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DLS were identified on a radiogenomics cohort with paired DTI and RNA-seq data (n=78), where the prognos-
tic value of the pathway genes was validated in public databases (TCGA, n = 663; CGGA, n = 657).
Findings: The DLS was associated with survival (log-rank P < 0.001) and was an independent predictor (P <
Deep learning 0.001). Incorporating the DLS into existing risk system resulted in a deep learning nomogram predicting sur-
Diffusion tensor imaging vival better than either the DLS or the clinicomolecular nomogram alone, with a better calibration and classi-
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Pathway transmission, calcium signaling, glutamate secretion, axon guidance, and glioma pathways) were signifi-
cantly correlated with the DLS. Average expression value of pathway genes showed prognostic significance
in our radiogenomics cohort and TCGA/CGGA cohorts (log-rank P < 0.05).
Interpretation: DTI-derived DLS can improve glioma stratification by identifying risk groups with dysregu-
lated biological pathways that contributed to survival outcomes. Therapies inhibiting neuron-to-brain tumor
synaptic communication may be more effective in high-risk glioma defined by DTI-derived DLS.
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Research in context

Evidence before this study

Recently, machine learning has been applied in extracting
imaging features for prediction of clinical outcomes in glioma.
Recent studies have shown that deep convolutional neural net-
works (CNN) can achieve state-of-the-art performance in tumor
detection and diagnosis. However, there lack diffusion tensor
imaging (DTI)-based CNN model for survival prediction of gli-
oma patients, and little work has been done regarding biologi-
cal underpinnings of deep CNN features. We searched
published literatures on PubMed and Web of Science with the
following terms: “(deep learning) AND diffusion tensor imaging
AND (survival OR prognosis) AND glioma”, without date restric-
tion or limitation to English language publications. This search
did not identify any previous publications investigating the
prognostic values of deep learning signature (DLS) based on dif-
fusion tensor imaging (DTI) on glioma.

Added value of this study

In the current study, The DLS was developed from DTI for sur-
vival prediction based on a training cohort (n = 381) and a tun-
ing cohort (n = 96), and validated on an internal validation
cohort (n = 99), an external validation cohort (n = 77), and a
public TCIA cohort (n = 35). Incorporating the DLS into existing
risk system resulted in a deep learning nomogram predicting
survival better than either the DLS or the clinicomolecular
nomogram alone. Furthermore, five kinds of pathways (synap-
tic transmission, calcium signaling, glutamate secretion, axon
guidance, and glioma pathways) underlying the DLS were iden-
tified on a radiogenomics cohort with paired DTI and RNA-seq
data (n=78). Average expression value of pathway genes
showed prognostic significance in our radiogenomics cohort
and validated in public databases (TCGA, n = 663; CGGA,
n=657).

Implications of all the available evidence

This study demonstrated DTI-derived DLS, which associated
with dysregulated pathways, was an independent prognostic
factor conferring incremental value over clinicomolecular fac-
tors in survival prediction. DTI-derived DLS provides a noninva-
sive approach to stratify glioma patients and offers molecular
signatures to inform personalized treatment. Therapies inhibit-
ing neuron-to-brain tumor synaptic communication may be
more effective in high-risk glioma defined by DTI-derived DLS.

1. Introduction

Gliomas are primary brain tumors originating from glial or precursor
cells [1]. The newest World Health Organization (WHO) classification of
CNS tumors has classified gliomas into four grades, and WHO II-IV glio-
mas are considered as infiltrative gliomas [2,3]. Notably, precise predic-
tion of the clinical outcomes of infiltrative gliomas is challenging [3]. As
for lower-grade gliomas (LGG, WHO II or IIl), some relapse or progress
to WHO IV glioblastoma (GBM) after treatment within several months,
while some others remain indolent for several years [4]. On the other
hand, the heterogeneity of GBM also leads to largely varied prognosis

across individuals [5,6]. Hence, accurate prediction of clinical outcomes
can provide social benefit and information for optimizing personalized
treatment of glioma patients.

