nucleotide from their NGG PAM. (C) The distribution of Pearson’s r between observed and inDelphi predicted repair genotype frequencies for

1,695 gRNA lib-SA target pairs. (D) An example distribution of observed and inDelphi predicted repair genotype frequencies (r = 0.98) for a particular

gRNA lib-SA target pair (S1 Table, Identifier number 5026).

https://doi.org/10.1371/journal.pcbi.1008605.g002
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insertions at the cutsite. These are the repair types that inDelphi models [22], and they encom-

pass all detectable repairs on our 61-bp lib-SA target sequences.

Since inDelphi internally uses separate models for 1-bp insertion predictions and deletion

predictions, we also assessed the accuracy of inDelphi’s insertion and deletion predictions sep-

arately. For predicting 1-bp insertions, inDelphi employs a nearest neighbors model that

assumes genotypes of 1-bp insertions are local sequence context dependent, and are predomi-

nantly duplications of the −4 nucleotide from the NGG SpCas9 protospacer-adjacent motif

(PAM) [22]. We found that this inductive bias generalizes to our measured 1-bp insertion fre-

quencies among 1,549 lib-SA target sites (Fig 2B), and inDelphi’s 1-bp insertion predictions

accurately reflects the observed 1-bp insertion in dat-A (median r = 0.95, S2 Fig). We also

found that there is a high correlation between inDelphi’s deletion predictions and observed

deletions in dat-A (median r = 0.75, S2 Fig).

MetaSplice predictions of CR correlate with those of experimental

observations

SkipGuide requires the ability to predict CR for an individual repair product based upon the

sequence of its splice acceptor region. We evaluated MaxEntScan [29], SpliceAI [23],

MMSplice [24], and combinations of SpliceAI and MMSplice for this task using the dat-B

derived CR (Fig 3 and S3 Fig). SpliceAI and MMSplice have reported superior accuracy over

existing splice junction scoring models [23, 24], and MaxEntScan was considered as a baseline

reference.

MaxEntScan scores a 23-nt region surrounding an acceptor site, but does not predict CR,

so for MaxEntScan we computed Pearson’s r between its score and the observed CR values.

For all other methods we computed Pearson’s r between the predicted and observed CR as

well as mean absolute error (MAE), mean squared error (MSE), and root-mean-square error

(RMSE). We found that the MaxEntScan scores on the 2,113 repair genotypes in dat-B yield

the lowest correlation with the actual observed CR values compared to the other methods

(r = 0.09, Fig 3A and Table 1).

SpliceAI predicts the probability a position is used as a splice acceptor for every position of

a given sequence. We used SpliceAI to predict probabilities at every position of each repair

genotype in dat-B, and took the maximum probability over all the positions as the predicted

CR for each sequence. We found that the SpliceAI predictions evaluated against the actual CR

values observed in dat-B achieved r = 0.50, MAE = 0.29, MSE = 0.13, and RMSE = 0.36 (Fig 3B

and Table 1).

MMSplice consists of separate prediction modules for scoring overlapping splicing-relevant

sequence regions. We first evaluated MMSplice’s 3’ intronic module, acceptor site module,

and exonic module separately on dat-B, and found that they yield r = 0.45, r = 0.20, and

r = 0.18 respectively (S3 Fig). We then evaluated the performance of a linear model that com-

bines the predictions from these three modules by 10-fold cross validation on dat-B derived

CR (Fig 3 and Methods). We call this linear model Weighted MMSplice (wMMSplice). To

construct the folds, we first grouped the 2,113 repair outcomes in dat-B into the 1,063 associ-

ated gRNAs, and then randomly partitioned them into 10 folds (S6 Fig). This ensures that no

two folds contain repair outcomes from the same associated gRNA. By using each fold as a val-

idation set, and the other 9 folds as training data to fit wMMSplice’s linear model weights (via

ridge regression [30], with L2 regularization strength of 0.35, see Methods), we produced cross

validated predictions of CR for all 2,113 repair outcomes. When compared with the actual val-

ues of CR, we found that wMMSplice predictions achieved mean r = 0.55, mean MAE = 0.18,

mean MSE = 0.06, and mean RMSE = 0.25, over the 10 folds (Fig 3C and Table 1). We also
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repeated the 10-fold cross validation 1,000 times, each with a different random split of the

folds, and found the same level of performance (S10 Fig).

In a similar fashion as wMMSplice, we evaluated the performance of a linear model that

combines the predictions from the three MMSplice modules and those from SpliceAI by

10-fold cross validation (see Methods). We call this linear model MetaSplice. The same data

Fig 3. ActualCR vs. MaxEntScan scores, SpliceAI predictions, wMMSplice cross validated predictions, and MetaSplice cross validated predictions

of CR for 2,113 repair outcomes. Each plot shows the actualCR vs. scores and predictions from various methods on 2,113 different repair outcomes

(associated with 1,063 gRNAs). (A) Plot of the actualCR vs. MaxEntScan scores (r = 0.09). (B) Plot of the actualCR vs. SpliceAI predictions (r = 0.50).

(C) Plot of the 10-fold cross validated predictions ofCR from wMMSplice (mean r = 0.55). (D) Plot of the 10-fold cross validated predictions of CR
from MetaSplice (mean r = 0.62). The same 10 folds were used for wMMSplice and MetaSplice.

https://doi.org/10.1371/journal.pcbi.1008605.g003
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folds and ridge regression parameters used for training and evaluating wMMSplice were used

on MetaSplice to produce cross validated predictions of CR for all 2,113 repair outcomes (see

Methods). We found that MetaSplice predictions achieved the highest correlation with, and

the lowest error against, the observed CR in dat-B compared to the other methods: mean

r = 0.62, mean MAE = 0.16, mean MSE = 0.05, and mean RMSE = 0.23, over the 10 folds

(Table 1 and Fig 3D and S10 Fig). We also evaluated MetaSplice on dat-B WT, by first fitting

MetaSplice on all the dat-B derived data, and found that the predictions achieved r = 0.58

when compared with the actual values of WT C (S4(F) Fig).

