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Abstract

Background: Angiotensin-converting enzyme 2 (ACE2) is a metallopeptidase that primarily functions as a negative
regulator of renin angiotensin system (RAS) by converting angiotensin II (Ang II) to angiotensin 1-7. Contrary to this,
another RAS component, angiotensin-converting enzyme (ACE) catalyzes synthesis of Ang II from angiotensin I
(Ang I) that functions as active compound in blood pressure regulation. This indicates importance of ACE/ACE2
level in regulating blood pressure by targeting Ang II. An outbreak of severe acute respiratory syndrome (SARS)
highlighted the additional role of ACE2 as a receptor for SARS coronavirus (SARS-CoV) infection.

Main body of the abstract: ACE2 is a functional receptor for SARS-CoV and SARS-CoV-2. Activation of spike (S)-
protein by either type II transmembrane serine proteases (TTSPs) or cathepsin-mediated cleavage initiates receptor
binding and viral entry. In addition to TTSPs, ACE2 can also be trimmed by ADAM 17 (a disintegrin and
metalloproteinase 17) that competes for the same receptor. Cleavage by TTSPs activates ACE2 receptor for binding,
whereas ADAM17 releases extracellular fragment called soluble ACE2 (sACE2). Structural studies of both ACE2 and
S-protein have found critical sites involved in binding mechanism. In addition to studies on structural motifs, few
single-nucleotide polymorphism (SNPs) studies have been done to find an association between genetic variants
and SARS susceptibility. Though no association was found in those reports, but seeing the non-reproducibility of
SNP studies among different ethnic groups, screening of ACE2 SNPs in individual population can be undertaken.

Short conclusion: Thus, screening for novel SNPs focussing on recently identified critical regions of ACE2 can be
targeted to monitor susceptibility towards coronavirus disease 2019 (COVID-19).

Keywords: Single-nucleotide polymorphism (SNP), ACE2, Severe acute respiratory syndrome (SARS), COVID-19,
SARS-CoV-2, Coronavirus

Background
Angiotensin-converting enzyme (ACE) is a critical com-
ponent of renin angiotensin system (RAS) that is in-
volved in blood pressure homeostasis [1]. Components
of RAS are expressed both systemically and in tissue
specific manner [2]. Cleavage of angiotensin I (Ang I) by
ACE results in generation of angiotensin II (Ang II) that
binds to either angiotensin II type 1 receptor (AT1R) or
angiotensin II type 2 receptor (AT2R) [3]. Binding of
Ang II to AT1R is mainly involved in blood pressure

regulation. Contrary to this, another homolog of ACE,
ACE2 encoded by human X-chromosome can either act
on Ang I to give rise to angiotensin 1-9 [4] or on Ang II
to generate angiotensin 1-7 [5]. These newly synthesized
products from Ang II acts on the Mas receptor that is
expressed in tissues related to cardiovascular disease.
Binding of Ang II products to Mas receptor can lower
blood pressure through vasodilation or through sodium
and water excretion in addition to nitric oxide produc-
tion [6]. In this way, ACE2 negatively regulates ACE-
Ang II signaling effects that primarily cause an increase
in blood pressure.
Another major role of ACE2 was highlighted by the

emergence of severe acute respiratory syndrome (SARS)
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in 2002–2003 caused by SARS coronavirus (SARS-CoV)
[7, 8]. Human ACE2 acted as functional receptor and
binds to spike (S) protein of SARS-CoV with high affin-
ity [9]. Localization of ACE2 protein in various human
tissues was explored and was found to be abundantly
present in epithelia of lung and intestine, providing a
possible route of entry to SARS-CoV [10]. Presence of
ACE2 in human airway epithelia was also studied and
abundant expression was seen in well-differentiated epi-
thelial cells. In addition to this, predominant expression
was seen in apical than the basolateral surface which
suggests the availability of enzyme for cleavage of pep-
tides at mucosal surfaces of airway [11]. Similar result
was found by Xu et al. [12] where ACE2 expression was
observed on the mucosa of the oral cavity.
Coronaviruses are divided into α, β, γ, and δ genera on

