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Simple Summary: Nowadays, in clinics, there is a lack of reliable biomarkers that could serve as tools
allowing for early cancer detection, prediction of therapy response, tumor recurrence, and TNBC
course. In this review, we summarized the most recent findings on the applicability of unique blood
circulating ncRNAs for management of TNBC. This review was supplemented by bioinformatics
analysis for better understanding of molecular processes in which ncRNAs are involved, to promote
individual TNBC phenotype and tumor action.

Abstract: Triple negative breast cancer (TNBC) represents the most aggressive subtype of breast
cancer, and is related to unfavorable prognosis and limited treatment strategies. Currently, there
is a lack of reliable biomarkers allowing for the clinical management of TNBC. This is probably
caused by a complex molecular background, leading to the development and establishment of a
unique tumor phenotype. Recent studies have reported non-coding RNAs (ncRNAs) not only as
the most promising class of molecular agents with a high applicability to manage human cancers,
including TNBC, but also as robust and non-invasive biomarkers that are able to be monitored in
blood circulation, with the application of liquid biopsy. There is a lack of papers discussing the role
of blood-circulating ncRNAs as diagnostic, predictive, and prognostic biomarkers for TNBC. In this
paper, we summarized the available literature reports on the utility of blood-circulating ncRNAs for
TNBC management. Additionally, we supplemented this review by bioinformatics analysis, for better
understanding of the role of ncRNAs’ machinery in the development of a unique TNBC phenotype.

Keywords: triple negative breast cancer; ncRNAs; liquid biopsy; biomarker; bioinformatics

1. Introduction
1.1. Triple-Negative Breast Cancer

Despite the advances in diagnosis and implementation of adequate treatment options,
including tailored targeted therapies, breast cancer (BC) is the second most common cause
of cancer-related deaths in women worldwide [1,2]. The recent efforts made toward the
improvement of treatment strategies achieved a decrease in BC mortality of about 3%
and progress in the 5 year survival rate up of to 80%, depending on cancer subtype and
disease stage [3,4]. Currently, more younger patients are unfortunately diagnosed with the
presence of either local or metastatic disease, and in spite of applied treatment, the majority
of them will eventually develop distant metastases and/or tumor recurrence [5,6]. It is
probably caused by presence of more aggressive subtypes of BC in this group of patients.

Among the BC histological subtypes, the triple-negative breast cancer (TNBC) differs
from others by its substantial aggressiveness, limited therapy options, and the poorest
prognosis [7,8]. It is often diagnosed in women aged <40 years and in an advanced stage of
the disease, with the corresponding presence of metastases into distant organs [9]. Man-
agement of TNBC is still challenging, due to its high clinical and molecular heterogeneity
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that significantly differs from other BC subtypes. Moreover, the development of both drug
resistance and progressive disease limit the therapy perspectives for incomplete responders
and recurrent patients [10]. As mentioned above, TNBC is more often associated with
hereditary conditions when compared to other BC subtypes, caused by considerable genetic
heterogeneity [10,11]. Indeed, several highly effective approaches including genomics, tran-
scriptomics, and epigenetics have revealed substantial heterogeneity within TNBC, with it
having sets of molecular alterations unique for this BC subtype [12–14]. It is hypothesized
that this exceptional molecular pattern is a result of the coexistence of penetrating genetic
alterations, contributing to both the clinical differences and enhanced aggressiveness of
the TNBC phenotype [15]. Because of the molecular complexity affecting tumor behavior,
TNBC remains unpredictable and adds some difficulty in the recent attempts to improve
strategies for disease control [16].

Nowadays, in clinics, there is a lack of reliable biomarkers that could serve as tools
allowing for early cancer detection, prediction of therapy response, tumor recurrence, and
TNBC course. Recent efforts made to adapt novel techniques to reveal such biomarkers
have proven futile to some extent. Hitherto, clinical decisions are made exclusively upon
either histopathologic analysis or analysis of a small number of genes, including their
coding proteins in the tumor tissue, which are also distinctly limited [15,17,18]. Moreover,
the widespread use of high-throughput profiling techniques or using the commercially
available genetic signatures is also of limited application, mainly due to their cost and
reproducibility issues [19]. The recent studies have reported non-coding RNAs (ncRNAs)
as the most promising class of molecular agents with a high applicability to manage human
cancers, including BC, as a robust and non-invasive biomarker that can be monitored in
blood circulation [20]. Moreover, a novel TNBC subtyping system, assigning TNBC patients
to four distinct subtypes by integrating both mRNA and lncRNA expression profiles,
was also proposed [21]. In this review, we summarized the most recent findings on the
applicability of unique blood circulating ncRNAs for detection, prediction, and prognosis of
TNBC. The review was supplemented by bioinformatics analysis for better understanding
of molecular processes in which ncRNAs are involved, to promote individual TNBC
phenotype and tumor action.

