
animals

Article

Compositional and Functional Characteristics of
Swine Slurry Microbes through 16S rRNA
Metagenomic Sequencing Approach

Himansu Kumar 1 , Yu Na Jang 2, Kwangmin Kim 3, Junhyung Park 3, Min Woong Jung 2,*
and Jong-Eun Park 1,*

1 Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, RDA, Wanju 55365,
Korea; himanshu.genetics@gmail.com

2 Animal Environment Division, National Institute of Animal Science, RDA, Wanju 55365, Korea;
jyn0316@korea.kr

3 3 BIGS CO. LTD., Hwaseong 18454, Korea; kmkim@3bigs.com (K.K.); jhpark@3bigs.com (J.P.)
* Correspondence: mwjung@korea.kr (M.W.J.); jepark0105@korea.kr (J.-E.P.)

Received: 3 July 2020; Accepted: 6 August 2020; Published: 7 August 2020
����������
�������

Simple Summary: The goal of present study was to evaluate and characterize the microbes present in
the pig slurry. Samples were collected from three different slurry pits of a pig farm at different storing
time points. With the help of a 16S rRNA metagenomic sequencing approach, a detailed catalogue
of bacterial composition was reported. The biochemical pathways were investigated to explore the
functional patterns of microbes. This study may help to understand the changes in microbial diversity
with the storage time of pig slurry.

Abstract: Traditionally slurry is used as source of nitrogen, phosphorous, and potassium in bio
fertilizers to improve crop production. However, poorly managed slurry causes a hazardous effect
to the environment by producing greenhouse gases, causing the eutrophication of water bodies,
and polluting the groundwater. It has been largely reported that the microbial presence in slurry
causing a diverse effect on its storage and disposal system. However, the diversity of bacterial
populations in pig slurries remains largely unexplored. Here we report the bacterial diversity present
in the slurry from slurry pits, and the effect of storage time on bacterial population. We collected 42
samples from three different pig slurry pits, as three replicates from each one until the 14th week.
We used the 16S rRNA, Quantitative Insights Into Microbial Ecology (QIIME) and Phylogenetic
Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) protocols for the
metagenomic downstream analysis. Taxonomic annotation using the Greengenes metagenomic
database indicated that on an average 76.2% Firmicutes, 14.4% Bacteroidetes, 4.9% Proteobacteria, etc.
microbial populations were present. Comparative microbial analysis showed that the population of
Firmicutes decreased from the first to the 14th week, whereas the population of Bacteroidetes increased
from the first to the 14th week. Through principal coordinate analysis (PCoA), (linear discriminant
analysis effect size (LEfSe), and Pearson’s correlation analysis, we found microbial biomarkers
according to the storage time point. All bacterial populations were well clustered according to
the early, middle, and last weeks of storage. LEfSe showed that Actinobacteria, Lachnospiraceae,
Ruminococcaceae, and Bacteroidia are dominantly present in first, seventh, ninth, and 14th week,
respectively. Lachnospiraceae and Ruminococcaceae are ubiquitous gastrointestinal non-pathogenic
bacteria. KEGG pathways, such as membrane transport, carbohydrate and amino acid metabolism,
genetic replication and repair, were significant among all samples. Such a KEGG pathway may
indicate the association between the host organism’s metabolic activity and the microbes present in
the gastro intestinal tract (GIT).
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1. Introduction

