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Abstract
Meat quality comprises a set of key traits such as pH, meat color, water-holding capacity, 
tenderness and marbling. These traits are complex because they are affected by multiple 
genetic and environmental factors. The aim of this study was to investigate the molecular ge-
netic basis underlying nine meat quality-related traits in a Yorkshire pig population using a ge-
nome-wide association study (GWAS) and subsequent biological pathway analysis. In total, 
45,926 single nucleotide polymorphism (SNP) markers from 543 pigs were selected for the 
GWAS after quality control. Data were analyzed using a genome-wide efficient mixed model 
association (GEMMA) method. This linear mixed model-based approach identified two quan-
titative trait loci (QTLs) for meat color (b*) on chromosome 2 (SSC2) and one QTL for shear 
force on chromosome 8 (SSC8). These QTLs acted additively on the two phenotypes and ex-
plained 3.92%–4.57% of the phenotypic variance of the traits of interest. The genes encoding 
HAUS8 on SSC2 and an lncRNA on SSC8 were identified as positional candidate genes for 
these QTLs. The results of the biological pathway analysis revealed that positional candidate 
genes for meat color (b*) were enriched in pathways related to muscle development, muscle 
growth, intramuscular adipocyte differentiation, and lipid accumulation in muscle, whereas 
positional candidate genes for shear force were overrepresented in pathways related to cell 
growth, cell differentiation, and fatty acids synthesis. Further verification of these identified 
SNPs and genes in other independent populations could provide valuable information for un-
derstanding the variations in pork quality-related traits.
Keywords: Genome-wide association study (GWAS), Meat quality-related traits, HAUS8, lnc 
	 RNA, Pig

INTRODUCTION
As consumer’s incomes rise in many countries, there is a general tendency to shift from quantity 
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towards higher pork quality, such as specialty cuts with reddish/pink color, flavor, and tenderness. 
The color of pork is considered as a key indicator of freshness and quality [1]; Intramuscular fat 
content (or marbling) is an important trait that is related to meat flavor [2]. Pork tenderness also 
strongly affects consumer satisfaction and thus, repeat buying [3]. The heritability of meat quality 
traits is low to moderate [2,4]. However, it is generally difficult to improve the meat quality-related 
traits using conventional breeding methods because the measurement of meat quality-related traits, 
such as pH, meat color, water-holding capacity, tenderness and marbling, can only be recorded 
and evaluated after slaughter. Therefore, molecular breeding techniques using genetic markers have 
emerged as potential alternatives for improving meat quality-related traits [5]. For example, RYR1, 
PRKAG3, PHKG1, and MYH3 were identified to enhance pork quality in the form of genetic 
markers [6–9]. 

Nowadays, DNA array chip technology, which is a highly parallel genomic assay integrated with 
high-density single nucleotide polymorphism (SNP) markers, has been developed and is available 
for identifying genes that affect complex and quantitative traits, such as meat quality-related traits 
[10]. The DNA array chips can provide genotype data for conducting genome-wide association 
studies (GWAS) to identify quantitative trait loci (QTLs) and their positional candidate genes 
for marker-assisted selection (MAS), which can also be used for conducting genomic selection 
(GS) to improve pork quality-related traits. Results from MAS and GS can efficiently and quickly 
contribute to the genetic improvement of pork quality by selecting piglets with genetic potentials 
for excellent meat quality-related traits [11].

This study was performed to detect QTL and their positional candidate genes that could be used 
to develop potential genetic markers to improve pork quality in a purebred Yorkshire population. 
In addition, we investigated the biological functions of the identified positional candidate genes 
affecting the variation in the meat quality through the analysis of biological pathways.

MATERIALS AND METHODS
This study was conducted in accordance with the guidelines of the Institutional Animal Care and 
Use Committee of the National Institute of Animal Science, the Republic of Korea (2015-137).

Animals and DNA extract
Using the OMNI Bead Ruptor (OMNI International, Kennesaw GA, USA) and DNeasy® Blood 
& Tissue Kit (QIAGEN, Hilden, Germany), genomic DNA was extracted from 50 mg of frozen 
muscle tissue of 543 pigs from a purebred Yorkshire population (406 castrated male pigs and 137 
female pigs) originated from a GP (grandparents, single multiplier) breeding farm in the Republic 
of Korea. The experimental animals were born in the GP farm from July 2015 to November 2016 
that was a closed population and later transported to nine breeding stock farms and raised until 
the slaughter. The pigs were slaughtered at an average (±SD) age of 200 (±11.7) days and the mean 
carcass weight (± SD) was recorded as 88.0 (± 9.3) kg. 