1.2. ncRNAs

The majority of transcripts in the human genome are non-coding sequences, that rep-
resent a regulatory role in the whole molecular processes of the cell. ncRNAs represent the
largest family of RNAs that are not coding for proteins, and form a significant proportion
of the genome. According to the recent findings, the three of the most important players
in the regulation of gene expression were identified in the ncRNAs family, as followed by
microRNA (miRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA) [22,23].
Their expression profiles can be used to discriminate between healthy and neoplastic states,
as well as between different types of cancer [22,24]. Until now, the miRNAs are the most
studied group of ncRNAs, and numerous papers provide their high applicability in clinics
for tumor detection, prediction, and prognosis [24]. Briefly, miRNAs can mediate gene regu-
lation by post-transcriptionally binding to the 3′ untranslated region (3′-UTR) of their target
mRNA, acting as oncogenes or tumor suppressors. In the case of miRNAs deregulation,
gene expression either accelerates or undergoes silencing, affecting the protein level [25,26].
There are two reasons why miRNAs are involved in complex molecular networks. On the
one hand, the sequence of one miRNA can target multiple mRNAs. On the other hand,
a single mRNA can be targeted by multiple miRNAs [27]. Perhaps, this complexity and
low tumor specificity are a major disadvantage for miRNAs as an ideal cancer biomarker.
Nevertheless, miRNAs seem to accurately mediate the phenotype of TNBC by regulation
of tumor aggressiveness, migration, proliferation, and invasiveness [17,28]. Moreover, it
was also proven that miRNAs can mediate the response of TNBC to chemotherapy and
isan attractive target for future anti-miRNA therapy [29]. In contrast to miRNAs, lncRNAs
were found to be involved in transcriptional and post-transcriptional genome regulation,
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through interactions with DNA, RNA, and proteins. lncRNAs can either promote or inhibit
the formation of transcription loops to regulate gene transcription. Besides, lncRNAs also
regulate mRNA splicing and act as precursors to other ncRNAs, such as miRNAs. The
function of lncRNA as tumor suppressors or oncogenes was noticed in different cellular
signaling pathways [30,31]. Similar to miRNAs, these molecules play crucial role in car-
cinogenesis, and some of them were identified as crucial for TNBC progression, such as
MALAT1, HOTAIR, ANRILA, or NEF [32]. The most recently discovered and still not fully
recognized group of ncRNAs are circRNAs. They represent a covalently closed, continuous
loop of structures, and the 3′ and 5′ ends have been joined together (create circular forms),
which differs them from other known ncRNAs. In contrast to the canonical splicing of
mRNAs, circRNAs originate from spliceosome-mediated, non-sequential back-splicing of
pre-mRNAs. Thanks to their structure, circRNAs are protected from degradation by RNase
or RNA exonucleases, which makes circRNAs more stable than other ncRNAs, and their
half-life is about five times longer than that of mRNA. In contrast to other ncRNAs, the
mechanism participating in circRNAs’ degradation is still not fully understood, however, it
is believed that the putative role in their global degradation is played by RNase L. While
most of circRNAs have not been identified yet, and their particular role of known sequences
is unclear, they demonstrate a putatively important role in the regulation of genomic ma-
chinery. It is widely accepted that circRNAs are significant regulators that influence both
physiological and pathological conditions by regulating splicing mechanisms, acting as
sponges for different miRNAs, and regulating epigenetic alterations (DNA and histone
methylation). In transcriptional regulation, circRNAs can also regulate protein functions
by forming complexes with proteins and alter their function and expression, suggesting
their role in carcinogenesis and the stemness of cancer. circRNAs play an important role
in tumor progression by modulating the hallmarks of cancer, mainly by the regulation of
sustained proliferative signaling, the eluding of growth suppressors, and the impairment of
differentiation signals. circRNAs promote tumor metastasis and invasion and induce angio-
genesis [33–35]. Truly, some circRNAs were recently found in solid tumors participating in
tumor progression and cell invasiveness. In TNBC, the following circRNAs were identified
as tumor suppressors or oncogenes: circKIF4A, circITCH, circMTO1, circAGFG1, circSEPT9,
and others [36]. Currently, it is believed that understanding of simultaneous interactions
between the group of discussed ncRNAs can broaden the knowledge on carcinogenesis.
However, the exact function and mechanism of action of most of them is still unknown.
ncRNAs create a very complex network of mutual interactions and act as oncogenes or
tumor suppressors. These events are unique for cancer states and are as a result of dual
interaction between biological and pathological processes in the body (host–tumor interac-
tion). ncRNAs demonstrate a tissue-specific expression pattern, which is highly altered in
cancer, and are considered to be promising diagnostic, prognostic, and therapeutic targets.

One of the major pros for the analysis of ncRNAs as TNBC biomarkers is their re-
markable stability in body fluids and significantly altered expression under the cancer
conditions. They are both released into blood circulation from cancerous tissues (directly
or within the exosomes) or from host tissues affected by tumor occurrence [37]. Moreover,
the monitoring of ncRNAs’ expression with the use of liquid biopsy, especially in blood
circulation (plasma or serum), is more convenient, cheaper, and safer for patients than a
series of tissue biopsies. It also allows to capture the entire heterogeneity of the tumor (pri-
mary/metastatic/recurrent) in a minimally invasive manner. The additional predominance
of liquid biopsy over other techniques is that it may allow for the stratification and real-time
monitoring of therapies. Liquid biopsy can provide identification of therapeutic targets
and can be easily repeated if needed, and can be used as often as necessary to monitor
the patient’s progress. It is worth noting that liquid biopsy is not free from limitations.
The tissue biopsy is still a diagnostic “gold standard” for cancer, because it provides a
significantly higher yield of cancer sample (cancer cells, nucleic acids) than liquid biopsy.
The accuracy and sensitivity challenges of liquid biopsy still exist, because nucleic acids are
relatively rare in blood circulation. Eventually, it is still not clear if this technique provides
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a representative sampling of all genetic alterations of cancer cells or if there is a bias to
specific sub-regions of the tumor. Liquid biopsy as a diagnostic technique still requires
further clinical validation [38,39]. Nevertheless, the idea of the introduction of liquid biopsy
for cancer management was already confirmed by some clinical papers, including in BC
control [39]. Nevertheless, there are still limited data concerning the utility of circulating
ncRNAs exclusively for TNBC management. In Figure 1, we illustrated the concept of
host–tumor interactions, resulting in alteration of ncRNAs’ expression and their putative
impact on TNBC course. The developing tumor forms a unique microenvironment affecting
both cancer and normal cells, leading to their interaction (tumor–host interaction). Cancer
cells, by changing fibroblasts’ behavior, macrophage secretion, and exosome synthesis,
enhance tumor growth, proliferation, and invasiveness. Under the influence of tumor
environment, healthy cells disintegrate, change their metabolism, and develop an inflam-
matory response. Tumor–host interaction results in the alteration of nucleic acid expression,
including a series of alterations exclusive for ncRNAs (changes in miRNA synthesis and
sponging by circRNAs, lncRNAs degradation, and competition of ncRNAs for targeted
mRNA). Following changes of protein expression, they participate in the creation of a
unique phenotype of cancer, characterized by a various capacity to progression, grade of
inflammation, and therapy outcomes.
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2. Circulating ncRNAs for TNBC Detection