SkipGuide identifies gRNAs that cause effective exon skipping with high

precision

We hypothesized that Cas9-mediated genotypic alteration of lib-SA splice acceptors would

generally result in lower CG than wild-type (WT) lib-SA splice acceptors. To investigate this,

we considered the set of gRNAs associated with transcripts observed in Cas9 treated cells (S3

Table), and the set of gRNAs associated with transcripts observed in WT cells prior to Cas9

treatment (S4 Table). We identified 735 gRNAs common to both sets with sufficient support

for us to compute their C values (see Methods). We found that after Cas9 treatment, all 735

gRNAs resulted in similar or lower CG compared to their WT counterparts (treated mean

CG = 0.68, WT mean C = 0.91, see Fig 4A (colorbar) and S5 Fig). Aside from 5 out of 735 with

C between 0.45 and 0.5, all of the WT lib-SA targets exhibited C greater than 0.5.

We then evaluated SkipGuide’s performance in predicting CG given the wild type sequence

of a gene and the sequence of a gRNA that targets a contained splice acceptor. For each of the

the 1,063 gRNAs from dat-B, we predicted the splice acceptor genotypes that would result

using inDelphi, theCR for each genotype using MetaSplice, and theCG (Fig 1C). We obtained

these predictions using the same 10 fold cross validation strategy used to evaluate MetaSplice:

CG predictions for each gRNA in one fold are obtained by using the other 9 folds to fit MetaS-

plice within SkipGuide, and we repeated this for all 10 folds to obtain predictions for all 1,063

gRNAs (S6 Fig). When compared with the actual values of CG, we found that SkipGuide pre-

dictions achieved overall r = 0.67, mean r = 0.67, mean MAE = 0.17, mean MSE = 0.05, and

mean RMSE = 0.21, over the 10 folds (Fig 4A and S7 and S10 Figs).

We found that SkipGuide predictions are more reliable for lower predicted values of CG.

To quantify this, we binarized the observed CG values with a threshold of 0.5. We consider

gRNAs with observed CG� 0.5 as ‘effective’ at causing exon skipping, and ‘ineffective’ other-

wise. If an analogous threshold τ is chosen for SkipGuide’s predicted CG, then Fig 4A can be

subdivided into quadrants representing regions of true positives (TP), false positives (FP), true

negatives (TN), and false negatives (FN). For varying values of τ, we computed the precision of

Table 1. Performance of CR predictions by various methods.

MaxEntScan SpliceAI wMMSplice MetaSplice

Mean SD Mean SD

Pearson’s r 0.09 0.50 0.55 0.06 0.62 0.05

MAE - 0.29 0.18 0.01 0.16 0.02

MSE - 0.13 0.06 0.01 0.05 0.01

RMSE - 0.36 0.25 0.02 0.23 0.02

Evaluation of models predicting CR on dat-B. MAE denotes mean absolute error, MSE denotes mean squared error, RMSE denotes root-mean-square error, and SD

denotes standard deviation. MaxEntScan scores sequences, but does not predict CR, so only the Pearson’s r metric is available. Out of the methods shown, MetaSplice’s

10-fold cross validated predictions of CR yield the highest correlation with, and the lowest error against, the observed CR in dat-B.

https://doi.org/10.1371/journal.pcbi.1008605.t001
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the predictions. We found that if treated as a binary classifier, SkipGuide achieved a mean

AUC of 0.84 over 10-fold cross validation, and identified effective gRNAs with a precision of

0.68 if τ = 0.5 is used (Fig 4B and 4C). Lower choices of τ corresponding to a higher skipping

frequency yielded higher precision. SkipGuide’s high precision at low values of τ makes it

Fig 4. Performance of SkipGuide in identifying effective SpCas9 gRNAs. (A) Plot of the actualCG vs. the 10-fold cross validated predictions of CG
from SkipGuide on 1,063 gRNAs (r = 0.67). Various regression metrics averaged over the 10 folds are shown (MAE denotes mean absolute error, MSE

denotes mean squared error, RMSE denotes root-mean-square error, and SD denotes standard deviation). Each point is either colored by the

corresponding WTC before Cas9 treatment (735 total), or is labeled with a gray pentagon if the corresponding WTC is unknown. Regions of true

positives (TP), false positives (FP), true negatives (TN), and false negatives (FN) are shown when the actualCG is binarized with a threshold of 0.5, and

the predicted CG is binarized with a threshold of 0.3. (B) Receiver operating characteristic (ROC) curves across the 10 folds, using a 0.5 binary threshold

for the actualCG (mean AUC = 0.84). (C) A plot of precision vs recall (of both overall and each of the 10 folds, assuming the threshold for the actualCG
is 0.5) at various choices of predictedCG binarization threshold. Choosing a prediction threshold of 0.5 gives a precision of 0.68, and choosing a lower

threshold of 0.3 gives a higher precision of 0.93.

https://doi.org/10.1371/journal.pcbi.1008605.g004

PLOS COMPUTATIONAL BIOLOGY Machine learning based CRISPR gRNA design for therapeutic exon skipping

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008605 January 8, 2021 9 / 24

https://doi.org/10.1371/journal.pcbi.1008605.g004
https://doi.org/10.1371/journal.pcbi.1008605


useful in practice, as one can be more confident that a gRNA predicted to be effective in caus-

ing high exon skipping is not a false positive.

Finally, we performed perturbation studies to explore the contributions of inDelphi and

MetaSplice to SkipGuide’s overall performance (S8 Fig). When we replaced inDelphi’s repair

frequencies predictions with uniform frequencies, such that SkipGuide’s final step is replaced

with an unweighted average of MetaSplice predictions, we found that SkipGuide produced

predictions with a lower correlation with the actual values of CG (r = 0.57). When we replaced

MetaSplice’s predictions with random values between 0 and 1, SkipGuide produced predic-

tions with no correlation with the actual values of CG (r = 0.03, p = 0.30), with statistically

insignificant p-values under the null model of r = 0. Similarly, when we replaced both inDelphi

and MetaSplice with the uniform and random predictors respectively, SkipGuide produced

predictions with no correlation with the actual values of CG (r = 0.03, p = 0.29). These experi-

ments suggest that both inDelphi and MetaSplice are necessary components for SkipGuide to

achieve the best performance.