Meat quality-related phenotypes
Longissimus dorsi muscle samples were isolated from the carcass and meat pH 24 hr postmortem 
(pH24), redness (a*), yellowness (b*), cooking loss (cooking), shear force (shear), National Pork 
Producers Council (NPPC) meat color (Ncol), and NPPC marbling (Nmar) traits related to the 
meat quality were measured according to the method reported by Choe et al. [12]. 
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Statistical analyses
Before the GWAS, we obtained the descriptive statistic values and validated the normal 
distribution of the phenotypic data. Putative outliers were detected based on the ascertainment of 
normality using the Ryan-Joiner method implemented in the Minitab program (Minitab, State 
College, PA, USA). The phenotypic values were transformed by natural logarithm [i.e., NPPC 
meat color, NPPC marbling] or square root [i.e., shear force] as necessary (Table 1). General linear 
model (GLM) analysis was conducted using the Minitab program (Minitab) to identify sources 
influencing phenotypic variation. The effects of sex (castrated male, female), farm, season (summer 
season, and other seasons), and carcass weight were evaluated. A highly significant effect (p < 0.01) 
of carcass weight (in the case of a*, b*, cooking loss, shear force, Ncol, and Nmar) was observed, and, 
therefore, included in the linear model for GWAS. Significant effects (p < 0.05) of sex (in the case 
of b*, Ncol, Nmar), season (ph24, b*, cooking) and farm (ph24, a*, b*, cooking, shear, Ncol) were also 
observed. Therefore, they were included as cofactors (i.e., sex, farm, and season) and a covariate (i.e., 
carcass weight) in the GWAS model. 

Estimation of heritability and genome-wide association study
SNP marker genotypes were determined from genomic DNA samples of 543 purebred Yorkshire 
pigs using the Axiom Porcine Breeders array (Thermo Fisher, Waltham, MA, USA). SNP markers 
with minor allele frequency (MAF) less than 1%, genotyping error rate greater than 10%, and 
Hardy-Weinberg equilibrium less than 10−⁶ were removed from the analyzed SNP makers using 
PLINK program version 1.9 [13]. A total of 45,926 SNP markers on 18 autosomal chromosomes 
were left after the quality control procedure. 
Estimation of the heritability of each meat quality-related trait in this study was conducted using 
the following linear mixed model (LMM):

Y = Xb + Zu + e                                                                                 (1)

where y is the vector of the phenotype of interests and b is the vector for fixed cofactors (sex, farm, 
and season) and a linear covariate (carcass weight); u is the vector of random additive genetic 
effects following a normal distribution u~ N(0, G 2

uσ ), in which G is the genomic relationship 
matrix (GRM) whose matrix elements are consisted of pairwise genomic relationship coefficients 
calculated using the genotypes of 42,399 SNP markers, and 2

uσ  is the additive genetic variance 
component; e is the vector of random residuals following a normal distribution e~N(0, I 2

eσ ), in 
which I is the identity matrix, and 2

eσ  is the residual variance component. The GEMMA program 

Table 1. Summary of meat quality-related traits data and heritability estimates from the study pig population
Phenotype Label N1) Mean SD Range h2±SE2)

ph24 Muscle pH of the meat 24 h postmortem 538 5.65 0.17 5.08–6.40 0.087 ± 0.048

a* Redness 537 6.37 1.21 3.38–9.68 0.28 ± 0.07

b* Yellowness 488 1.81 1.14 −2.13–5.11 0.12 ± 0.05

Cooking Cooking loss 536 30.13 3.78 14.12–42.30 0.27 ± 0.08

ShearS Shear force 537 7.47 0.86 5.08–10.33 0.13 ± 0.06

NcolN NPPC meat color 538 1.10 0.19 0.40–2.05 0.17 ± 0.06

NmarN NPPC marbling 538 0.58 0.36 0.00–1.75 0.17 ± 0.08
1)Number of phenotyped animals. 
2)Heritability estimate ± standard error. 
S, square root transformation; N, natural log transformation; NPPC, National Pork Producers Council.
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was used for building up the GRM and the estimation of the 2
uσ  and 2

eσ  for each meat quality-
related trait based on the restricted maximum likelihood method (REML). The X and Z are the 
incidence matrices of b and u, respectively.  

The GWAS for the meat quality-related traits was performed for 543 Yorkshire pigs based on a 
single-marker univariate LMM using GEMMA software [14]. The LMM equation for GWAS 
(Eq. 2) was as follows:

Y = Xb + Z1a + Z2u + e                                                             (2)

where Y is the univariate phenotype; a is the vector of fixed effect of the SNP marker; b, u, and 
e are the same vectors used in Eq. 1. The X, Z1 and Z2are the incidence matrices of b, a, and u, 
respectively. 