Although conventional MRI can demonstrate anatomic parame-
ters such as size, shape, and morphological features of the tumor, it is
limited in delineating microscale tumor infiltration. Diffusion tensor
imaging (DTI) is a promising imaging approach to detect microstruc-
tural tissue changes of the whole tumor by assessing the water diffu-
sion in vivo. DTI has been demonstrated sensitivity to tumor
infiltration that is not evident on conventional MRI. Various DTI met-
rics such as mean diffusivity (MD), fractional anisotropy (FA), axial
diffusivity (AD), and radial diffusivity (RD) have been shown predic-
tive of tumor progression and survival outcomes in LGG and GBM
[7—11]. However, earlier works mainly focused on semiquantitative
DTI metrics or histogram analysis, which may not get the utmost out
of all the information embedded in such images.

Recently, machine learning methods have been applied in extract-
ing imaging features for prediction of clinical outcomes in glioma
[6,12—17]. Specifically, there are two most popular imaging-based
machine learning approaches: handcrafted radiomics analysis and
convolutional neural networks (CNN). Radiomics features extracted
from MRI have shown predictive of survival in glioma [13,14]. How-
ever, handcrafted radiomics features are constricted by current
understanding of medical imaging and therefore may limit the poten-
tial of the prediction model. CNNs improved the handcrafted radio-
mics pipeline by automatically learning discriminative features
directly from images. Recent studies have shown that deep CNNs can
achieve state-of-the-art performance in tumor detection and diagno-
sis, compared with other machine learning approaches and even
human experts [18,19]. However, few studies have focused on the
prognostic value of DTI-based CNN in survival prediction for glioma
patients.

Notwithstanding its predictive power, the data-driven nature of
CNN has led to its inherent lack of biological interpretability of the
learned deep features. In contrast with conventional biomarkers
driven by biological hypotheses, the biological meaning of the deep
CNN features that are predictive of patient outcomes remains
unclear. Without biological basis, such black box-like property of
deep CNN becomes a clear obstacle towards its wide application in
practice. A few pioneer studies have initially revealed the connec-
tions between radiomics features and underlying gene expression
patterns [6,20], but to our knowledge little work has been done
regarding biological underpinnings of deep CNN features used for
survival prediction in glioma.Therefore, this study hypothesized that
deep CNN features learned from DTI were predictive of survival out-
comes in glioma patients, and might be genetically driven by differ-
ent biological pathways that contributed to cancer prognosis. To this
end, the aims of this multicenter study were to develop and validate
a deep learning model from DTI for predicting survival of glioma
patients, and to uncover the biological meaning of the prognostic
deep CNN features by identifying their underlying biological path-
ways using paired DTI and RNA sequencing (RNA-seq) data.

2. Methods
2.1. Study design

This study was a part of the registered clinical trial “MR Based Sur-
vival Prediction of Glioma Patients Using Artificial Intelligence”
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(ClinicalTrials.gov ID: NCT04215211). This study was approved by the
Human Scientific Ethics Committee of the First Affiliated Hospital of
Zhengzhou University (No. 2019-KY-176) and the Sun Yat-Sen Uni-
versity Cancer Center (B2019-085-01). The overall design of our
study included two steps: prognostic deep CNN modeling and radio-
genomics profiling, as illustrated in Fig. 1. First, an imaging-based
deep learning signature (DLS) was developed from DTI for survival
prediction based on training/tuning cohorts and validated on an
internal validation cohort and two external validation cohorts. Then,
the key biological pathways underlying the DLS were identified based
on a radiogenomics dataset with both DTI and RNA-seq, where the
prognostic value of the pathway genes was validated in three public
cohorts.

2.2. Study cohorts

Informed consents were obtained from patients whose fresh
tumor specimens were used for RNA-seq. For the rest patients,
informed consents were waived by the Committee due to the retro-
spective and anonymous nature of this study. There were three data-
sets in this study: a deep learning dataset (n = 688) with DTI imaging
for training and validating the DLS, an independent radiogenomics
analysis dataset (n = 78) with paired DTI and RNA-seq for identifying
biological pathways underlying the deep learning features, and a
public radiogenomics validation dataset (n = 1320) with only RNA-
seq data for further validating the prognostic value of the DLS-associ-
ated pathway genes. These datasets were collected from two local
institutions the First Affiliated Hospital of Zhengzhou University
(FAHZZU) and Sun Yat-Sen University Cancer Center (SYSUCC)
between January 2012 and December 2018 and three public data-
bases The Cancer Imaging Archive (TCIA), The Cancer Genome Atlas
(TCGA), and China Cancer Genome Atlas (CGGA). The inclusion crite-
ria are summarized in Supplementary A1 and the patient enrolment
process is shown in Fig. 2. Specifically, the deep learning dataset com-
prised five cohorts: a (1) training cohort (n = 381, from FAHZZU) and
a (2) tuning cohort (n = 96, from FAHZZU) used to develop the DLS,
an (3) internal validation cohort (n = 99, from FAHZZU) and an (4)