Discussion

We find that SkipGuide predicts with high precision the expected skipping frequency of an

exon given the sequence of a SpCas9 gRNA that targets its splice acceptor. To develop and

evaluate SkipGuide, we experimentally measured the exon skipping frequencies caused by

1,063 diverse gRNAs that target 791 splice acceptor sequences in mESCs. SkipGuide has the

highest precision for high skipping frequencies. Lower skipping frequency thresholds can be

used to trade off lower precision with larger sets of candidate gRNAs. The number of diseases

potentially treatable by exon skipping therapy is unknown. In this study (see Methods), we

applied a narrow set of constraints on the HGMD [31], Ensembl [32], and Pfam [33] databases

to identify 1,927 exons in 923 unique genes with known pathogenic indels potentially amena-

ble to CRISPR-Cas9 (acceptor site ablation) mediated exon skipping treatment. These

sequences make up the lib-SA library provided in this work, and may be of interest to the com-

munity for further evaluation.

While inDelphi [22] is sufficiently accurate in our experimental context, we found MetaS-

plice to be the limiting factor in SkipGuide’s performance. MetaSplice is a meta-model that

combines predictions from state-of-the-art models MMSplice [24] and SpliceAI [23]. MetaS-

plice’s relatively low recall in our evaluations reflects the field’s incomplete understanding of

the biology of splicing and current limited predictive capabilities. However in practice, the

region of interest for exon skipping is for small C, where MetaSplice, and by extension, Skip-

Guide, shows high precision. The level of precision we provide provides practically important

information for gRNA selection for exon skipping, since all gRNAs selected using our model

can be experimentally assayed for this property.

Since acceptor site alteration allows reliable control over which exon is skipped, we focused

on the effects of CRISPR-Cas9 mediated acceptor site disruption on exon skipping in this

study. SkipGuide is evaluated on gRNAs that lead to DNA double-stranded breaks in a small

window (6-bp) surrounding and including the AG splice site acceptor motif. End-joining

repair at cut sites outside of this region [34–37], and ablations of an exon’s splice donor

sequence [37, 38], have been shown to also lead to exon skipping. Hence, modelling these

cases can be future extensions to SkipGuide.

The cellular interpretation of splice acceptor sequences and the resulting exon skipping fre-

quencies is also known to be tissue-specific [39, 40], but SkipGuide in this study is only evalu-

ated in the context of mESCs with SpCas9. inDelphi models only a small number of cell types

[22], MMSplice [24] and SpliceAI [23] are not tissue specific, and MetaSplice is tuned using
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our data from mESCs. However, SkipGuide is a modular pipeline, so its components can be

replaced with more accurate or suitable models in the future. Our experimental design can

also be applied in different cell types to provide data for training cell type specific versions of

MetaSplice.

We validated the use of gRNAs with SpCas9 to ablate genome-integrated sequences (dat-A)

that lead to changes in exon skipping levels (dat-B) in their native cellular context, and demon-

strated SkipGuide prediction generalizability through cross validation. Though we have not

validated SkipGuide predictions on native endogenous exons other than our genome inte-

grated constructs, it has been shown that the results from a similar high-throughput assay used

in the inDelphi study match edits at endogenous loci [22]. Therefore, we expect that CRISPR-

Cas9 mediated acceptor sequence disruption will work endogenously.

A clinically successful gRNA would induce high efficiency of exon skipping with minimal

to no off-target effects, but we note that SkipGuide does not consider gRNA off-target and on-

target editing efficiency. One way to address this in practice is to use other predictive tools

such as Azimuth [41] and Elevation [42] to produce a set of candidate gRNAs with predicted

minimal off-target and maximal on-target activities respectively prior to using SkipGuide. Off-

target and on-target editing for candidate therapeutic gRNAs from SkipGuide will need to be

experimentally evaluated.

The prediction of CRISPR-Cas9 induced exon skipping not only allows a priori selection of

promising gRNAs for skipping an exon of interest, but also enables identification of candidate

exons amenable to this method of induced skipping for further study. Thus, we anticipate

SkipGuide will be useful for guiding future research in CRISPR-Cas9 mediated exon skipping

therapy.

Methods

High-throughput CRISPR-Cas9 splicing reporter system

Library design: Identifying human intron-exon sequences for lib-SA. To model exon

splicing changes representative of the human genome, we curated human intron-exon junc-

tion sequences for the lib-SA target library. This was done by selecting exons that contain at

least one pathogenic indel in the Human Gene Mutation Database (HGMD, professional

release 2018.1) [31] with the following properties: a basal frameshift rate of 66% or more,

which are likely to disrupt normal protein function; a length evenly divisible by 3, to preserve

the reading frame when skipped; are not constitutive, as defined by less than 100% presence in

Ensembl (release 92) transcripts [32]; and do not contain an annotated protein domain in

Pfam (release 31) [33]. This resulted in 6,805 intron-exon sequences. Those without a suitable

gRNA for effective targeting (described in the next section) were filtered out, and resulted in

the final lib-SA target library of 1,927 human intron-exon sequences (S1 Table).

Library design: Selecting gRNAs with effective targeting of lib-SA targets. For each of

the candidate intron-exon sequences, candidate gRNAs were identified by considering gRNAs

with suitable CRISPR Cas9 cut sites, as defined by the existence of an NGG PAM sequence in

a 6-bp window surrounding and including the AG splice site acceptor motif (or the intron-

exon boundary if the splice site was not a canonical AG). Azimuth [41] and BOTM (see S2

Text) were used to retain only those gRNAs predicted to have high on-target editing efficiency

(Azimuth score above 0.2 and BOTM score above 0.65).