The percentage of phenotypic variance explained by an SNP (%VarSNP) was computed as follows 
(Eq. 3) [15]:

  (3)

where p is the minor-allele frequency of the SNP marker; α is the additive genetic effect of the 
SNP marker; 2

pσ  is the phenotypic variance for each meat quality-related trait. The p, α and 2
pσ  

were estimated using the GEMMA program. To address multiple comparison issues in GWAS, 
the significance threshold level was determined using the q-value method; a q-value less than 0.1 
(q < 0.1), which corresponds to p < 2.48E-06, was designated as the threshold of the significance 
level; a q-value that is 0.1 or more and less than 0.2 (0.1 ≤ q < 0.2), which corresponds to 2.48E-
06 ≤ p < 2.55E-05, was designated as the threshold of the suggestive level [16]. The effects of the 
trait-associated SNP markers on the phenotypes were estimated using the GLM implemented 
in Minitab (Minitab). Statistical power analysis of the GWAS was conducted using the method 
developed by Wang and Xu [17] for LMM-based GWAS under different assumptions regarding 
the sample size. The CMplot package implemented in R was used to visualize the GWAS results 
[18]. The Ensembl database (URL: http://asia.ensembl.org/Sus_scrofa/Info/Index) based on Sus 
scrofa 11.1 was used to select the genes that were close to the trait-associated SNPs as positional 
candidate genes. 

Biological pathway analysis
After selecting the SNP marker group with a nominal p-value less than 0.01 based on the results 
of the GWAS analysis, a list of positional candidate genes of the SNP marker group was prepared 
using the biomaRt in the R package [19]. The analysis of biological pathways between genes was 
performed using the Kyoto Encyclopedia of Genes and Genomes (KEGG) library of the Enrichr 
database, and a p-value of 0.05 was used as a significance level to detect a significant biological 
pathway [20,21].

RESULTS AND DISCUSSION
Descriptive statistics
Phenotypic data analysis was performed on seven meat quality-related traits collected from 543 
purebred Yorkshire pigs. The overall means, SD and ranges of the traits of interests are presented 
in Table 1. The observed phenotypes did not display obvious deviations from the normality 

2

2

2 (1 )% Var 100SNP
p

p p α
σ
−

= ×
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assumption (Fig. 1). The phenotypes recorded for this study showed Among them, mean ± SD 
of yellowness and shear force were 1.81±1.14 and 7.47±0.86, respectively (Table 1).  Heritability 
estimates range from 0.087 (ph24) from 0.28 (a*) (Table 1).

Genome-wide association study 
As a result of the GWAS for seven traits related to the meat quality using the study population, 
two trait-associated SNP markers on porcine chromosome 2 (SSC2, AX-116172218, and AX-
116679656) and one trait-associated SNP marker on the chromosome 8 (SSC8, AX-116692048) 
were identified as significant and suggestive QTLs (Fig. 2) (Table 2). The QTLs identified in 
SSC2 affected the meat color (b*). In a study of European commercial pigs by Harmegnies et al. 
[22], the QTL region was overlapped with the meat color (b*) QTL identified in this study. The 

Fig. 1. Normality plots for the pork quality-related traits in this study. The vertical axis represents the scale 
of probabilities, and the horizontal axis represents the scale of phenotype of interests. (A) ph24, (B) a*, (C) b*, (D) 
cooking, (E) shear force, (F) Ncol, (G) Nmar. Ncol, NPPC meat color; Nmar, NPPC marbling; NPPC, National 
Pork Producers Council.
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QTL identified on SSC8 was found to affect the shear force trait; however, the QTL identified 
on SSC8 is yet to be reported based on the Animal QTLdb search [23]. The degree of inflation of 
the GWAS results (i.e., lambda values) revealed that the effect of population structure due to the 
genetic relationship between individuals on the association results was insignificant in this Yorkshire 

Fig. 2. The Manhattan plots of the SNP effects for the meat quality-related traits. (A) ph24, the red horizontal line represents suggestive threshold, 
genomic inflation factor = 1.10; (B) a*, the red horizontal line represents suggestive threshold, genomic inflation factor = 1.04; (C) b*, the red and green 
horizontal lines represent significant and suggestive thresholds, respectively, genomic inflation factor = 1.03; (D) cooking, the red horizontal line represents 
suggestive threshold, genomic inflation factor = 1.00; (E) shear force, the red and green horizontal lines represent significant and suggestive thresholds, 
respectively, genomic inflation factor = 1.02; (F) Ncol, the red horizontal line represents suggestive thresholds, genomic inflation factor = 0.97; (G) Nmar, the 
red horizontal line represents suggestive threshold, genomic inflation factor = 1.06. SNP, single nucleotide polymorphism. Ncol, NPPC meat color; Nmar, 
NPPC marbling; NPPC, National Pork Producers Council.