We conducted a literature search until October, 2021 using the databases: PubMed,
EMBASE, Scopus, and by manual searching with the use of keywords (Google) for papers
written in the English language. The following approach of literature searching was
used with the application of keywords: “triple-negative breast cancer”, “TNBC”, “breast
cancer”, “blood”, “serum”, “plasma”, then supplemented by “miRNA”, “microRNA”,
“miR”, “long non-coding RNA”, “lncRNA”, “circular RNA”, and “circRNA”. Also, the
following search builder was used: (“triple-negative breast cancer” OR “TNBC” OR “breast
cancer”) AND (“blood” OR “serum” OR “plasma”) AND (“miRNA” OR “microRNA” OR
“miR) AND (“long non-coding RNA” OR “lncRNA”) AND “circular RNA” OR “circRNA”).
In Table 1, we summarized findings on circulating ncRNAs for non-invasive diagnosis
of TNBC [40–77]. Additionally, examples of validated targets and for the putative role in
TNBC carcinogenesis were provided for all discussed ncRNAs.

2.1. miRNAs

Notably, circulating miRNAs were widely examined as prospective diagnostic biomark-
ers of human malignancies, including BC. However, only a few papers focused on their
diagnostic accuracy exclusively for TNBC. In Table 1, we summarized all studies on the
utility of blood circulating miRNAs for TNBC diagnosis [40–65].

One of the first papers that has begun a series of works analyzing the utility of miRNAs
for TNBC detection was the study of Shin et al. Using microarray (MA) followed by qRT-
PCR validation, they selected miRNA-16,21 and 199a as promising TNBC biomarkers, and
achieved quite satisfactory diagnostic accuracy for TNBC detection with the AUC ranging
from 0.798 to 0.884. Interestingly, authors also found that expression of studied miRNAs
differs between pre- and post-operative patients, suggesting miRNAs as non-invasive markers
for TNBC monitoring [40]. Some of the circulating miRNAs summarized in Table 1 confirmed
their clinical value by reflecting tumor stage, lymph node status, and metastases occurrence.
For instance, miRNA-21, 199a, 210, and 221 were found to be associated with tumor stage,
whereas expression of miRNA-10b, 17a, 30b, 93, 105, and 376c correlated with lymph node
status and the presence of distant metastases [40,42,48,61,65]. Among the studied miRNAs,
few molecules were identified as being significant for TNBC in independent studies, such as
miRNA-21, miRNA-199a, and 489 [40,42,43,57]. It is still debatable whether single-circulating
miRNA can serve as an objective and reliable biomarker of cancer so far. Visibly, most of
the analyzed single-circulating miRNA demonstrated high diagnostic accuracy for TNBC,
which is proven by high AUC values: miRNA-489 (0.994), 125b (0.973), 105 (0.928), and 193b
(0.914). On the contrary, there are some miRNAs that suffer from low diagnostic accuracy:
miRNA-16 (0.657), 17a (0.657), and 30b (0.720) [48,57,61,65]. According to most researchers,
the high diagnostic reliability can be achieved only by a combination of some miRNAs into
diagnostic signatures. Truly, higher accuracy and reliability was noted for TNBC in the case of
combination of two, three or seven miRNAs with the following AUCs: 0.939, 1.0 and 0.929,
respectively [42,43,48]. Moreover, in some papers it has been proven that expression of blood
miRNAs correlates with their expression in cancer tissue, for instance, with miRNA-16, 21,
199a [40], 210, 221 [42], and 200 [57]. Those finding suggest that blood miRNAs are a reflection
of their tissue expression, which can allow analysis of the molecular alterations without a
series of tissue biopsy. It is worth underlining that in all analyzed papers, the number of
enrolled TNBC cases and healthy controls did not exceed 100. Based on the above-mentioned
evidence, all of the presented results should be considered carefully, and results require
additional validation in larger study sets.One of the major problems for the application of
miRNAs as non-invasive cancer biomarkers is their low cancer specificity. Unfortunately,
miRNAs found to be related to TNBC were also detected in blood circulation of patients
suffering from other cancers (Figure 2A; Supplementary Table S1). miRNAs can serve as a
potentially useful clinical screening tool, and their altered expression may be an introduction
to more scrupulous diagnostics that allow earlier detection and treatment of cancer.



Cancers 2022, 14, 803 6 of 21

Table 1. Summary of the studies evaluating blood ncRNAs as diagnostic biomarkers of TNBC
(AUC—area under the ROC, HC—healthy control) (↓,↑—low or high expression).