the basis of the target host. Out of these, mammals are
infected by α and β-CoV whereas γ and δ-CoV genera
tend to infect birds [13]. A recent respiratory tract infec-
tion that has taken the form of pandemic by the name of
COVID-19 (coronavirus disease 2019) is found to be
caused by SARS-CoV-2 [14]. It is a β-CoV that is envel-
oped, non-segmented and positive-sense RNA virus [15].
Genome sequencing results showed that this newly dis-
covered virus share 96.2% identity with bat CoV RaTG13
and 79.5% identity with SARS-CoV. This data suspected
bat to be the natural host and transmission to humans
via unknown intermediate host [16]. Recent metage-
nomic study considered pangolins (Manis javanica) as
possible intermediate host that might have acquired the
SARS-CoV-2 virus from bats. This consideration was
based on putative recombination signals between cor-
onavirus of pangolin, bat, and human [17]. Dependence
of this newly discovered virus on the ACE2 receptor to
infect humans has again drawn the attention of entire
scientific communities towards the binding mechanism
of this receptor with viral protein which is considered as
a critical step for the entry of the virus. Binding effi-
ciency of S-protein of SARS-CoV-2 with ACE2 was
found to be higher than SARS-CoV [18]. Readers inter-
ested to know about origin, epidemiology, genome struc-
ture, transmission, clinical characteristics, and present
medication against SARS-CoV-2 are recommended for
Guo et al. [13] as the current article focuses on recent
findings within binding sites of ACE2 and SARS-CoV.
Dual functionality of ACE2 as blood pressure regulator

and as a receptor for binding of virus particles initiated a
debate on the susceptibility of hypertensive individuals
against the current pandemic of COVID-19 that are
undergoing anti-hypertensive treatment with ACE inhib-
itors (ACEIs) or angiotensin receptor blockers (ARBs).
Different hypothesis have been given (Fig. 1) suggesting
the effect of anti-hypertensive medication on viral bind-
ing and lung injury [19]. Results in animal models

showed upregulation of ACE2 in heart and kidney upon
treatment with ACEIs and ARBs [20, 21]. These findings
raised concerns on the susceptibility of patients for se-
verity of COVID-19 that are undergoing similar anti-
hypertensive treatment. But studies showing similar ef-
fect of ACEIs and ARBs on expression of ACE2 in the
lungs are lacking. Moreover, other studies have not re-
ported any such role of ACEIs and ARBs on the expres-
sion pattern of ACE2 [22, 23]. In addition to this,
experimental models have suggested that blockade of
AT1R though ARBs can reduce Ang II-mediated acute
lung injury [24]. Reduction in lung injury can further re-
sult in weakening of COVID-19 infection. Therefore, no
such human study is available at present which supports
the hypothesis that usage of ACEIs and ARBs increases
the risk of SARS-CoV-2 infection [19]. This is further
supported by the fact that various international societies
working on hypertension have recommended continu-
ation of ACEIs and ARBs due to absence of convincing
evidence against these medications in present scenario.