DTI images

Deep learning signature building and validation . Radiogenomics analysis

external validation cohort (n = 77, from SYSUCC) and a (5) public vali-
dation cohort (n = 35, from TCIA) used to validate the DLS. Note that
the training, tuning, and internal validation cohorts were randomly
selected from the FAHZZU patient set, where the clinical parameters
among these cohorts were balanced. The radiogenomics analysis
dataset comprised 78 patients from FAHZZU (not included in the
deep learning dataset) with paired DTI and RNA-seq data. The raw
sequence data reported in this paper have been deposited in the
Genome Sequence Archive in National Genomics Data Center under
accession number HRAO000802 (https://bigd.big.ac.cn/gsa-human/
browse/HRA000802). The public radiogenomics validation dataset
contains RNA-seq data only, including a LGG dataset of 509 lower-
grade gliomas patients from TCGA, a GBM dataset of 154 GBM
patients from TCGA, and a glioma dataset of 657 patients from CGGA.
Detailed information on RNA sequencing, Detection of IDH mutation,
Image acquisition and preprocessing was described in Supplemen-
tary A2-A5 and Supplementary Table S1.

2.3. Deep learning signature building

A deep CNN model was used to perform the survival analysis. The
architecture of the deep CNN was a ResNet-34-based network [21],
as illustrated in Fig. 1. The network input were axial slices cropped
from the four registered maps FA, MD, AD and RD. To ensure that
only slices within tumors were used as input, a 3D bounding box con-
taining just the entire tumor was derived based on the delineated
tumor contours for each patient. To represent the entire tumor in
general, 4 equally-spaced axial slices within the tumor were
extracted from each of the 4 DTI maps. Then, the 4 slices were
cropped into small ones using the bounding box. Finally, 16 cropped
slices per patient were automatically generated from the 4 DTI maps
and used as a single sample for a 3D tumor in both training and vali-
dation. The network was trained from scratch on the training cohort
(n = 381, 6096 images) while optimized on the tuning set (n = 96,
1536 images). The network output was the predicted risk score
regarding the overall survival of the input patients, which was used
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Fig. 1. The overview of the study design, including the deep learning signature (DLS) development and validation, and the radiogenomics analysis.
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Fig. 2. Patient enrollment process for the three datasets.

as the DLS for survival prediction. The details of the network training
can be found in Supplementary A6.

2.4. Identification of biological pathways associated with DLS

Based on the radiogenomics analysis dataset with both MRI and
RNA-seq, the possible biological pathways underlying the DLS were
identified. First, differentially expressing genes (DEGs) between the
high- and low-risk subgroups stratified by the DLS were identified
with an R package DESeq2. Then, significant DEGs with false discov-
ery rate (FDR) < 0.25 and |log2(Fold Change)| > 0.10 were analyzed
to enrich overrepresented pathways with an R package clusterPro-
filer based on four annotated databases: Gene Ontology (GO) Biologi-
cal Process, Kyoto Encyclopedia of Genes and Genomes (KEGG),
Hallmark, and Reactome. FDR < 0.05 was considered as significant
enrichment. Then, a gene set variation analysis (GSVA) was per-
formed for each enriched pathway to calculate a patient-specific
GSVA score that quantified the pathway activity [22]. A Pearson cor-
relation was used to assess if the pathway GSVA score was signifi-
cantly associated (FDR < 0.01) with the DLS. Finally, the significantly
correlated pathways were used to biologically annotate the DLS.