Sample Size
(*-Plasma;
#-Serum)

ncRNA
Expression in

TNBC
(Method of
Detection)

Validated Targets
Biological and/or Clinical
Significance of ncRNA for

TNBC

Diagnostic
Accuracy (AUC) Study

miRNA

67 TNBC
90 HC *

↓:miRNA-16, 21,
199a-5p

miRNA-16: AKT3, PGK1
miRNA-199a-5p: GRP78 [41]

Warburg effect mediation,
cyclin E regulation, endothelial

cell migration
miRNA-199a-5p is associated

with tumor stage

miRNA-16: 0.798
miRNA-21: 0.874
miRNA-199a-5p:

0.884

Shin
2015
[40]

23 TNBC
85 HC #

↑: miRNA-21,
221,210

miRNA-21: PDCD4, PTEN
miRNA-221: p27Kip1, ERα

miRNA-210: RAD52, HIF-1α

Oncogenic, DNA repair, cell
migration, translation

inhibitors, cell proliferation
Correlation with tumor grade,
Ki67 expression, clinical stage,

lymph node status, BMI

Combination of 3
miRNA:

1.00

Thakur
2016
[42]

36 TNBC
34 HC *

↑:
miRNA-Let-7c-5p,

Let-7i-5p, 7, 15,
195-5p, 489-3p
↓: miRNA-199a-3p

miRNA-7: lncRNA-XIST,
RELA

miRNA-15: CCNE1
miRNA-195: FASN, HMGCR,

ACACA, CYP27B1 [44–47]

Cancer growth
Metastasis formation

Cell migration
Apoptosis

Combination of 7
miRNA:

0.929

Qattan
2017
[43]

74 TNBC
12 HC *

↑: miRNA-93-3p,
105

miRNA-93-3p: SFRP1
miRNA-105: GOLIM4 [49]

Promotes stemness,
chemoresistance, and
metastasis in TNBC

Correlation with distant
metastases

miRNA-93-3p:
0.657

miRNA-105: 0.928
Panel of 2: 0.939

Li
2017
[48]

31 TNBC
34 HC

↑: miRNA-126-5p,
126-3p, 144-5p,
144-3p, 301a-3p,

101-3p
↓: miRNA-664b-5p

miRNA-101: CXCR7
miRNA-126: ADAM9, RGS3

miRNA-144: PTEN
miRNA-301a: ESR1

miRNA-664b: BRIP1 [51–56]

Oncogenic or
tumor-suppressive regulators
Cell proliferation, migration,

and tumor growth
Estrogen signaling pathway

Combination of 7
miRNA:

0.814

Kahraman
2018
[50]

24 TNBC
28 HC *

↑: miRNA-125b,
193b, 200b, 489

miRNA-125b: ARID3B
miRNA-193b: DDAH1
miRNA-200b: VEGF-A,

RARA
miRNA-489: SHP2, HER2

[58–60]

Tumor invasion and metastasis,
cell migration, angiogenesis

MAPK signaling

miRNA-125b: 0.973
miRNA-193b: 0.914
miRNA-200b: 0.877
miRNA-489: 0.994

Braicu
2018
[57]

37 TNBC
34 HC *

↑: miRNA-10b, 17a,
155, 376c

miRNA-10b: HOXD4, KLF4
miRNA-17a: TIMP2, TIMP3
miRNA-155: SOCS1, Smad2,

FGF, E2F
miRNA-376c: RAB2A [62–64]

DNA repair, cell cycle
procession

Metastasis formation, tumor
aggressiveness

Correlation with tumor stage,
size, lymph node status and

metastasis

miRNA-10b: 0.773
miRNA-17a: 0.657
miRNA-155: 0.847
miRNA-376c: 0.866

Shaheen
2019
[61]

13 TNBC
83 HC * ↑miRNA-30b-5p miRNA-30b-5p: CDH11,

ITGA5, ITGB3

Enrichment in Wnt and p53
signaling

Apoptosis
Correlation with lymph node
status and distant metastases

0.720

Adam-
Artigues

2021
[65]

lncRNA

25 TNBC
40 HC #

↑: ANRIL,
HIF1A-AS2, UCA1 UCA1-miRNA-143

Invasiveness of tumor cells
Activation of Wnt/β-catenin

signaling
Tumor progression and

metastasis
Correlation with lymph node

status and tumor size

lncRNA-ANRIL:
0.830

lncRNA-HIF1A-
AS2: 0.827

lncRNA-UCA1:
0.849

Liu
2017
[66]

100 TNBC
50 HC *

↑: ANRIL,
SOX2OT,

ANRASSF1

ANRIL-miRNA-199a
ANRASSF1-RASSF1A [68,69]

Tumor growth and proliferation
Promotion of carcinogenesis

lncRNA-ANRIL:
0.962

lncRNA-SOX2OT:
0.852

lncRNA-
ANRASSF1: 0.740
Combination of 3:

0.990

Du
2018
[67]
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Table 1. Cont.

Sample Size
(*-Plasma;
#-Serum)

ncRNA
Expression in

TNBC
(Method of
Detection)

Validated Targets
Biological and/or Clinical
Significance of ncRNA for

TNBC

Diagnostic
Accuracy (AUC) Study

91 TNBC
50 HC # ↑XIST XIST-miRNA-7

XIST-miRNA-454 [71]

Tumor aggressiveness and
proliferation, metastasis

formation
Correlation with tumor stage

0.888
Lan
2021
[70]

50 TNBC
40 BC

#
↑TINCR TINCR-miRNA-761, 125b, 503

Tumor progression, cell growth
and proliferation, apoptosis

regulation

TINCR allow to
distinguish TNBC

from BC with AUC
of 0.868

Zhang
2021
[72]

circRNA

83 BC
(TNBC)
49 HC *

↓circ0104824 Interaction with miRNA-140,
197, 599, 677 and 1278

Cell cycle and cell proliferation
Tumor stage, grading and

metastasis
Correlation with tumor size,
estrogen, and progesterone

receptor status

AUC for total BC:
0.849

Significant
difference in

expression between
TNBC and

non-TNBC and
controls

Li
2020
[75]