Main text
ACE2 as functional receptor for SARS-CoV
ACE2 protein is a transmembrane glycoprotein com-
prised of 805 amino acids with extracellular catalytic
domain, small transmembrane fragment, and short C-
terminal cytoplasmic tail [25]. The spike (S) protein
of SARS-CoV mediates entry by binding to ACE2 re-
ceptor present on cell surface followed by fusion of
the viral envelope with host cell membrane [26]. S
protein consists of S1 and S2 subunits where S1 sub-
unit is responsible for receptor binding and S2 is re-
sponsible for membrane fusion [27]. S1 subunit
contains the receptor-binding domain (RBD) at resi-
dues 318-510 [28] and S2 harbor elements that are
responsible for membrane fusion. Binding of SARS-S
protein to ACE2 initiates conformational change in
SARS-S that increases proteolytic cleavage of S pro-
tein [29]. Activation of spike (S) protein of SARS-
CoV involves cleavage by cathepsin [30] or by type II
transmembrane serine proteases (TTSPs) that include
transmembrane protease serine 2 (TMPRSS2) and hu-
man airway trypsin-like protease (HAT) [31]. Both
TTSPs are co-expressed with ACE2 in human lung
cells [32]. ACE2 can be proteolytically processed by
serine proteases (TMPRSS2 and HAT) resulting in
SARS-CoV entry or by ADAM17 (a disintegrin and
metalloproteinase 17) resulting in the release of extra-
cellular fragment called soluble ACE2 (sACE2) [25,
33]. The role of ADAM17 in the shedding of ACE2
was experimentally proved by modulating ADAM17
expression [34]. Overexpression of ADAM17 in-
creased ACE2 shedding whereas application of natural
ADAM inhibitors reduced shedding of ACE2. In
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addition to this, both TMPRSS2 and ADAM17 com-
pete for cleavage of ACE2 [35] (Fig. 2) but both these
proteases have different cleavage sites. TTSPs
dependent proteolysis requires the presence of argin-
ine and lysine residues within 697-716 amino acids,
whereas ADAM17 requires the presence of arginine
and lysine residues within 652-659 amino acids for
cleavage of ACE2. As the observed cleavage site of
ADAM17 differed from previous studies [36, 37] so
the identified sites were proposed as probable recog-
nition sites for downstream cleavage. Synthesis of
sACE2 by ADAM17-mediated processing (Fig. 2) re-
tains its enzymatic activity and can inhibit binding of
SARS-S to target cells [36]. These results were in ac-
cordance of study done by Li et al. [9] where the sol-
uble form of ACE2 (sACE2) blocked association
between the S1 domain and cultured cells transfected

with ACE2. As the binding mechanism of SARS-CoV-
2 is similar to SARS-CoV so the synthesis of cyclo-
dextrin (CD) and sACE2 complex is suggested as a
suitable methodology to block SARS-CoV-2 infection
[25]. In addition to this, certain studies have found
important regions within receptor binding domain
(RBD) of the S1 subunit of SARS-S protein that can
be targeted. Deletion of the positively charged region
(422-463 amino acids) of RBD affected virus infectiv-
ity as an amino acid substitution at targeted sites
(R441A) and (R453A) abolished viral entry [38]. Simi-
larly, an important hexapeptide (Tyr-Lys-Tyr-Arg-Tyr-
Leu) at 438-443 amino acids was found in RBD [39].
In addition to structural studies on RBD, significant
amino acid residues of ACE2 protein at other sites
have also been discovered. The amino acid residues at
position 31, 41, 353, 355, and 357 of ACE2 were

Fig. 1 Possible relation between renin-angiotensin system inhibition and COVID-19 [adapted from 19]. Competing hypothetical mechanisms by
which use of ACEIs and ARBs might be harmful or protective in COVID-19. Hypothesis 1: SARS-CoV-2 enters cell by binding to ACE2. Use of ACEIs
and ARBs could increase ACE2 abundance and enhance viral entry. Hypothesis 2: Ang II causes lung injury through inflammation and fibrosis
upon activation of AT1R. Reduced production of Ang II by ACEIs or blockade of Ang II-AT1R interaction by ARBs increases generation of Ang (1-7)
by ACE2 and activates Mas receptor (MasR) causing reduction in inflammation and fibrosis and thereby attenuating lung injury
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found to be significant [27, 40] as mutation at these
sites strongly inhibited interaction of ACE2 with
SARS-S protein. Comparison of rhesus (rh-ACE2) and
human (hu-ACE2) yielded non-synonymous substitu-
tion and generation of hu-ACE2 (Y217N) mutant
caused significant reduction in protein expression and
viral entry [41].

Single-nucleotide polymorphisms (SNPs) in ACE2
Single-nucleotide polymorphism studies have been done
in different populations to find association with various
diseases. SNPs have been found to affect gene expression
resulting in disease outcome. However, these association
studies are greatly affected by factors like ethnicity, age,
and selection criteria that result in controversial results
among different population groups. SNPs of ACE2 have
also been studied in different populations to find associ-
ation with diseases, including essential hypertension,
dyslipidemia, hypertrophic cardiomyopathy, ventricular
hypertrophy, and cerebral malaria [42–44]. Many of the
studied polymorphisms were found to affect ACE2 activ-
ity resulting in downregulation of circulating angiotensin
(1-7). Association studies targeting ACE2 polymor-
phisms have reported controversial results in different
populations which clearly show the non-reproducibility
of association studies. Our literature search targeting
ACE2 polymorphisms with severe acute respiratory syn-
drome resulted in two specific studies [45, 46] other
than recent reports on COVID-19. Through software