2.5. Statistics

Validation of the DLS: Statistical analysis was performed using R
version 3.6.1. P-value < 0.05 was considered significant. The patient
and tumor characteristics between training and validation cohorts
were assessed by Wilcoxon test or Chi-square test. The association of
the DLS with survival was first assessed in the training cohort and
then validated in the tuning, internal validation, external validation,
and public TCIA cohorts by using Kaplan-Meier analysis. According to
a DLS cutoff value determined using the X-tile on the training cohort
[23], patients were stratified into low-risk and high-risk subgroups.
The cutoff was applied to the tuning, internal, external and public
TCIA cohorts. A weighted log-rank test (the G-rho rank test, rho =1)
was used to validate the significant difference in the survival
between the risk subgroups. The assessment of the DLS as an inde-
pendent prognostic factor was performed by integrating clinical risk
factors such as gender (female or male), age, grade (II, IIl or IV), pre-
operative KPS, extent of resection (complete or incomplete), radiation
therapy (yes or no), chemotherapy (yes or no), IDH status (mutated or
wild-type) into the multivariate Cox proportional hazard model.

Incremental prognostic value of the DLS: To demonstrate the incre-
mental prognostic value of the DLS over the clinicomolecular risk

factors for individualized assessment of survival, both a clinicomolec-
ular nomogram and a deep learning nomogram was constructed
based on the training cohort. The clinicomolecular nomogram con-
sisted of age, gender, KPS, grade, extent of resection, radiation ther-
apy, chemotherapy and IDH mutation. The deep learning nomogram
was built by incorporating the DLS into the clinicomolecular nomo-
gram based on Cox analysis. Then, the incremental prognostic value
of the DLS was assessed by comparing the performance of the two
nomograms in terms of discrimination, calibration, reclassification
and clinical usefulness. First, the Harrell C-indices of the DLS and the
two nomograms were calculated as the discriminative measure.
Then, the calibration curves of the two nomograms were plotted to
validate the agreement between the predicted and observed out-
comes. The net reclassification improvement (NRI) was calculated to
assess the performance improvement added by the DLS. The Akaike
information criterion (AIC) was computed to assess the potential risk
of model overfitting. The decision curve analysis was performed to
validate the clinical usefulness of the prediction models.

Prognostic value of the DLS-correlated pathway genes: To further
demonstrate the DLS-pathway-prognosis linkage, the collective prog-
nostic value of the DLS-correlated pathways was assessed by Cox
regression. Specifically, the association of the average expression
value of the genes contained in the DLS-correlated pathways and the
patient survival was assessed by using Kaplan-Meier analysis. A cut-
off value was determined by using X-tile tool on the radiogenomics
analysis cohort and was used to stratify patients into two subgroups.
This cutoff was consistently applied to the three public RNA-seq data-
sets including the TCGA-LGG, TCGA-GBM, and CGGA-glioma.

2.6. Role of funding source

All sources of funding have been declared as an acknowledgment
at the end of the manuscript. The funders did not play any role in
research design, data collection, data analysis, interpretation, report
writing and implementation supervision. All authors confirmed that
they had full access to all the data in the study and accepted responsi-
bility to submit for publication.

3. Results
3.1. Patient characteristics

According to the selection criteria, a total of 688 patients were
included in the deep learning dataset for DLS training and validation.
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As shown in Supplementary Table S2, there was no significant differ-
ence in survival between training cohort and validation cohorts
(Mean survival: training cohort, 25.2 months; tuning cohort, 26.3
months; internal validation cohort, 26.4 months; external validation
cohort, 27.3 months; public TCIA cohort, 22.6 months, log-rank P-
value > 0.05). The distribution of clinical characteristics (grade, gen-
der, age, KPS, chemotherapy, radiation, extent of resection, IDH
mutation) was also balanced between the training and validation
cohorts (Chi-square or Wilcoxon P-value > 0.05).