20 TNBC
20 HC # ↑circPSMA1 PSMA1-miRNA-637

Facilitates the tumorigenesis,
metastasis, cell migration

through
miR-637/Akt1/β-catenin axis

and immunosuppression

AUC not assessed
Significant

difference in
expression between
TNBC and controls

Yang
2021
[76]

24 TNBC
68 HC * ↑circHIF1A circHIF1A-miRNA-149-5p

Interaction with NFIB
Promotion of cell proliferation

and metastasis 0.897
Chen
2021
[77]

Using the bioinformatics tool, we analyzed all of TNBC-related, circulating miRNAs
in order to predict their regulatory role in molecular pathways (WikiPathways) (Supple-
mentary Figure S1). Most of the miRNAs are involved in the management of key cellular
processes. Their alteration can initiate carcinogenesis pathways, such as apoptosis, PI3K
and Wnt pathways, autophagy, DNA repair, cell differentiation, or immune responses.
These findings seem to confirm the implementation of altered expression of miRNA into the
development of unique molecular phenotypes of TNBC.Examples of validated targets for
circulating miRNAs are presented in Table 1. Additionally, we created an miRNA–mRNA
interaction model (miRNet2.0) to assess target genes for blood miRNAs and to summarize
Gene Ontology (GO) and KEGG pathway enrichment analysis for the TNBC-related miR-
NAs (Figure 2B). The top KEGG terms for miRNAs related to TNBC were as follows: cell
cycle (1.54 × 10−8), pathways in cancer (3.94 × 10−8), p53 signaling (4.19 × 10−7), ErbB
signaling (0.0002), and Wnt signaling (0.0013).

2.2. lncRNA

Circulating lncRNAs demonstrate similar diagnostic accuracy as blood miRNAs,
and their combination into diagnostic signatures improves test sensitivity and specificity
(Table 1) [66–72]. In the first reported study, Liu et al., based on MA and qRT-PCR analysis,
selected the three following lncRNAs, ANRIL, HIF1A-AS2, and UCA1, as promising mark-
ers for TNBC detection (AUC range of 0.827–0.840) [66]. ANRIL was also confirmed as a
TNBC biomarker in another study and its diagnostic accuracy was 0.962 [67]. In the in vitro
experiments, the above-mentioned ncRNA was implicated in tumor progression, cell mi-
gration, and metastases formation [66,67]. Du et al., using three blood lncRNA signatures
(ANRIL, SOX2OT, ANRASSF1) were able to distinguish healthy individuals from TNBC
cases with a high diagnostic accuracy of 0.990. Authors found that the expression of plasma
ANRIL, SOX2OT, and ANRASSF1 was in accordance with their tissue expression [67]. It
proves the potential utility of liquid biopsy as a reliable and minimally invasive tool for
lncRNA detection. Interestingly, Zhang et al., based on the serum TINCR expression, dis-
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tinguished between BC histological subtypes. TINCR demonstrated a significantly higher
expression in TNBC individuals and distinguished TNBC from other BC subtypes with an
AUC of 0.868 [72]. Unfortunately, the above-mentioned lncRNAs were also found to be
deregulated in other human cancers, suggesting their low cancerspecificity [73,74]. Using
bioinformatics tools, we selected top KEGG and GO terms for the circulating lncRNAs.
The top KEGG terms for circulating lncRNAs were the p53 signaling pathway (1.9 × 10−8),
small cell lung cancer (1.3 × 10−9), and melanoma (7.5 × 10−7), and for the breast cancer
pathway, FDR was 8 × 10−6 (Figure 2C). The GO terms are summarized in Supplementary
Figure S2. The top genes targeted by lncRNAs were TIA1, DDX3X, QKI, LARP7, CDKN1A,
KLF2, and the CDK family, and the top miRNAs were1, 7, 10a, 10b, 31, 98, 122, 222, and 335
(LncSEA, Diana tools). Regarding the role of lncRNAs in the development of individual
TNBC phenotype, these were most significantly involved in cell apoptosis (2.19 × 10−10),
migration (7.4 × 10−10), and proliferation (4.25 × 10−9). Disease-related predicted anal-
ysis (Lnc2Cancer2.0 and MNDR2.0 tools) suggested their key involvement in BC-related
carcinogenesis (4.59 × 10−18 and 6.21 × 10−16, respectively).

2.3. circRNAs

circRNAs are the most recently discovered ncRNA, thus their role as tumor circu-
lating biomarkers is limited. We found only three papers related to blood circRNAs and
TNBC. Therefore, it is hard to assess their reliability and tissue-specificity. Li et el. found
significantly lower expression of circ0104824 in the circulation of TNBC patients in con-
trast to those suffering from other BC histological subtypes. However, the expression of
circRNA was higher in all BC subtypes in contrast to healthy controls (AUC = 0.849). Au-
thors also noticed that circ0104824 was clinically correlated with tumor size, estrogen, and
progesterone receptor status [75]. Two other promising circulating biomarkers of TNBC
are circPSMA1 and circHIF1A. circPSMA1 is probably involved in the development of
unique BC subtypes by deregulation of the miR-637/Akt1/β-catenin axis and immunosup-
pression. While the diagnostic accuracy of this circRNA was not assessed, authors found
significant differences in its serum expression between TNBC and healthy controls [76].
circHIF1A, interacting with miRNA-149-5p and NFIB, promotes cell proliferation and
tumor migration to distant organs. This satisfactory diagnostic accuracy was achieved by
distinguishing between TNBC and healthy individuals (AUC of 0.897) [76]. Using bioinfor-
matics, we investigated the molecular function of the blood circRNAs. The top miRNAs
targeted by the afore mentioned circRNAs were miRNA-34a, 34c, 151a, 325, 448, 449a,
and 1179 (miRNet2.0). Creating the interaction model, circRNA–miRNA–mRNA (miR-
Net2.0), we selected the top KEGG terms related to TNBC: endocrine resistance (1.9 × 10−6),
p53 signaling pathway (3.2 × 10−5), cell cycle (1.1 × 10−4), breast cancer (1.6 × 10−4),
and mTOR signaling (9.6 × 10−3). The top GO terms are summarized in Supplementary
Figure S3.