Most of the world depends upon pig to fulfill their animal protein demand as reported by the
Food and Agricultural Organization (FAO) of the United Nations [1]. It was reported in 2011 that South
Korea ranked in fifth position in the world in terms of pork consumption. Pig farming is considered as
a significant source of income in Korean rural areas [2]. The agriculture department of South Korea
reported in 2014 that about 16 million pigs were slaughtered in 2013 to meet the demand of pork.
However, a major setback in pork industry had been observed due to outbreak of foot and mouth
disease in 2010–2011. The principal source of infections for pigs is the contact with excretory materials
from infected animals. The cleanliness and hygiene of pig farming can be achieved by an efficient and
strict slurry management system. The huge production of swine slurry and their management is an
utmost need to understand the pig farming requirements [3]. Stored slurry releases the severe offensive
odor into the environment because it comprises of microbes, fatty acids, indoles, phenols, ammonia and
sulphur-containing compounds [4,5]. Poorly managed slurry pits can cause the hazardous effects to the
environment by producing greenhouse gasses, the eutrophication of water reservoirs, and depositing
pollutants into water bodies. The bacteria present in slurry break it into multiple gases such as carbon
monoxide, methane, ammonia, and hydrogen sulfide. These gases represent a risk to human and
animal health by asphyxiation, nausea, unconsciousness, etc. Major challenges for swine slurry waste
management include controlling the dispersion of pathogenic microorganisms [6–9].

The most traditionally and commonly used method for the recycling of swine slurry is to spread
it on agricultural farming land to improve the crop production [10,11]. It has been reported that slurry
is a rich source of nitrogen, phosphorous, and potassium. The microbes present in slurry play a very
significant role in the pig’s life [8]. It is estimated that 35–70% of herds and 4.5–100% of individual
swine carry pathogenic microbes [12–14]. Pathogenic microbial contamination through pig slurry to
water and food represent a serious threat to human health as well as other animal’s health [15,16].
Slurry samples of pig also have the potential to provide information about pig intestinal parasites,
genetics, and diet.

By considering the wide impact of slurry on the environment, in this study, we used metagenomic
approaches to investigate the slurry microbial composition. We conducted time series sampling and
DNA extraction starting from one to 14 weeks and used a 16S rRNA high-throughput metagenomic
sequencing approach. We considered the duration of sampling till the 14th week by considering
2–3 months of general storage practice of slurry by the farmers. The storage of slurry causes the
growth of microbes which are involved in anaerobic degradation and methane production. There are
limited studies available about the association between microbe composition and functional patterns.
Therefore, understanding the effect of microbes in slurry storage is needed to mitigate the strategies of
slurry management.

Through the bioinformatics analysis of metagenomic reads, we elucidated their microbial
taxonomic structures through 16S rRNA metagenomic sequencing approach. The 16S rRNA sequencing
approach is high-throughput sequencing and is widely used to predict the phylogenetic and taxonomic
diversity in various samples such as intestinal, host-associated, fecal, water bodies, slurry, etc.
The generally shotgun metagenomic approach has been used to estimate the functional annotations of
microbes. However, in this study, we used 16S rRNA for the overall functional inference of microbes
present in the pig slurry. Many tools such as Tax4Fub, Piphillin, Faprotax, Paprica, and PICRUSt are
freely available for taxonomy annotations. The accuracy of such inferences or predictions is largely
dependent upon the genomic source available in public databases. We also identified metagenomic
biomarkers through LEfSe (linear discriminant analysis effect size) and co-expression analysis, which
indicate the significant abundance among sample groups.
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2. Materials and Methods

2.1. Sample Preparation, Demultiplexing and Quality Filtering

All experiments were carried out according to the standard protocol approved by the NIAS animal
care approval committee with the approval number 2018–262. We considered a total of 98 pigs of
77 days-old of 25 ± 2.50 kg in weight, and provided the same diet to each pig. The pigs were reared
in seven different pens, and their slurry into was stored into three different pits, uniformly collected
from seven pens at the National Institute of Animal Science (NIAS), South Korea. The temperature
of the slurry pits varied from 28 ◦C to 29 ◦C, and the humidity varied from 81 to 89%. One sample
from each slurry pit was collected at every week till the 14th week (14× = 42) and stored at −80 ◦C
till the DNA extraction experiment was conducted [17]. The pH and moisture content of the slurry
were measured during every sample collection time point. The DNA was extracted from each week’s
sample through the Fast DNA Spin Kit (MP Bio, USA), by following the manufacturer’s standard
protocol and we stored the DNA at −20 ◦C till further use. For the 16S rRNA metagenomic sequencing,
the V4 region of 16S rRNA gene was amplified from the extracted DNA with the help of universal
primers (5′-GGACTACHVGGGTWTCTAAT-3′ and 5′-GTGCCAGCMGCCGCGGTAA-3′). Unique
barcode sequences were inserted between the adapter and linker for the simultaneous sequencing of
multiple samples. Paired-end reads were preprocessed by removing the barcode sequences, linker,
and PCR primers. Further reads were quality trimmed and demultiplexed by keeping Phred Score >

20 [18,19].