3.2. Association of the DLS with survival
The C-index for the DLS was 0.825 in the training cohort,

0.745 in the tuning cohort, 0.746 in the internal validation cohort,
0.794 in the external validation cohort, and 0.789 in the public

a Training cohort
= mep= High risk
2 100 .
s e Low risk
>
= 075
E |
(4
3 050 b
-
(<]
% e log rank P < 0.001
3 o000
& 0 12 24 36 48 60 72 84 96 108 120 132 144
Time in months
Number at risk

Lowrisk 225 213 147 91 46 22 4

1 1 1 1 1 0
Highrisk 156 60 16 6 4 1 0 O0 0 0 O0 O0 O

Internal validation cohort

C
S High risk
E 1.001 I L 9 ok
OW ris|
3 n=59
= 0751
[
g
® 0501
-
N log rank P < 0.001
£ 0251
2
©
S  000{ . . . . i .
a 0 12 24 36 48 60 72
Time in months
Number at risk
Lowrisk 59 55 37 26 17 4 0
Highrisk 40 12 7 3 2 0 0
e Public validation cohort
© High risk
£ 100 = Hg
g —l— Low risk
= o075
o
v
3 050
-
[}
Z oz
Lfn: log rank P < 0.001
2 000
a 0 12 24 36 48 60 72 84 %

Time in months

Number at risk

Lowrisk 23 21 8 6 4 4 2 1 0
Highrisk 12 5 1 0 0 0 0 0 0

TCIA cohort. The optimum cutoff value was 0.14, which divided
the patients into a high-risk subgroup (DLS > 0.14) and a low-
risk subgroup (DLS < 0.14). The results of Kaplan-Meier analysis
were shown in Fig. 3a-f. Significant association of DLS with sur-
vival was found in the training cohort (log-rank P < 0.001; haz-
ard ratio [HR] = 11.850, 95% confidence interval [CI]: 7.931,
17.700), and was confirmed in the tuning cohort (log-rank P <
0.001; HR = 6.623, 95% CI: 3.168, 13.840), the internal validation
cohort (log-rank P < 0.001; HR = 4.471, 95% CI: 2.204, 9.071), the
external validation cohort (log-rank P < 0.001; HR = 8.340, 95%
Cl: 6.540, 18.430), the public TCIA cohort (log-rank P < 0.001;
HR = 10.180, 95% CI: 1.551, 39.790), and the radiogenomics analy-
sis dataset (log-rank P < 0.001; HR = 8.154, 95% CI: 2.104,
21.600). The DLS was identified as an independent risk factor
(HR = 9.169, 95% CI: 6.888, 12.200, P < 0.001).
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Fig. 3. Kaplan-Meier analysis according to the deep learning signature (DLS) for overall survival in the training (a), tuning (b), internal validation (c), external validation (d), and
public validation (e) cohorts, as well as the radiogenomics analysis dataset (f). Significant associations of DLS with overall survival were demonstrated. The numbers of patients at
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Fig. 4. The deep learning nomogram (a) and the clinicomolecular nomogram (b) for predicting the 1-, 2-, and 3-year overall survival outcomes, along with the calibration curves for

evaluation of the deep learning nomogram (c) and the clinicomolecular nomogram (d).

3.3. Assessment of the incremental prognostic value of the DLS

The clinicomolecular nomogram and deep learning nomogram
for individual survival prediction were shown in Fig. 4a-b, respec-
tively. The C-indices and AIC values for the two nomograms and
the DLS were summarized in Table 1. The clinicomolecular nomo-
gram achieved a C-index of 0.805 in the training cohort, 0.838 in
the tuning cohort, 0.791 in the internal validation cohort, and
0.771 in the external validation cohort. Integrating the DLS into
the clinicomolecular nomogram resulted in an improved C-index
of 0.835 in the training cohort, 0.890 in the tuning cohort, 0.840
in the internal validation cohort, and 0.903 in the external valida-
tion cohort. The deep learning nomogram had lower AIC values,

indicating its better reliability against overfitting. The calibration
curves for both nomograms for the probability of 1-, 2-, or 3-year
death were shown in Fig. 4c-d, respectively. The calibration curve
of the deep learning nomogram demonstrated better agreement
between the predicted and observed survival. Incorporating the
DLS into the clinicomolecular nomogram generated a total NRI of
0.646 (95% CI: 0.552, 0.773, P < 0.001) regarding the survival pre-
diction, indicating an improved classification performance of the
resulted deep learning nomogram. The decision curves showed in
Supplementary Figure S1 validated the clinical usefulness of the
prediction models, indicating that the deep learning nomogram
added more benefit than either the clinicomolecular nomogram
or the DLS.
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Table 1.