Diagnostic accuracy of the discussed blood-circulating ncRNAs for the non-invasive
detection of TNBC is summarized in Figure 2D. Analysis of various ncRNAs allows us to
compare their diagnostic accuracy for early cancer detection, and then allows the clinical
selection of the most promising molecules. The above-described studies and performed
bioinformatics analysis seem to confirm that combination of different classes of ncRNAs
into diagnostic tests is a prospective direction for their clinical applicability, because they
can represent key molecular pathways related to TNBC phenotype.
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Figure 2. Bioinformatics analysis of the blood circulating miRNAs and lncRNAs serving as diagnos-
tic biomarkers of TNBC: (A)—chord diagram demonstrating the relationship between circulating
miRNAs found in TNBC and their relationship to different cancers; (B)—regulatory network of the
studied miRNAs, followed by KEGG enrichment analysis (genes crucial for the unique pathways were
marked by appropriate colors); (C)—KEGG enrichment analysis for the circulating lncRNAs; (D)—
diagnostic accuracy of the discussed ncRNAs for the non-invasive detection of TNBC; (BC—breast
cancer, CRC—colorectal cancer, EC—esophageal cancer, GC—gastric cancer, HCC—hepatocellular
cancer, LC—lung cancer, OC—ovarian cancer, PANC—pancreatic cancer, PC—prostate cancer, RC—
renal cancer, TC—thyroid cancer).

3. Circulating ncRNAs for TNBC Prediction and Prognosis

The disease course can be monitored unrestrictedly and ina minimally invasive man-
ner, thanks to the application of liquid biopsy. On the one hand, it is believed that the level
of expression of circulating ncRNAs reflects the tumor aggressiveness affecting patients’ sur-
vival. On the other hand, changes in ncRNA expression after the therapy can be a valuable
precursor of tumor recurrence. In the Table 2 we summarized the recent studies analyzing
the utility of circulating ncRNAs for TNBC prediction and prognosis [57,70,78–84].
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Table 2. Summary of the prognostic and predictive role of blood circulating ncRNAs for TNBC
(AUC—area under the ROC, CR—complete response, HR—hazard ratio, OR—odds ratio, OS—overall
survival, PD—progressive disease, PR—partial response, RFS—relapse-free survival, SD—stable
disease) (↓,↑—low or high expression).

ncRNA Role Study Findings Study

Unfavorable:
↑miRNA-18b, ↑miRNA-103, ↑

miRNA-107, ↑miRNA-652
(all ↑ considered as a high risk

score signature)

Prognosis/OS - TNBC patients with high risk score (high expression of 4 miRNA)
had approximately 4 fold higher risk of OS reduction (HR = 3.60) Sahlberg

2015
[78]

Tumor
relapse/RFS

- TNBC patients with high risk score had over 3 fold higher risk of
RFS reduction (HR = 3.49)

- miRNA signature showed the strongest predictive value to
discriminate tumors from patients with early relapse from those
without recurrence (AUC = 0.810)

Unfavorable:
↑miRNA-21, ↑miRNA-194, ↑

miRNA-205, ↑miRNA-375
↓miRNA-376c, ↓miRNA-382, ↓

miRNA-411

Tumor relapse

- Signature of 7 serum miRNA allows to distinguish recurrent
TNBC patients from non-recurrent TNBC individuals with
diagnostic accuracy of AUC = 0.943

Huo
2016
[79]

Unfavorable:
↓miRNA-34a, 34c Prognosis/OS

- Low expression of miRNA-34a and miRNA-34c is associated
with a higher risk of early death incidence in TNBC patients
(HR = 2.06 and HR = 2.47, respectively)

Zeng
2017
[80]

Unfavorable:
↓miRNA-29c Prognosis/OS

- Low expression of plasma miRNA-29c is an unfavorable factor
associated with reduced survival in TNBC (median survival
low vs. high expression of miRNA-29c: 7.6 vs. 9.6 years)

Braicu
2018
[57]

Unfavorable:
↑miRNA-200a
↑miRNA-210

Chemoresistance

- The expression of miRNA-200a and miRNA-210 is significantly
higher in the plasma of docetaxel-resistant cases (PD) than in the
sensitive individuals (PR or SD)

- miRNA-200a (OR = 0.041) and miRNA-210 (OR = 0.062) were
identified as independent factors for chemotherapeutic response;
plasma miRNA-200a and miRNA-210 allow distinguishing
between responders and non-responders with AUC of 0.866 and
0.812, respectively

Shao
2019
[81]

Unfavorable:
↓miRNA-4448, miRNA-2392,
miRNA-2467, miRNA-4800

Response to
chemotherapy

- A combined signature of four miRNAs could be used to
discriminate between CR and non-CR patients with TNBC with
an AUC of 0.765

Sueta
2021
[82]

Unfavorable:
↑ lncRNA-TINCR

Tumor
relapse/RFS

- High expression of serum TINCR is related to higher rate of the
disease relapse

- Patients in the high serum TINCR group had poorer RFS than
those in the low serum TINCR group

Wang
2020
[83]

Prognosis/OS - High serum expression of TINCR is associated with 2.5fold
higher risk of OS reduction in TNBC patients (HR = 2.54)