This candidate set of gRNAs was then heuristically reduced using inDelphi [22] and Max-

EntScan [29]. inDelphi, initialized to use its mESC models, was used to predict the frequency

distribution of repair genotypes for each gRNA. As per inDelphi’s default settings, only predic-

tions for 1-bp insertions and between 1-bp and 60-bp microhomology deletions were
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considered. For each predicted repair genotype, MaxEntScan’s score3ss module was used to

estimate the splice site acceptor motif strength. A genotype was classified as motif disrupting if

its MaxEntScan score is less than 0.9, and no effect otherwise, as per previous studies on this

classification ruleset [43]. The total frequency of all motif-disrupted repair genotypes weighted

by the inDelphi predicted repair genotype frequency was taken to be the predicted frequency

of splice site disruption. The top 4,000 gRNAs, and their 1,927 associated intron-exon

sequences with high predicted frequencies were selected for our library (S1 Table).

Library cloning, cell culture, and deep sequencing. lib-SA consists of a CAGGS (CAG)

promoter [44] driving a fixed Exon A with a strong splice-donor site, an intron, a variable

Exon B, a fixed Exon C, and a polyA sequence (S1 Fig). Our lib-SA of 61-bp intron-exon

sequences span the intron-Exon B boundary with 37-nt of intronic sequence and 24-nt of

exonic sequence. A highly diverse 15-bp barcode is embedded in Exon C. A U6 promoter on

the same DNA molecule drives the corresponding SpCas9 gRNA spacer. The nucleotide reso-

lution description of this construct is provided in S1 Text.

We used a similar library cloning and cell culture procedure to the inDelphi study [22]. lib-

SA was constructed through a multistep process, cloned into a plasmid backbone allowing

Tol2 transposon-based integration into the genome (S3 Text), and integrated into the genomes

of mESCs using Lipofectamine 3000 transfection along with equal molar Tol2 transposase fol-

lowed by one week of Hygromycin selection to ensure genomic integration.

One week after library integration, the mESCs were transfected with p2T CAG Cas9 BlastR

(Addgene 107190) and Tol2 transposase using Lipofectamine 3000 followed by one week of

Blasticidin selection to maximize Cas9 activity. After one week, genomic DNA (gDNA) (Pure-

link Genomic DNA mini kit) and RNA (Qiagen RNEasy Maxi kit) were extracted from sepa-

rate aliquots of each replicate culture. gDNA and RNA from cells prior to Cas9 treatment were

also extracted as control. Samples were prepared for Illumina Nextseq using PCR-based meth-

ods (S3 Text), and paired-end high-throughput DNA sequencing (Illumina Nextseq 2 x 75-nt

kit) was then performed on the gDNA and RNA (S1 Fig primer locations, and S3 Text). Tech-

nical replicate sequencing was performed on samples from post Cas9 exposed cells.

Processing of sequencing reads

Read sets from three different types of molecules were used: gDNA (Library Plasmid reads),

RNA Un-Spliced, and RNA Spliced as shown in S1 Fig. The gDNA sequencing reads captured

barcodes and associated gRNA sequences. The RNA Un-Spliced reads captured barcodes and

their associated splice acceptors, and were observed both pre and post Cas9 exposure. The

RNA Spliced reads captured barcodes and the corresponding presence or absence of Exon B,

and were observed both pre and post Cas9 exposure.

More specifically, there were: 1 pre Cas9 gDNA read set, 2 post Cas9 gDNA read sets from

technical replicates, 1 pre Cas9 RNA Un-Spliced read set, 2 post Cas9 RNA Un-Spliced read

sets from technical replicates, 1 pre Cas9 RNA Spliced read set, and 2 post Cas9 RNA Spliced

read sets from technical replicates.

Sequence and barcode extraction. Sequences (gRNA sequence in gDNA, the target

sequence in RNA Un-Spliced, the Exon B portion of the target sequence, or lack thereof, in

RNA Spliced) and the associated barcode sequences were extracted from sequencing reads

using regular expression pattern matching with at most 5 substitutions permitted (S4 Text).

Python’s regex package was used for this purpose. Refer to S4 Text for the specific regular

expression patterns used.

Any sequence that contained at least one base with Phred quality score less than 11 (less

than 90% base call accuracy) was rejected.
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Barcode to sequence and read counts mapping. Once the barcodes and their associated

sequences were extracted and quality filtered, lookup tables with barcodes as keys, and the set

of sequences (and their read counts) associated with them as values, were constructed. In

many cases, a barcode was uniquely associated with a single sequence. In some cases, a barcode

was associated with multiple sequences, likely as a result of sequencing errors. The three

lookup tables constructed from the three gDNA read sets were merged into a single table.

Pairs of lookup tables constructed from post Cas9 RNA replicate read sets were merged into

single tables. Given lookup tables T1 and T2, the two are merged to form T3 by using the fol-

lowing procedure:

• Copy all barcode entries present in T1 but not in T2, into T3.

• Copy all barcode entries present in T2 but not in T1, into T3.

• For all barcode entries present in both T1 and T2, merge the set of associated sequences by

taking the union of the two sets. If a sequence is present in both sets, the read counts are

averaged. Copy the resulting entries into T3.

Let BC_G, BC_PreUT, BC_PostUT, BC_PreST, and BC_PostST denote tables map-

ping barcodes to their set of gRNA, RNA Un-Spliced (pre Cas9), RNA Un-Spliced (post Cas9),

RNA Spliced (pre Cas9), and RNA Spliced (post Cas9) sequences (and their read counts)

respectively.

Sequence operation notations. To simplify the description of dat-A and dat-B construc-

tion in later sections, we introduce the following notations and shared functions:

• Let bracket notation denote a table lookup operation, e.g. BC_G[barcode] refers to the

set of gRNA sequences (and their read counts) associated with barcode.