The C-indices and Akaike information criterion (AIC) values for survival prediction using the imaging-based deep learning signa-
ture (DLS), the clinicomolecular (CM) nomogram and the deep learning (DL) nomogram in the training, tuning, internal valida-

tion and external validation cohorts, respectively.

Model Index Training Tuning Internal validation External validation

DLS C-index  0.825(0.794,0.856)  0.745(0.659,0.831)  0.746 (0.675,0.817)  0.794(0.725, 0.863)
AIC 1450 251 278 206

CM nomogram  C-index  0.805(0.732,0.810)  0.838(0.774,0.903)  0.791(0.710,0.871)  0.771(0.714 0.896)
AIC 1471 239 273 227

DL nomogram C-index  0.835(0.806,0.865)  0.890(0.845,0.935)  0.840(0.785,0.895)  0.903 (0.859, 0.946)
AIC 1404 221 261 194

3.4. Identification of biological pathways associated with DLS

In the radiogenomics analysis cohort (44 male and 34 female, age
range: 18-72 years, median age: 48 years) with both DTI and RNA-
seq, 207 DEGs differentially expressed between risk subgroups strati-
fied by the DLS were identified, as listed in Supplementary Table S3
and shown by a volcano plot in Fig. 5a. The enrichment analysis based
on the DEGs identified the key biological pathway, as shown in
Fig. 5b. A complete list of enriched pathways with FDR < 0.01 was
provided in Supplementary Table S4. The DLS was found to be signifi-
cantly correlated with misadjusted GO annotations and signaling
pathways related to chemical synaptic transmission/neurotransmit-
ter transport, calcium transport/signaling, glutamate secretion/gluta-
mate binding activation of AMPA receptors, neuron projection
development/axon guidance, and glioma pathways, as shown in
Fig. 6a and Supplementary Table S5. The average expression value of
these DLS-related pathway genes succeeded to stratify the radioge-
nomics analysis cohort into two risk subgroups (log-rank P = 0.018,
HR = 2.741, 95% ClI: 1.017, 7.388) with a cutoff value of 29.31. The
prognostic power of these DLS-related genes were further confirmed
on the TCGA-LGG dataset (log-rank P < 0.001, HR = 1.036, 95% CI:
1.015, 1.058), the TCGA-GBM dataset (log-rank P = 0.025, HR = 2.105,
95% CI: 1.998, 2.213), and the CGGA-glioma dataset (log-rank
P =0.008, HR = 1.056, 95% CI: 1.008, 1.103), as shown by the Kaplan-
Meier curves in Fig. 5c. To further reveal the DLS-pathways-survival
linkage, the class activation maps (CAMs) of the DLS with corre-
sponding FA, MD, AD and RD images of four representative patients
classified into high- and low-risk subgroups were presented in
Fig. 6b. These CAMs indicated that the proposed deep CNN model
could highlight certain risky regions that may be relevant to tumor
prognosis while suppress other less relevant regions. The heatmap-
like display allowed assessing the region of risk with potential prog-
nostic value on each DTI-derived map such as FA, MD, AD and RD.
Furthermore, we found that higher mean FA and lower mean MD, AD
and RD within the highlighted regions could be found in the high-
risk subgroup than those in the low-risk subgroup, as shown by the
boxplots in Fig. 6¢c. Moreover, the results of DEGs in the radiogenom-
ics dataset (n = 78) showed the expressions of representative genes
such as SNAP25 and KIF5A (core genes of chemical synaptic transmis-
sion/neurotransmitter transport pathways), PRKCB and CAMK2A
(core genes of calcium signaling and glioma pathways) in the low-
risk subgroups were significantly lower than those in the high-risk
subgroup, as shown by the boxplots in Fig. 6d.

4. Discussion

In this multicenter study, we developed and validated a deep
learning prognostic signature using DTI metrics for improving the
survival prediction of glioma patients, and further revealed the key
biological pathways underlying the deep imaging features. The major
findings of our study were that (1) DTI-derived DLS can offer incre-
mental prognostic value beyond traditional clinical parameters and
IDH mutation status in prediction of overall survival for glioma

patients, and (2) prognostic deep features learned from DTI metrics
were associated with biological pathways involved in synaptic trans-
mission, calcium transport, glutamate secretion/binding activation of
AMPA receptors, neuron projection development/axon guidance, and
glioma pathways.