GWAS for pork quality traits

1200  |  https://www.ejast.org https://doi.org/10.5187/jast.2023.e70

study population (Fig. 2). For the rest of meat quality-related phenotypes, our GWAS did not 
reveal the presence of any statistically significant or suggestive QTLs (Fig. 2).

The two SNP markers (AX-116172218 and AX-116679656) in the QTL region identified 
in SSC2 explained 4.25% and 3.92% of the phenotypic variance of the meat color (b*) trait, 
respectively, whereas the SNP marker (AX-116692048) in the QTL region on SSC8 accounted 
for 4.57% of the phenotypic variance in shear force (Table 2). The effects of trait-associated SNP 
markers on the phenotypes are shown in Fig. 3. The results show that the T alleles is positively 
associated with b*, whereas the A allele was positively associated with shear force. The genic action 
was mostly additive for the two traits examined. 

Considering the effects of population structure and polygenic background using the DNA array 
chip data, we calculated the statistical power of GWAS to detect a QTL under the currently used 
sample sizes (i.e., 448 for b* and 537 for shear force) and a significance threshold of a p-value = 
2.48E-06 corresponding to q = 0.1 [17]. When the p-value of 2.48E-06 was used, the calculations 
indicated that a sample size of 537 (the case for shear force) was necessary to achieve 95.0% 
statistical power to identify a trait-associated marker with a %VarSNP value of 5.2%. For a sample 
size of 448 (the case for b*), the calculations indicated that 74.1% and 81.6% statistical power could 
be achieved with %VarSNP values of 3.9% and 4.3%, respectively. This result suggests that the use of 
the moderate sample sizes in this study provided sufficient statistical power to identify a biologically 
meaningful QTL [17]. 

The HAUS augmin-like complex subunit 8 (HAUS8) gene was identified as a positional candidate 

Fig. 3. Least squares means and standard errors by genotype for each top SNP marker affecting meat color traits in the Yorkshire pigs. (A) Bar 
graph of b trait for AX-116172218; (B) bar graph of b* for AX-116679656; (C) bar graph of shear force for AX-116692048. Different alphabets represent 
statistical significance at p < 0.05. SNP, single nucleotide polymorphism.

Table 2. Summary of QTLs affecting meat quality-related traits in Yorkshire pigs

SSC1) Traits Nsnp
2) Interval

(Mb) TopSNP3) Position
(bp)4) β se p-value5) %Var6) Known candidate genes

2 b* 1 63.4 AX-116172218 63418737 −5.71E-01 1.19E-01 2.16E-06†† 4.28 -
HAUS8

4 60.5-66.7 AX-116679656 60582816 −5.41E-01 1.19E-01 6.93E-06† 3.92

8 Shear 1 135.1 AX-116692048 135127121 5.37E-01 1.11E-01 1.63E-06†† 4.57 lncRNA(ENSSS-
CG00000047440)

1)Pig chromosome. 
2)Number of significant SNPs at the genome-wide level. 
3)ID of top SNPs. 
4)Genome map position on the Sus scrofa11.1 genome assembly. 
5)Nominal p-values computed using the GEMMA package (††q < 0.1, †0.1 ≤ q < 0.2). 
6)Percentage of phenotypic variance explained by the top SNPs.
QTLs, quantitative trait loci; SNP, single nucleotide polymorphism; GEMMA, genome-wide efficient mixed model association.
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gene in the QTL region of AX-116679565, and lncRNA was detected as a positional candidate 
gene in the QTL region of AX-116692048. HAUS8 on SSC2 has been reported to be related to 
cytoskeletal tissue and the microtubule system, which play essential roles in cell migration [24]. 
The identified lncRNA gene in SSC8 produces a long noncoding RNA consisting of more than 
200 nucleotides. lncRNA affect post-transcriptional modifications and serves various functions 
within cells after forming extensive networks of ribonucleoprotein complexes with many chromatin 
regulators [25,26].  lncRNA  is considered a candidate gene for traits related to the muscle 
development process, such as shear force, because it is expressed during the muscle development 
process, and is known to regulate the proliferation, differentiation, and fusion of myoblasts [27]. 
By running the biomaRt for SNP marker groups with a p-value less than 0.01, 162 and 142 genes 
were detected as positional candidate genes that could affect meat color (b*) and shear force traits, 
respectively.