• Let Sim(Q, T) denote the similarity between sequence Q and sequence T, defined as the pro-

portion of 5-mers shared between the two sequences. More formally, modelling after the

Sørensen-Dice coefficient formulation [45, 46], if q is the set of 5-mers in Q, and t is the set

of 5-mers in T, then:

SimðQ;TÞ ¼
2jq \ tj
jqj þ jtj

ð1Þ

where |A| denotes the cardinality of a set A. Thus, the output of Sim(Q, T) ranges between 0

(completely dissimilar) and 1.

• Let M(Q, S) denote the sequence in the set of sequences S, that is most similar to sequence Q:

MðQ; SÞ ¼ arg max
s2S

½SimðQ; sÞ� ð2Þ

As discussed in more detail in later sections, given a noisy sequence Q extracted from a pair

of sequencing reads, we compute M(Q, lib- SA) to determine the identity of Q. Because there

are millions of Q and thousands of designed sequences in lib-SA (S9 Fig and S1 Table), we

chose the Sim(Q, T) similarity measure in lieu of exact sequence alignment for computational

tractability.

dat-A construction. dat-A in this study refers to the set of repair outcomes observed in

RNA Un-Spliced (post Cas9), their genotypes, their frequencies, and their associated gRNA

(S2 Table).
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For a given query target sequence Q in BC_PostUT, a best matching designed target

sequence T = M(Q, lib- SA target sequences) is first determined. Once the best matched T is

found, the designed gRNA G is known by association. If G is in BC_G[barcode of Q],

then Q is associated with G. Otherwise, the association is not supported, and Q is discarded. If

Q is identical to T, then Q is also discarded as it is likely not a repair product. Otherwise, the

repair genotype of Q is characterized as an insertion or a deletion with a deletion size and dele-

tion start position relative to the cutsite. This is done by simulating all possible 1-bp insertions

at the cutsite, and all possible 1 to 60-bp deletions that overlapped the cutsite, on T. Let the set

of all possible simulated genotypes be S, and the most similar simulated genotype to Q be s =

M(Q, S). If Sim(Q, s)�0.3, then Q’s repair genotype is characterized as s. Otherwise, Q is

discarded.

The above procedure was repeated for every target sequence in BC_PostUT. The resultant

retained sequences were then grouped by both gRNA and repair genotype. Within each gRNA

and repair genotype group, the count of the repair outcome was taken to be the sum of the

read counts of all the sequences in the group.

Finally, the sequences were grouped by gRNA. Only groups that constitute at least 20

unique repair genotypes and at least 100 counts were retained. The rest were considered to

have low support, and were discarded. To obtain the final frequencies of repair genotypes, the

counts were normalized by the total counts within its gRNA group.

dat-B and dat-B WT construction. dat-B in this study refers to the set of repair genotypes

observed in RNA Spliced post Cas9 exposure, and their count of transcripts with or without

Exon B (S3 Table). Similarly, dat-B WT refers to the count of transcripts with or without Exon

B for each WT lib-SA target in RNA Spliced pre Cas9 exposure (S4 Table). As in the previous

section, ‘best matched sequence’ is determined using Eq (2).

For a given transcript Q in BC_PostST that does not contain Exon B, only the barcode

information is known. To associate it with its repair genotype, its barcode is queried on

BC_PostUT. If BC_PostUT[barcode of Q] is a set of one sequence, then the sequence

is queried on dat-A to identify its repair genotype, and Q is associated with the repair genotype.

If BC_PostUT[barcode of Q] is a set of multiple sequences, then the sequence with the

largest read count is chosen for association, and the same steps are applied. If the barcode of Q
is not in BC_PostUT, then Q is discarded.

Similarly, for a transcript Q in BC_PreST that does not contain Exon B, its barcode is que-

ried on BC_PreUT, and the best matched WT target sequence is associated with it.

For a given transcript Q in BC_PostST that contains Exon B, naturally only the Exon B

portion of the repair outcome is discernible (intronic portion is spliced out). To identify its

repair genotype, its barcode is queried on BC_PostUT. For every candidate sequence in

BC_PostUT[barcode of Q], their repair genotype is queried on dat-A. If only one of the

candidate repair genotypes would give rise to Q, then Q is associated with the repair genotype.

Otherwise, if multiple repair genotypes could give rise to Q, then one of them is picked ran-

domly, sampled according to the frequency of observing each candidate in dat-A.

For a given transcript Q in BC_PreST that contains Exon B, its best matched WT target

sequence T is determined. Its barcode is then queried on BC_PreUT. If T is in BC_PreUT
[barcode of Q], then Q is associated with T. Otherwise, Q is discarded.

The above procedure was repeated for every transcript in BC_PostST and BC_PreST.

The retained transcripts were then grouped by repair genotype in the RNA Spliced (post Cas9)

case, and by gRNA in the RNA Spliced (pre Cas9) case. Read counts were summed together

within groups. Any groups with total read counts of associated transcripts of 50 or fewer were

considered to have low support, and were discarded.
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Percent spliced-in

Let TB and TC be the total read counts of transcripts containing and excluding Exon B respec-

tively. The percent spliced-in of Exon B, is then calculated as:

C ¼
TB þ 1

TB þ TC þ 2
ð3Þ

where a pseudo-count of 1 is used. The difference between CR and CG (or WT C) is that the

transcripts are grouped by associated repair product and by gRNA respectively.

inDelphi settings and evaluation

In all uses of inDelphi that produced the results presented in this study, the cell type was set to

‘mESC’, and genotype resolution predictions of microhomology-less deletions was turned on.

Checking for inDelphi training data leakage. inDelphi is trained on a dataset of 55-bp

sequences, referred to as ‘lib-A’ in its paper [22]. The following procedure was performed to

assess the similarity between inDelphi lib-A sequences and our lib-SA 61-bp sequences that

make up dat-A:

1. For every lib-SA sequence in dat-A, find the most similar sequence in lib-A by performing

local alignment (see below) with every sequence in lib-A, and picking the one with the high-

est alignment score.