Several studies have presented radiomics models to predict the
clinical outcomes of gliomas from MRI, such as the radiomics analysis
on 233 LGG patients [15] and the radiomics model on 217 GBM
patients [14]. Deep learning approach improved the handcrafted
radiomics pipeline by learning discriminative image features on its
own. However, deep CNNs usually require a large set of labelled
training images before they can achieve acceptable performance. For
example, 730 patients with gastric cancer were recruited to develop
a deep learning predictor from CT imaging for prediction of lymph
node metastasis [24]. In another study, preoperative MRI from 1163
patients were collected to train and validate a CNN for renal tumor
classification [19]. So far, studies are still limited regarding imaging-
based CNN for prediction of glioma survival. Lao et al. developed a
machine learning model combining both radiomics and deep features
from standard MRI for survival prediction in GBM on a small cohort of
112 patients [16]. Yoon HG et al. trained a deep CNN from 88 GBM
patients for survival prediction and tested its performance in 30
patients [17]. Previous studies built their prediction model using con-
ventional MR sequences (T1, T1c, T2, Flair) with limited sample size,
while the use of CNN for survival prediction on DTI has not been
investigated. Our study enrolled 688 glioma patients with preopera-
tive DTI to develop and validate a deep learning signature named DLS
for survival prediction. Our results demonstrated integrating the DLS
with existing risk factors resulted in an improved accuracy in survival
prediction.

Previous studies have shown that higher FA and lower MD within
the tumor conferred poor prognosis in both GBM and LGG [9,11].
Increased FA and decreased MD values could reflect the increased
cell proliferation or cellularity [8,25]. Consistent with previous stud-
ies, our results showed higher mean FA and lower mean MD, AD and
RD within the highlighted regions of the CAMs of deep learning fea-
tures could be found in the high-risk subgroup than that in the low-
risk subgroup. Furthermore, we demonstrated that the localizability
of the deep features in our approach for low- and high-risk classifica-
tion, and the most discriminative regions of the CAMs were mainly in
the tumor margin and edema areas as illustrated in Fig. 6b. Thus, we
deduced that the tumor margin and edema subregions with
increased FA and decreased MD, AD and RD may indicated a more
infiltrative tumor habitat.

Notably, the underlying biological interpretations of the imaging-
based models developed by artificial intelligence should be eluci-
dated before translation into clinical practice [26]. In this study, a
radiogenomic analysis combining DTI and transcriptomic data dem-
onstrated the CNN-learned imaging phenotypes of gliomas were sig-
nificantly associated with key genes and dysregulated signaling
pathways. We identified 207 DEGs across the low-risk and high-risk
subgroups derived from the DTI-based DLS, and the prognostic values
of some DEGs in human cancers has been revealed previously. For
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Fig. 5. A summary of the deep learning signature (DLS)-associated key genes and pathways along with the assessment of their prognostic significance. (a) Volcano plot of the differ-
entially expressed genes (DEGs) between risk subgroups stratified by the DLS in radiogenomics analysis dataset. The red and green dots represent DEGs that were upregulated and
downregulated, respectively. (b) Key enriched pathways in Gene Ontology (GO) Biological Process (red), Reactome (green), Kyoto Encyclopedia of Genes and Genomes (KEGG,
brown), and Hallmark (blue) databases. (c) Kaplan-Meier curves based on the average expression value of the genes contained in the DLS-correlated pathways for overall survival
prediction in the radiogenomics analysis dataset, TCGA-GBM cohort, TCGA-LGG cohort, and CCGA-glioma cohort. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

instance, high expression of SNAP25 [27] and KIF5A [28] were dem-
onstrated to be associated with worse prognosis in colon cancer and
bladder cancer. In addition, PRKCB and CAMK2A were revealed as
prognostic oncogenes, and their high expressions predict poor prog-
nosis in GBMs [29]. Similarly, our results showed the expressions of

SNAP25, KIF5A, PRKCB and CAMK2A in the low-risk subgroups were
significantly lower than those in the high-risk subgroup in our radio-
genomic cohort. To further investigate the prognostic values of the
pathway genes associated with the DLS-based risk subgroups, the
mean expression of the genes within the enriched pathways was
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found to be significantly associated with overall survival of the
patients in our radiogenomics cohort, and this association was con-
firmed externally in TCGA and CGGA cohorts. These results demon-
strated the prognostic values of DLS-associated key genes may
contribute to the prognosis in glioma patients.