based search Chiu et al. [45] identified 103 SNPs in
ACE2 which included 2 coding (rs4646116, rs4646179)
and 101 intronic SNPs. SNP validation confirmed se-
quence variation at only 5 non-coding SNP loci
(rs2106809, rs2285666, rs4646142, rs714205, rs2074192).
These 5 SNPs were screened in a case-control study in-
volving SARS patients and healthy volunteers, but no
statistically significant difference of any of the studied
SNPs was found [45]. Thus, no association was found
between genetic variants and SARS susceptibility. Simi-
larly, the association of ACE2 SNPs with SARS was stud-
ied in Vietnam population where each exon and 5′UTR
region was screened for SNPs [46]. This study identified
19 SNPs from which 13 novel and two other SNPs
(rs2285666, rs183135788) were screened among col-
lected samples, but no significant difference was found
in genotypic and allelic frequencies of these SNPs.
Lack of association of any functional ACE2 poly-

morphism with SARS infection might be due to lesser
number of association studies done previously. More-
over, seeing the possibility of contradictions that arise
from such SNP studies among different populations, role
of ACE2 variation in susceptibility to SARS infection
cannot be ruled out. This hypothesis gets support from a
previous study where variation in HIV co-receptor de-
veloped resistance to HIV infection in the Caucasian
population [47]. Similarly, a recent study has identified
four polymorphisms in type II transmembrane protein
dipeptidyl peptidase 4 (DPP4) that greatly reduced

Fig. 2 Action of host cell proteases on ACE2 receptor [adapted from 35]. Cleavage of ACE2 by ADAM17 causes its shedding. Interaction of sACE2
with S-Protein of SARS-CoV prevents binding of virus particles to target cells. Co-expression of TMPRSS2 with ACE2 on target cell surface involves
binding of SARS-CoV (S-protein) to ACE2- and TMPRSS2-mediated processing allows fusion and uptake of virus particles
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binding and penetration of the middle-east respiratory
syndrome coronavirus (MERS-CoV) into target cells
[48]. These facts highlight the importance of SNP vari-
ation within the identified crucial binding sites [27, 41]
and at amino acid residues responsible for either TMPR
SS2- or ADAM17-mediated proteolysis of ACE2 [35].
This idea gets support from other studies also where
change in key amino acids responsible for interaction is
considered crucial for cross-species infections, multi-
host infection, and differences in disease susceptibility
[17]. Screening of these sites along with promoter re-
gions in different populations can result in identification
of novel SNPs that might affect susceptibility to SARS
infection (Fig. 3). Analysis of the upstream region of
ACE2 gene showed the bipartite nature of ACE2 pro-
moter with the presence of two promoter regions sepa-
rated by an Alu element. These promoters result in
distal promoter transcripts (DPT) and proximal pro-
moter transcripts (PPT) that encode same ACE2 protein.
Both proximal and distal ACE2 promoter regions pos-
sess hepatocyte nuclear factor 1α (HNF1 α) binding mo-
tifs that induce ACE2 expression in pancreatic islets
[49]. Thus, both distal and proximal promoter regions

should be considered while screening for novel SNPs
within ACE2 promoter region.
Results from comparative analysis of ACE2 orthologs

among 70 placental mammal species showed 85% simi-
larity between pangolin and human ACE2. Out of the
total variable sites, 30 sites relevant for interaction with
SARS-CoV were screened for interspecies variation.
Additionally, same sites were also studied for intraspe-
cific variation in humans. These sites were highly con-
served within Homo sapiens and showed great variation
among placental mammalian species [17]. Recent reports
have hypothesized correlation between ACE2 levels and
susceptibility to present infection. Higher expression of
ACE2 was reported in lungs of men than women. This
was related to the severity of the disease in case of
males. Moreover, Asian population showed higher ACE2
expression than Caucasian and African American popu-
lation [50]. Contrary to this, the role of estrogen in up-
regulation of ACE2 expression and plasma ACE2 activity
was suggested as a possible reason for protection of fe-
males against COVID-19 infection in comparison to
males [33]. Genetic analysis of expression quantitative
trait loci (eQTL) and functional coding variants in ACE2