2. For every best-aligned sequence pairs, compute the sequence identity (Eq (4)).

3. Save all the best-aligned sequence identities in a list.

4. Visualize the list of best-aligned sequence identities as a distribution, and characterize it

using mean and median.

Local alignments were performed using the Smith-Waterman implementation provided by

pairwise2.align.localms in Python’s biopython version 1.74 package [47]. The

same default scoring parameters used by BLAST suite’s blastn-short program were used

[48]: + 1 match, −3 mismatch, −5 gap open, and −2 gap extend.

The sequence identity (I) after aligning sequence A with sequence B (alignment(A, B)) is

defined to be:

IðA;BÞ ¼
Number of matched positions in alignmentðA;BÞ

minðlengthðAÞ; lengthðBÞÞ
ð4Þ

CR prediction models and evaluation

MaxEntScan. MaxEntScan’s [29] score3ss module was used to score a 23-nt region sur-

rounding the acceptor splice site (20-nt of the intron, and 3-nt of the exon, at the intron-exon

boundary).

SpliceAI. SpliceAI [23] predicts the probability a position is used as a splice acceptor for

every position of a given sequence. The given sequence length is expected to be at least of

length 10,000; shorter sequences can be evaluated by padding with sequences of ‘N’ to yield the

desired length.

Each repair genotype in dat-B was preprocessed as follows before given to SpliceAI for

scoring:

1. Extend the repair genotype with the intronic sequences and Exon B sequences (S1 Text).
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2. Prepend and append the resultant sequence with length 5,000 sequences of ‘N’, to ensure

the final sequence is greater than length 10,000.

After SpliceAI scoring, the maximum predicted probability over the valid positions (i.e.

excluding the prepended and appended ‘N’ positions) of the output for each sequence was

then taken to be the predicted CR of each repair genotype.

MMSplice and wMMSplice. MMSplice [24] requires as input a reference genome FASTA

file, a genome annotation file in the standard GTF format, and a variant calling format file

(VCF) [49]. To represent a query repair genotype as these formats, we considered our WT lib-

SA sequence as the reference sequence, and the repair genotype as the variant. That is, for each

repair genotype, a FASTA file was constructed to contain our designed reference genome (S1

Text), a GTF file was constructed to contain the exonic annotations, and a VCF file was con-

structed to describe the 1-bp insertion or multiple base pair deletions that resulted in the repair

genotype. The prediction outputs from MMSplice’s 3’ intronic, acceptor site, and exonic mod-

ules are log-odds values, i.e. logit(CR) values, where

logitðxÞ ¼ logð
x

1 � x
Þ ð5Þ

These values were compared against the actual observed logit(CR) via Pearson’s r.
wMMSplice is a linear model (followed by a sigmoid transform) that combines predictions

from MMSplice’s 3’ intronic, acceptor site, and exonic modules to predict CR given a repair

genotype. More formally, let σ be the sigmoid transform function:

sðxÞ ¼
1

1þ e� x
ð6Þ

and logitI, logitA, and logitE be the log-odds predictions produced by MMSplice’s 3’ intronic,

acceptor site, and exonic modules respectively, given a sequence. The wMMSplice model for

producing CR predictions given the same sequence is:

logitðCRÞ ¼ w0 þ w1ðlogitIÞ þ w2ðlogitAÞ þ w3ðlogitEÞ ð7Þ

CR ¼ sðlogitðCRÞÞ ð8Þ

The weights w of wMMSplice were determined through ridge regression [30], i.e. linear

least squares with L2 regularization, via the linear_model.Ridge module of Python’s

scikit-learn version 0.20.0 package [50]. The optimal regularization strength parameter

was determined by using the linear_model.RidgeCV module of Python’s scikit-
learn version 0.20.0 package [50] to search for the optimal value over the space [0.001, 0.01,

(0.1 to 1 at 0.05 intervals), 5, 10, 50, 100] via Leave-One-Out cross validation.

MetaSplice. Similar to wMMSplice, MetaSplice is a linear model (followed by a sigmoid

transform) that combines predictions from SpliceAI, and MMSplice’s 3’ intronic, acceptor

site, and exonic modules to predict CR given a repair genotype (Fig 1B). More formally, let Sp
be theCR predictions from SpliceAI, and logitI, logitA, and logitE be the log-odds predictions

produced by MMSplice’s 3’ intronic, acceptor site, and exonic modules respectively, given a

sequence. The MetaSplice model for producing CR predictions given the same sequence is:

logitðCRÞ ¼ w0 þ w1ðlogitIÞ þ w2ðlogitAÞ þ w3ðlogitEÞ þ w4ðlogitðSpÞÞ ð9Þ

CR ¼ sðlogitðCRÞÞ ð10Þ
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To prevent undefined values of logit(Sp) in cases where Sp = 0 or Sp = 1, Sp values were

clipped to the interval [10−5, 1 − 10−5].

The weights w of MetaSplice were determined through ridge regression [30], via the line-
ar_model.Ridge module of Python’s scikit-learn version 0.20.0 package [50]. The

optimal regularization strength parameter was determined by using the linear_model.
RidgeCV module of Python’s scikit-learn version 0.20.0 package [50] to search for the

optimal value over the space [0.001, 0.01, (0.1 to 1 at 0.05 intervals), 5, 10, 50, 100] via Leave-

One-Out cross validation.

SkipGuide model

The SkipGuide model architecture as described in this study takes as input a gRNA, a splice

acceptor sequence, and associated acceptor sequence context. inDelphi is used to predict the

Cas9-mediated repair outcomes and their frequencies, and MetaSplice is used to predict CR

from each repair genotype. SkipGuide then outputs CG as an average of MetaSplice predic-

tions weighted by inDelphi predicted frequencies of the corresponding repair genotypes

(Fig 1C).

To describe this model more formally, let R denote the event that the exon of interest is

retained in a particular spliced transcript in a cell, and IR the indicator random variable for R.