Unfavorable:
↑miRNA-21

↓ lncRNA-BRE-AS1
Prognosis/OS

- Patients with low plasma expression of BRE-AS1 and high
expression levels of miRNA-21 showed significantly lower OS
rates

Gao
2021
[84]

Unfavorable:
↑ lncRNA-XIST

Tumor relapse - Expression of XIST in serum exosomes is higher in serum of
recurrent TNBC patients than in non-recurrent individuals

Lan
2021
[70]

Prognosis/OS - High expression of XIST in serum exosomes is associated with
reduced survival in TNBC patients (HR = 3.54)

Unfavorable:
↑ lncRNA-SUMO1P3

Prognosis/OS

- High serum SUMO1P3 expression is independent and
unfavorable prognostic factor related to poor OS in TNBC (HR =
1.97) Na-Er

2021
[85]

Response to
chemotherapy

- No significant difference in serum SUMO1P3 was found between
the pre-treated and post-treated blood samples for the
chemoresistant cases. Serum SUMO1P3 levels decreased in the
chemosensitive cases following the chemotherapy
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3.1. miRNAs

Prognostic and predictive value of miRNAs for TNBC has been proven by numerous
studies analyzing tissue expression of the molecules [86–88]. These promising findings
encouraged the investigation of miRNAs as possible tumor-circulating biomarkers. Similar
to the diagnostic approach, the diagnostic signatures involving a few miRNAs represent
more reliable results. Constructing the four miRNAs’ blood signature, Sahlberg et al.
were able to select TNBC patients at a higher risk of early death incidence (HR = 3.60).
Interestingly, the same prognostic signature demonstrated the utility for both the risk of
disease relapse (HR = 3.79) and discrimination between patients who relapsed and non-
recurrent individuals (AUC = 0.810) [78]. In the other study, the higher diagnostic accuracy
for the discrimination between TNBC patients with recurrent disease and non-recurrent
cases was achieved by the application of a seven miRNA signature (AUC = 0.943) [79].
However, miRNAs can mediate the response to chemotherapy in TNBC [89,90]. Until
now, only one study investigated blood miRNAs as a predictive factor for chemotherapy
response. Shao et al. noticed that the two plasma miRNAs, 200a and 210, can serve as
predictors for docetaxel-treated TNBC patients. First, they correlated clinical response to
chemotherapy with miRNA expression. Both miRNA-200a and 210 were upregulated in
non-responders (progressive disease, PD) when compared to responders group (stable
disease or partial remission, SD and PR). The diagnostic accuracy measured by AUC for
patients’ distinguishment was 0.866 and 0.812 respectively. miRNA-200a (OR = 0.041)
and miRNA-210 (OR = 0.062) were considered as independent factors for docetaxel-based
therapy in TNBC [81]. Some of the described miRNAs were also previously selected as
TNBC diagnostic biomarkers (miRNA-21, 210, and 376c). We introduced all of these blood-
circulating miRNAs to bioinformatics analysis to assess their role in the development of
TNBC phenotype (mirPath v3.0). Interestingly, most of the miRNAs were revealed to be
involved in molecular pathways crucial for BC development, includingthe Hippo signaling
pathway, proteoglycans in cancer, and fatty acid metabolism and synthesis (Supplementary
Figure S4).

3.2. lncRNAs

Data regarding the utility of lncRNAs for prediction and prognosis is still limited
and only few papers have focused on this idea [70,83–85]. Among the lncRNAs, the
TINCR seems to be the most promising TNBC-related lncRNA, serving as a diagnostic and
prognostic biomarker. Thorough analysis of cellular pathways mediated by TINCR seems
to confirm its key function in the development of unique BC subtype (Figure 3A) [91,92].



Cancers 2022, 14, 803 12 of 21Cancers 2022, 14, 803 13 of 21 
 

 

 
Figure 3. TINCR regulatory network predisposing development of unique TNBC phenotype (A), 
and bioinformatics analysis of studied ncRNAs: (B)—protein–protein interaction network regulated 
by examined lncRNAs, (C)—miRNA targets for the lncRNAs, (D)—role of the lncRNAs for estab-
lishment of aggressive phenotype of TNBC, (E)—ncRNAs’ interaction network among all discussed 
miRNAs, lncRNAs, and circRNAs. 

  

Figure 3. TINCR regulatory network predisposing development of unique TNBC phenotype (A), and
bioinformatics analysis of studied ncRNAs: (B)—protein–protein interaction network regulated by
examined lncRNAs, (C)—miRNA targets for the lncRNAs, (D)—role of the lncRNAs for establishment
of aggressive phenotype of TNBC, (E)—ncRNAs’ interaction network among all discussed miRNAs,
lncRNAs, and circRNAs.