Fig. 3 Possible role of novel ACE2 SNPs in susceptibility towards SARS-CoV-2. Presence of SNPs within coding region can result in alteration of
amino acid sequence. This change in amino acid sequence at site of interaction can affect the binding capacity of ACE2 receptor with S-Protein
of SARS-CoV-2. Novel SNPs within promoter or 3′-UTR can cause downregulation of ACE2 gene resulting in lower levels of ACE2 receptor at cell
surface for interaction with virus particles
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was done to identify mutations resistant to the binding
of coronavirus S-protein in different populations [51].
Though no such mutations were identified, but differ-
ence in allelic frequencies of certain coding SNPs and
eQTL variants were found between Chinese and
European population. Higher allelic frequency of certain
variants resulted in higher ACE2 expression in Chinese
population. These findings highlighted association of
ACE2 polymorphism with higher ACE2 expression in
East Asian population. Thus, difference in ACE2 expres-
sion levels was suggested to cause differential suscepti-
bility for SARS-CoV-2 among different populations
under similar conditions. In this context, Wooster et al.
[52] identified ACE2 polymorphisms that might influ-
ence disease severity. Out of 10 studied SNPs, 5 poly-
morphisms (rs4240157, rs6632680, rs4830965,
rs1476524, and rs2048683) showed an association with
higher tissue specific expression of ACE2 resulting in
hospitalization whereas rs1548474 polymorphism
showed association with low tissue expression and lesser
severity. Similarly, variation in circulating ACE2 levels
was speculated to be controlled by genetic factors where
rs2106809 polymorphism might affect ACE2 levels. CC
or CT genotype resulted in greater circulating ACE2
levels when compared with TT genotype. Therefore,
quantification of human soluble ACE2 (sACE2) in body
fluids was suggested as a protective biomarker for rapid
test screening. In addition to a possible link between cir-
culating ACE2 levels and severity of disease, availability
of recombinant ACE2 is considered as a hopeful treat-
ment option [33]. Thus, difference in either tissue spe-
cific ACE2 expression or plasma ACE2 levels can affect
disease severity. This signifies the importance of identify-
ing novel SNPs that can either affect tissue specific
ACE2 expression or plasma ACE2 levels. Other studies
have also highlighted an association of ACE2 and TMPR
SS2 polymorphisms with COVID-19 susceptibility and
infection [53, 54]. Additionally, coronavirus infection is
related to the state of hypercytokinemia/cytokine storm
which is characterized by an excessive synthesis of pro-
inflammatory cytokines resulting in severe outcomes
that might include multiple organ damage. Such re-
sponse of hypercytokinemia was seen in ACE2-positive
cells. So, genetic polymorphism in genes responsible for
the synthesis of pro-inflammatory cytokines and chemo-
kines along with ACE2 might be responsible for differ-
ences in response to COVID-19 [55]. Link between
ACE2 levels and immune response can also be related
from a study where reduced promoter methylation
caused higher expression of ACE2 resulting in immune
infiltration of certain tumor cells [56]. As till date, no ef-
fective medicine or vaccine is present against COVID-19
so identification of any such functional SNP that can
affect population susceptibility will be of great help.

Conclusion
The role of ACE2 in addition to blood pressure regula-
tion was highlighted from emergence of severe acute re-
spiratory syndrome (SARS) in 2002–2003. Recent
outbreak of COVID-19 again highlighted the functional
role of ACE 2 as a receptor for the spike (S) protein of
SARS-CoV-2 to mediate viral entry. With the availability
of no medicine/vaccine at present, the binding potential
of ACE2 with S protein along with the role of serine
proteases in activation of S protein is vastly explored. In
addition to these mechanisms, screening for novel SNPs
in recently identified crucial regions of ACE2 can also be
targeted for studying susceptibility towards current
pandemic.
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