Thus, the value we want to predict can be interpreted as CG ¼ E½IR� ¼ PðRÞ, given a gRNA. If

the given gRNA can causes a number of possible repair products pi, then by the Law of Total

Probability:

CG ¼ PðRÞ ¼
X

i

PðR j piÞPðpiÞ ð11Þ

Note that inDelphi outputs P(pi) for every pi, and MetaSplice takes as input a single pi and

outputs CR = P(Rjpi), so Eq (11) exactly describes the SkipGuide model.

Evaluation metrics

Cross validation. The independent evaluation of wMMSplice and MetaSplice, and the

overall evaluation of SkipGuide was done through 10-fold cross validation, and the same

10-folds were used for both evaluations (S6 Fig). The folds were constructed by first grouping

the repair outcome genotypes from dat-B by associated gRNAs, and then splitting the data

into roughly equal sized folds such that no two folds contain data for the same gRNA. The

GroupKFold implementation from Python’s scikit-learn version 0.20.0 package [50] was

used to perform the data splitting.

Regression metrics. Let yi and ŷi be the true and predicted values for sample i, for

i = 1. . .N. The referenced mean absolute error (MAE), mean squared error (MSE), and root-

mean-square error (RMSE) throughout this study are defined as:

MAEðy; ŷÞ ¼
1

N

XN

i¼1

jyi � ŷi j ð12Þ

MSEðy; ŷÞ ¼
1

N

XN

i¼1

ðyi � ŷiÞ
2

ð13Þ

RMSEðy; ŷÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSEðy; ŷÞ

p
ð14Þ
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Binary classification metrics. A ‘positive’ prediction from SkipGuide is a gRNA with pre-

dicted CG less than or equal to some user defined threshold. This prediction is considered a

true positive (TP) if the gRNA actually leads to an empirically observed CG less than or equal

to 0.5, and is a false positive (FP) otherwise.

The precision and recall scores, referenced in this study is then defined as:

Precision ¼
TP

TP þ FP
ð15Þ

Recall ¼
TP

TP þ FN
ð16Þ

The average precision, precision-recall curve, receiver operating characteristic (ROC)

curve, and area under the ROC curve (AUC) demonstrated in this study are computed using

the average_precision_score, precision_recall_curve, roc_curve, and

roc_auc_score methods respectively in the metrics module of Python’s scikit-
learn version 0.20.0 package [50].

Pearson’s r and p-values. All Pearson’s r and associated p-values reported in this study

were calculated using the pearsonr method of the stats module within Python’s scipy
version 1.1.0 package [51]. The p-value reported by pearsonr is a two-sided p-value under

the null model of r = 0. A critical value for significance of p< 0.05 was used in this study.

Supporting information

S1 Fig. Genome-integrated reporter system and deep sequencing. A schematic of the

genome-integrating reporter plasmid in which a library of 61-bp human splice-acceptor

intron-exon junctions is paired with Cas9 gRNA spacers. A barcode (BC) is embedded in

Exon C and captured by sequencing primers (purple arrows) in genomic DNA and RNA tran-

scripts. The deep sequencing of samples from mESCs pre and post Cas9 exposure produces

the gDNA, RNA Un-Spliced, and RNA Spliced datasets, which provide barcode to gRNA

association, barcode to target sequence association, and just barcode if Exon B is skipped or

barcode with the Exon B portion of the target sequence otherwise, respectively. dat-A is con-

structed from the Post Cas9 RNA Unspliced sequences, which provide information on the

genotypic outcomes and frequencies of splice acceptor repair. dat-B is derived from the Post

Cas9 RNA Spliced sequences, from which Exon B skipping frequencies are elucidated. Simi-

larly, dat-B WT is derived from Pre Cas9 RNA Spliced sequences.

(TIF)

S2 Fig. Sequences used to train inDelphi vs. those in dat-A, and independent evaluations

of inDelphi’s insertion and deletion prediction performance on dat-A. (A) The distribution

of sequence identities between most similar pairs of sequences (as determined through local

sequence alignment) from dat-A, and the set of sequences inDelphi was trained on (median

sequence identity is 0.24). (B) The distribution of Pearson’s r between observed and inDelphi

predicted 1-bp insertion (median r = 0.95). (C) The distribution of Pearson’s r between

observed and inDelphi predicted deletions (median r = 0.75).

(TIF)

S3 Fig. Actual vs. predicted CR of 2,113 repair outcomes using MMSplice (and

wMMSplice). In all the plots, the black dashed line represents the identity line where actual

equals predicted. (A) Actual logit(CR) vs MMSplice intron module predicted logit(CR)

(r = 0.45). (B) Actual logit(CR) vs MMSplice acceptor module predicted logit(CR) (r = 0.20).
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(C) Actual logit(CR) vs MMSplice exon module predicted logit(CR) (r = 0.18).

(TIF)

S4 Fig. Actual vs. predicted WT C of 1,205 lib-SA targets using various methods. dat-B

WT originally represents 1,697 lib-SA targets, but for this analysis, only the 1,205 with at least

50 sequencing reads for estimating C were considered. In all the plots, the black dashed line

represents the identity line where actual equals predicted. (A) Actual WT C vs. MaxEntScan 3’

Score of the acceptor sequence (r = 0.14). (B) Actual vs. SpliceAI predicted WT C (r = 0.6). (C)

Actual logit(CR) vs MMSplice intron module predicted logit(CR) (r = 0.36). (D) Actual logit
(CR) vs MMSplice acceptor module predicted logit(CR) (r = 0.24). (E) Actual logit(CR) vs

MMSplice exon module predicted logit(CR) (r = 0.26). (F) Actual vs MetaSplice predicted WT

CR (r = 0.58), where MetaSplice is tuned using the entire dat-B dataset.