2.2. Operational Taxonomic Unit (OTU) Clustering and Taxonomy Assignment

The processed reads were analyzed by the QIIME tool [20]. The reads were aligned with the
databases Greengene v13.8 for assigning the OTU (operational taxonomic unit) [21]. Open-reference
OTU cluster analysis with USEARCH (v7.0.1090) and PyNAST was used for alignment by keeping
97% sequence identity parameter to pick the OTU [22,23]. Relatively less abundant (<0.05%) and rare
OTUs were removed to normalized the OTU table and used for downstream analysis through QIIME.
Each OTU of the 16S rRNA sequence was assigned a taxonomy ID on the basis of alignment with
the reference database and NCBI by using the RDP classifier program (v2.2) [24,25]. Bar chart and
phylogenetic trees were generated from the OTU identifier table [26]. Comparative chart for 1–14
weeks were generated according to phylum, class, order, family, genus, and species level [27].

2.3. Microbial Diversity Analysis

The observed OTUs were used for diversity analysis through alpha and beta diversity [28].
The alpha diversity metrics was computed by using a rarefied OTU table. Rarefaction curves
of varying sample size were generated by using Observed_otus, Chao1, ace, Simpson, Shannon,
and Goods_Coverage [29]. The ratio between the regional and local microbial population was
estimated by the Unifrac distance for beta diversity analysis through the QIIME protocol [30]. Principal
coordinate analysis (PCoA) plots were also generated by performing jackknifed unweighted pair group
method arithmetic mean (UPGMA) clustering through Bray–Curtis distance matrices [31,32].

2.4. Feature Selection through Linear Discriminant Analysis (LDA) Effect Size (LEfSe)

Metagenomic features, such as class, organisms, OTU, genes, and functions can be predicted
through LDA–LEfSe methods. We tried to determine the biomarker microbes among 14 groups using
relative abundances. We kept the criteria of the LDA score for discriminative features >3.0, and the
alpha value for the factorial Kruskal–Willis test among the classes was <0.05.
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2.5. Investigation of Co-Occurring and Mutually Exclusive Microbes

We investigated the associations of individual bacteria in terms of degree of interaction. For
making the network visualization simple, we selected limited weeks of the sample (1, 4, 7, 10 and
14 week). A p-value was calculated from the OTU count distribution, and the node group week
wise relationships with p-values more than 0.05 were removed. We only kept the fractions of total
relationships which were more significant than those expected by chance.

2.6. Microbial Functional Profiling

We investigated the relative abundance of functional categories based on the assigned taxa of the
OTU [33]. PICRUSt was designed to interpret the 16S amplicon sequencing data in terms of biological
pathways. PICRUSt predicts the abundance of gene categories (COGs) and metabolic pathways
(KEGG). Identified function of genes was investigated and visualized with STAMP software for relative
abundance [34].

2.7. Data Availability

The sequencing data of the swine slurry samples have been submitted in the NCBI Sequencing
Read Archive (SRA) under the bio-project PRJNA577738.

3. Results

3.1. Sample Information and Read Statistics

The total number of samples for 16S rRNA sequencing was 42 (n = 42). Read counts for all
sequences were varied from 157,447 (sixth week) to 259,960 (ninth week), GC (%) 52 to 53, Q20 (%) 97
to 98, and Q30 (%) ranges to 91–93. Detail values of total bases, read count, N (%), Q20 (%), Q30 (%) for
all individual samples are shown in supplementary Table S1. The box plot for reads per sample is
shown in Figure 1.
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Figure 1. Boxplot of week wise sample showing the reads per sample of each group, X axis indicates
the number of weeks and the Y axis indicates the number of reads. Different colors are just representing
the differentiation among samples.