First, TINCR enhances EGFR expression and downstream signaling via regulation of
the STAT3–TINCR–EGFR pathway, and acts as a competing endogenous RNA to upregulate
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EGFR expression by sponging miRNA-503, resulting in tumor growth, proliferation, and
migration. In vitro and in vivo experiments confirmed that TINCR knockdown suppresses
BC aggressiveness [93]. TINCR targets STAU1, leading to its silencing and resulting in
reduced OAS1 stability, which enhances uncontrolled cell proliferation and migration.
A similar unfavorable phenotype of BC is observed under the sponging of miRNA-7 by
TINCR. Downregulation of miRNA-7 leads to overexpression of KLF4, causing tumor
progression and an enhanced inflammatory response in the tumor environment [94,95].
The aggressive phenotype of TNBC could be also related to the silencing of miRNA-589
and 125b. While sponging of miRNA-125b leads to overexpression of HER2 and under-
expression of SNAIL1, leading to resistance to transtuzumab-based therapy and reduced
survival in cancer patients, whereas silencing of miRNA-589 accelerates expression of
IGF1R, reducing cell apoptosis and stimulating proliferation and invasiveness [95–97].
Above-discussed data found their confirmation in the clinical study considering serum
TINCR as an unfavorable biomarker related to the poor course of TNBC. Wang et al.
recorded that a high expression of circulating TINCR in TNBC patients is an indepen-
dent prognostic factor, resulting in a higher risk of overall survival reduction (HR = 2.54).
Moreover, a higher level of TINCR was found in TNBC-relapsed patients when compared
with non-recurrent individuals [83]. The other promising circulating lncRNAs that could
serve as survival indicators are XIST, SUMO1P3, and BRE-AS1 [70,84,85]. The circulating
lncRNAs were bioinformatically tested in order to assess their role in development of ag-
gressive phenotype of TNBC. First, the genes regulated by TINCR were selected (DIANA,
LncSEA) and transferred to a protein–protein interaction network (STRING) to build a
protein–protein interaction model. Interestingly, this lncRNA regulates genes involved in
the BRCA1 machinery, tightly related to BC carcinogenesis (Figure 3B). Then, the target
miRNAs presumptively sponged by lncRNAs (TINCR, XIST, SUMO1P3, and BRE-AS1)
were selected with the use of the LncSEA tool. Figure 3C illustrates the list of miRNAs
selected for the algorithm, which represent the highest binding scores with the analyzed
lncRNAs. Among selected miRNAs, the miRNA-7, 31, 181b, 335, and 544a demonstrated
the highest probability scores for this action, and were considered as top miRNAs for this
interaction network. Regarding the tumor phenotype, the circulating lncRNAs (TINCR,
XIST, SUMO1P3, and BRE-AS1) are especially important for regulation of cell apoptosis,
invasion, and migration (terms achieving the highest log p values) (Figure 3D). Analysis of
circulating lncRNAs, such as TINCR, can improve clinical management of TNBC, because
this molecule participates in the regulation of pathways involved in the development of an
aggressive phenotype of TNBC. In the future, TINCR can be an attractive therapeutic target
for developing treatment strategies and in the selection of patients who can eventually
benefit from personalized therapy. Moreover, analysis of the set of lncRNAs (TINCR,
XIST, SUMO1P3, and BRE-AS1) and their targets can improve knowledge on TNBC pheno-
typesfor the development of selective blockades or restoration of the molecular pathways,
resulting in better therapy outcomes and prolonged patients’ survival. However, further
clinical validation is required to confirm the above-mentioned suppositions.

4. Conclusions and Perspectives

Targeted treatment strategies for TNBC, including immunotherapy, will obviously
require clinically useful biomarkers for therapy enrollment, monitoring, and prediction.
ncRNAs are a promising group of biomarkers that can deal with the above-mentioned ex-
pectations, which seem to confirm recent in vitro studies made on pembrolizumab—a mon-
oclonal antibody targeting PD-1 that was approved for immunotherapy of locally recurrent
unresectable/metastatic TNBC [97]. ncRNAs regulating the PD-1/PD-L1 axis are able to
change the sensitivity of cells toward pembrolizumab. For instance, miRNA-34a, 138, 200c,
424, and 570, let-7a, and lncRNAs CCAT1 and GATA3-AS1 can regulate tumor growth and
proliferation through PD-L1 modulation, and thus response to immunotherapy [98–100].
In a clinical trial (KEYNOTE-086), Loi et al., using RNA-seq-based data, confirmed that
inflammatory state signatures obtained by measuring the tissue-resident memory are asso-
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ciated with the response to pembrolizumab in TNBC patients [101]. Prospective analysis of
the blood-circulating ncRNAs can improve the selection of patients who can benefit from
immunotherapy and can be a useful tool for its monitoring.

Nevertheless, a regulatory network of miRNA–lncRNA–circRNA–mRNA interactions
demonstrates complex molecular machinery, in which each independent participant seems
to be crucial for proper regulation of cell cycle and biological pathways. Even in the case of
deregulation of single mode in this highly expanded machinery, it can lead to the failure of
the entire anti-oncogenic and tumor suppressing mechanisms. To underline the complexity
of ncRNA machinery, and thus the difficulty in their analysis as TNBC biomarkers, we
introduced all of the discussed ncRNAs to bioinformatics interaction analysis to create
a regulatory network, as well as KEGG and GO enrichment analysis (Figure 3E and
Supplementary Figure S5). Noticeably, only a few introduced ncRNA can create a complex
web of connections between various molecules. In the Figure 3E, the pink cluster represents
genes regulated by miRNAs enrolled to the model (the miRNAs reviewed in this paper
were marked by big blue squares), the blue cluster represents lncRNAs participating in
the network (red dots represent lncRNAs described in this review), and the yellow dots
represent reviewed circRNAs. Summarizing, the TNBC phenotype probably results from an
overlap of molecular alterations, including expression of different types of ncRNA. Despite
the limitations, ncRNAs can serve as prospective, minimally invasive TNBC biomarkers,
detectable with the application of liquid biopsy. However, the clinical trials enrolling a
considerable number of patients should be designed in order to confirm their clinical utility.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14030803/s1, Figure S1: Heatmap of circulating miRNAs
demonstrating their importance for the particular molcular pathways; Figure S2: GO enrichment anal-
ysis for circulating lncRNAs; Figure S3: GO enrichment analysis for circulating circRNAs; Figure S4:
Clustering analysis of the expression of circulating miRNAs for the molecular processes related to the
development of TNBC; Figure S5: GO and KEGG enrichment analysis for the regulatory network of
studied ncRNAs; Table S1: The studied blood circulating miRNAs as diagnostic biomarkers of TNBC
and their utility for the management of the different human cancers [102–171].
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