(TIF)

S5 Fig. CG measured after Cas9 treatment, vs WT C measured before Cas9 treatment, for

735 gRNAs and their corresponding lib-SA targets. Plot of CG vs WT C of 735 gRNAs and

their corresponding lib-SA targets. After Cas9-mediated repair, all but 23 exhibited a lower CG

compared to that of WT C (points below diagonal line). Those 23 showed only a small mean

increase in PSI of 0.01. The mean WT C is 0.91, and shifted lower to a mean CG of 0.68 after

Cas-9 treatment.

(TIF)

S6 Fig. MetaSplice (and SkipGuide) 10-fold cross validation predictions of CR (and CG).

The same 10 folds used to evaluate MetaSplice were used to evaluate SkipGuide: the 2,113

repair outcomes in dat-B were first grouped into the 1,063 associated gRNAs, and then ran-

domly partitioned into 10 folds. This ensures that no two folds contain repair outcomes from

the same associated gRNA. Predictions for gRNAs in one fold are obtained by using the other

9 folds to fit MetaSplice’s linear model weights within SkipGuide. We repeated this for all 10

folds to obtain CR predictions for each of the 2,113 repair outcomes, and CG predictions for

each of the 1,063 gRNAs.

(TIF)

S7 Fig. SkipGuide performance when wMMSplice or tuned SpliceAI is used instead of

MetaSplice. (A), (B), (C) The 10-fold cross validation performance of SkipGuide when

wMMSplice is used instead of MetaSplice. Mean r = 0.61, mean MAE = 0.17, mean

MSE = 0.05, mean RMSE = 0.23, and mean AUC = 0.81, over the 10 folds. (D), (E), (F) The

performance of SkipGuide when a linear model over SpliceAI prediction (similar to that of

wMMSplice and MetaSplice) is used instead of MetaSplice. Mean r = 0.52, mean MAE = 0.20,

mean MSE = 0.06, mean RMSE = 0.25, and mean AUC = 0.76, over the 10 folds.

(TIF)

S8 Fig. Perturbation studies on SkipGuide performance. The results of a perturbation study

performed on SkipGuide, where we perform the same performance evaluations depicted in

Fig 4, wherein one of, or both of, the SkipGuide prediction modules are replaced with a dys-

functional predictor. (A), (B), (C) inDelphi is replaced with a predictor that always outputs

uniform frequencies for all possible repair genotypes. (D), (E), (F) MetaSplice is replaced with

a predictor that outputs random values between 0 and 1. (G), (H), (I) MetaSplice is replaced

with a predictor that always outputs 1. Note that (I) should not be interpreted, as the precision

is not actually defined at recall less than 1 (because TP = 0 and FP = 0, so precision is indeter-

minate). (D) Both the inDelphi perturbation that produced (A), (B), (C) and the MetaSplice

perturbation that produced (D), (E), (F) were performed. Note that the precision = 1 at 0.3
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threshold in (F) should not be interpreted, as precision is actually undefined at the 0.3 thresh-

old (TP = 0 and FP = 0).

(TIF)

S9 Fig. Read counts at each stage of sequence reads processing. The sequence read counts

retained at each stage of processing as described in the Methods.

(TIF)

S10 Fig. wMMSplice, MetaSplice, and SkipGuide repeated 10-fold cross validation.

Depending on the data split that produces 10 folds, the evaluated performance may vary. To

assess robustness, 1,000 repeats of the cross validation with random 10 fold splits were per-

formed. This procedure would result in 10,000 fold predictions, which would provide 10,000

metric values for a given metric. The metric values shown are averages over the 10,000 metric

values. SD denotes standard deviation, and precision and recall were calculated using a predic-

tion threshold of 0.3.

(TIF)

S1 Text. Exons and introns of lib-SA.

(TXT)

S2 Text. Azimuth and Basic On-Target Model (BOTM) description.

(TXT)

S3 Text. lib-SA cloning protocol.

(DOCX)

S4 Text. Regular expressions for barcode and sequence extraction. The regular expressions

used together with Python’s regex package to extract barcodes and sequences from sequenc-

ing reads.

(TXT)

S1 Table. The designed lib-SA target library of 1,927 intron-exon sequences and associated

4,000 gRNA sequences. The Designed 61-bp target site (37i-24e, AG) col-

umn contains the designed target sequences. The Designed gRNA (NGG orienta-
tion, 19 and 20) column contains the gRNA sequences. The exon_start column

contains positions relative to the Genome Reference Consortium Human Build 37 (GRCh37)

[52].

(CSV)

S2 Table. dat-A, the dataset that identifies the genotypic outcomes of splice acceptor

repair. Each row represents a repair outcome. 1,695 unique gRNAs are represented. The

gRNA ID column consists of gRNA identifiers that correspond with the Identifier
number column of S1 Table. The Category, Genotype position, Inserted
Bases, and Length columns describe the repair genotype. The Empirical frequency
and Predicted frequency columns describe the observed and inDelphi predicted fre-

quencies respectively.

(ZIP)

S3 Table. dat-B, the dataset that identifies skipping frequency after Cas9 treatment. Each

row represents a repair outcome, and there are 2,113 of them. The gRNA ID column consists

of gRNA identifiers that correspond with the Identifier number column of S1 Table.

The Category, Genotype position, Inserted Bases, and Length columns

describe the repair genotype. The Exon B Retained Count and Exon B Skipped
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Count columns describe the observed transcript counts; theCR values can be calculated

directly from these two columns for each row (see Methods). If the rows are aggregated by

gRNA ID, theCG values can similarly be calculated.

(CSV)

S4 Table. dat-B WT, the dataset that identifies skipping frequency before Cas9 treatment

(wild type control). Each row represents a wild type (WT) lib-SA target splice acceptor, and

there are 1,697 of them. The gRNA ID column consists of gRNA identifiers that correspond

with the Identifier number column of S1 Table. The Exon B Retained Count
and Exon B Skipped Count columns describe the observed transcript counts; the WT C

values can be calculated directly from these two columns for each row (see Methods). Note

that 735 gRNA identifiers are shared between this S4 and S3 Tables, so for those 735 we can

compare their WT C and CG values.

(CSV)
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