Our imaging-transcriptomic analysis revealed that high-risk phe-
notype defined by deep features from DTI is significantly associated
with misadjusted GO annotation and signaling pathways related to
chemical synaptic transmission/neurotransmitter transport, calcium
transport/signaling, glutamate secretion/glutamate binding activa-
tion of AMPA receptors, neuron projection development/axon guid-
ance, and glioma pathways, while these GO annotation and signaling
pathways were negatively associated with low-risk deep imaging
phenotype. DTI is a method that provides quantitative information
about microscopic water diffusion characteristics along different ori-
entations, which is highly anisotropic in the white matter whereas

isotropic in grey matter [30,31]. The anisotropic water diffusion is
related to the ordered arrangement of the myelinated fibers in the
white matter, and water molecules preferentially diffuse along the
length of the neuronal axons [30,31]. Hence, DTI has been considered
to be a powerful imaging tool for measuring macroscopic axonal
organization in nervous system tissues [30]. Combining the biological
properties of DTI and our radiogenomics findings, we propose two
potential explanations for the biological mechanisms underlying in
the prediction model using DTI features. The first one is the neuronal
activity-related glioma progression, which is a remarkable mecha-
nism recently found [32,33]. Venkatesh et al. [32] and Venkataramani
et al. [33] suggested that glutmate-induced neuronal hyperexcitation
transducts through axon and stimulates chemical synapses on glioma
cells. AMPA receptors of glioma cells that are stimulated by glutmate
propagates calcium signaling and further promote tumor cell growth
and invasion. Thus, the synapse, calcium, glutamate and axon-related
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GO annotation and signaling pathways revealed by this study indi-
cate the deep features from DTI may reflect the glioma progression
by glutamatergic neuron-to-brain tumor synaptic communication
(NBTSC) [34], and this hypothesis is potentiated by the DTI's imaging
capability on neuronal axons. In this perspective, NBTSC-inhibiting
therapies [34] may be more effective in high-risk glioma defined by
DTI-derived DLS. The second potential explanation is canonical path-
ways associated with gliomas such as KEGG glioma pathway, WNT
signaling pathway and HIF-1 signaling pathway. These signaling
pathways have been well investigated in glioma carcinogenesis and
were revealed significantly related to deep features from DTI that
confers prognostic significance in this study.

The present study has limitations. First, the retrospective nature of
the design renders the study subject to inherent biases and con-
founders, although we included a relatively large sample size of cases
in 2 institutions and TCIA, as well as adjusted for putative prognostic
factors of gliomas. Second, deep learning features extracted by black-
box-like networks are nameless and graphically obscure, which is a
prominent obstacle lies in the way of translating deep learning model
into clinical practice. Although we have attempted to unravel the bio-
logical basis of our presented model using radiogenomic analysis,
much more should be done for explaining the biological mechanisms
for deep features with prognostic significance. Third, the tumor
regions of interest were drawn by only one radiologist and confirmed
by a neurosurgeon, where bias might occur in the manual tumor
delineation. In future we will employ automatic algorithms to
achieve accurate and repeatable tumor segmentation. Fourth, as dif-
fuse glioma is considered as not a focal but a whole brain disease, it is
a reasonable hypothesis that whole-brain DTI features might better
characterize the tumor invasion and thus be predictive of patient
prognosis. Therefore, our future exploration also includes a whole-
brain DTI model for survival prediction.

In conclusion, we proposed a deep learning model using pre-oper-
ative DTI images, which performed with robustness and generaliz-
ability to predict the clinical outcomes of glioma patients.
Remarkably, we demonstrated certain deep features are associated
with distinct signalling pathways that confer prognostic significance
in glioma patients.
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