Biological pathway analysis
The Enrichr database was used to search for biological pathways related to b* and shear force. The 
identified biological pathways and the positional candidate genes belonging to them are shown in 
Table 3. Among them, four positional candidate genes (integrin-binding sialoprotein; IBSP; dentin 
matrix acidic phosphoprotein 1, DMP1; FRAS1 related extracellular matrix 2, FREM2; dentin 
sialophosphoprotein, DSPP) were detected for extracellular matrix (ECM)-receptor interactions. 
ECM-receptor interaction is known to affect the differentiation of intramuscular adipocytes in 
chicken, and it has been reported that this could be implicated in meat quality [28]. In addition, 
in the Hippo signaling pathway, four positional candidate genes (discs large MAGUK scaffold 
protein 2, DLG2; frizzled class receptor 4, FZD4; discs large MAGUK scaffold protein 4, DLG4; 
bone morphogenetic protein 5, BMP5) were also detected. It has been reported that this pathway 
promotes the proliferation of skeletal muscle stem cells or is closely related to muscle growth and 
development, and adipocyte proliferation and differentiation [29].

The most significant biological pathway associated with the shear force trait was the 
glycosaminoglycan degradation (GAG) pathway with the hyaluronidase 1 (HYAL1) and 
hyaluronidase 3 (HYAL3) genes. This pathway is primarily found in mucopolysaccharides, 
connective tissues, bone tissues, intercellular mediators, and epithelial tissues and has been 

Table 3. Top significant pathways for the positional candidate genes located within the QTL for meat color (b) and shear force traits in Yorkshire 
pigs

Traits Pathway p-value1) Genes
b* ECM-receptor interaction < 0.01 IBSP, DMP1, FREM2, DSPP

Folate biosynthesis < 0.05 QDPR, PAH

Hippo signaling pathway < 0.05 DLG2, FZD4, DLG4, BMP5

Vitamin B6 metabolism < 0.05 AOX1

Phenylalanine, tyrosine and tryptophan biosynthesis < 0.05 PAH

Shear Glycosaminoglycan degradation < 0.01 HYAL1, HYAL3

Glycerolipid metabolism < 0.01 DGKB, GPAT3, DGKH

Phosphatidylinositol signaling system < 0.05 DGKB, PIP4K2A, DGKH

Choline metabolism in cancer < 0.05 SLC44A5, DGKB, DGKH

Glycerophospholipid metabolism < 0.05 DGKB, GPAT3, DGKH

ABC transporters < 0.05 ABCA1, ABCC8
1)Nominal p-value.
QTLs, quantitative trait loci; ECM, extracellular matrix.
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reported to be closely related to the regulation of proliferation and differentiation of muscle 
cells [30]. A significant association with shear force was also detected for the glycerolipid 
metabolism pathways that include diacylglycerol kinase beta (DGKB), glycerol-3-phosphate 
acyltransferase 3 (GPAT3), and diacylglycerol kinase eta (DGKH) genes. This pathway is closely 
related to the synthesis, transportation and esterification of fatty acids involved in the increase 
of intramuscular fat in chicken breast tissue [31]. The phosphatidylinositol signaling pathway, 
which includes DGKB, phosphatidylinositol-5-phosphate 4-kinase type 2 alpha (PIP4K2A), 
and DGKH genes was also found to be associated with shear force. This pathway is involved in 
cell proliferation, survival, and metabolism; it plays an essential role in cell signaling, such as the 
insulin signaling pathway, and is closely related to endocytosis and exocytosis [32,33]. The insulin 
metabolism plays an important role in the formation of fat, which affects the meat quality of 
Korean native cattle (Hanwoo) by promoting marbling by accumulating the remaining glucose in 
the body [34].

In addition, pathways of choline metabolism in cancer, glycerophospholipid metabolism, and 
ABC transporters were detected, Further studies on the relationship between these pathways and 
shear force are needed. Based on the results of the biological pathway analysis, it is thought that 
candidate genes affecting meat color (b*) affect differentiation of intramuscular adipocytes, growth, 
and development of muscles, and fat accumulation in muscles, and that candidate genes for the 
shear force trait are related to the growth and differentiation of cells and synthesis of fatty acids.

CONCLUSION
QTLs affecting the meat quality-related traits were to identified using a purebred Yorkshire 
population, and biological pathways that could affect meat color (b*) and shear force traits were 
detected by identifying positional candidate genes in the QTL region. The results of this study 
can be utilized as basic molecular genetic data to improve the meat quality of pork after passing 
verification procedures in other independent populations in the future.
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