Quality-checked and filtered reads were considered for the OTU assignment, we found 485–825
OTUs from all samples. The lowest (485) OTUs were from the ninth week samples, whereas the highest
(825) were from 11th week. A total of 9858 OTUs were assigned from the sequences of all samples.
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Details about the number of OTUs, Chao1, Shannon, Simpson, and Goods Coverage are shown in
Supplementary Table S2. The rarefaction curve showed that the data of all the samples’ approaches
to completeness in the curve plateaus, as shown in the plot of Chao1 (Figure 2), Observed_species,
Shannon, and Simpson curves are shown in the Supplementary Figure S3.
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3.2. Multivariate Analysis

Multivariate analysis of beta-diversity for community structure and diversity through principal
coordinate analysis (PCoA), we observed a clear separation among the multiple weeks of slurry
samples, as shown in Figure 3. The Bray–Curtis analysis of the OTU shows almost all the samples
clustered according to their sample group.
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3.3. Microbial Taxonomy Annotation

Taxonomy composition of each sample from the phylum to species level was investigated through
QIIME-UCLUST by aligning the OTUs as a representative sequence against the metagenomic databases
(Greengene). The phylum-level composition of microbes suggests that Firmicutes and Bacteroidetes are
predominantly present in almost all samples, as shown in Figure 4. The overall presence of Firmicutes,
Actinobacteria, Bacteroidetes are 75.3%, 14.4% and 7.8%, respectively. Comparative microbial analysis
showed that the population of Bacteroidetes increased from the first to the 14th week, and in contrast,
the population of Firmicutes decreased comparatively. The population composition of microbes in
terms of class, order, family, genus and species was also shown in the Supplementary Figure S1A–D
and Supplementary Table S4. Krona plots were also generated and provided into the Supplementary
Figure S1E,F.
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color represents the relative abundance (%) for each phylum.

3.4. Phylogenetic Reconstruction

Phylogenetic heatmap result of the microbial species showing the differential enrichment at
different weeks. As shown in Figure 5, the different phylums are indicated in different color and their
respective species are clustered accordingly. The week-wise abundance of species is shown as the
heatmap in color gradient coded (0–53). We found that some of the species, such as Clostridium leptum,
Clostridium saudience, Lactobacillus ultunensis, Terrisporobacter petrolearius, and Butyrivibrio hungatei are
significantly abundant, as shown in Figure 5. Clostridium leptum can be seen as highly abundant in
weeks 7–9. We also performed jackknifed UPGMA clustering, as shown in supplementary Figure S2.
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3.5. Linear Discriminant Analysis Effect Size Method

The species associated with different biological conditions can also be identified through linear
discriminant analysis (LDA) effect size method (LEfSe). The LEfSe used random forest or iterative linear
regression to identify the core as well as the unique microbiome. Through LEfSe, we identified the
abundance of specific microbe in each week, as shown in Figure 6 with the weekly color-coded gradient
indication. An LEfSe result also corroborates the findings of the phylogenetic analysis, as we observed
Rumino coccaceae, Clostridium leptum, Butyrivibrio hungatei, Clostridium saudiense, Lactobacillus ultunensis,
Bacteroides stercoris, Desulfovibrio piger, Bifidobacterium minimum, Anaerorhabdus furcosa, Ignatzschineria
larvae, Parabacteroides distasonis, Prevotella timonensis are abundant, as shown in Figure 6.
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3.6. Functional Annotations of Microbes

On the basis of the KEGG pathway analysis, the functional behavior of the microbes presents
in the slurry samples for the first and 14th weeks are shown in Figure 7. Some of the pathways,
such as membrane transport, carbohydrate metabolism, amino acid metabolism, replication and
repair, translation, and energy metabolism, are predominantly enriched. The percentage of OTUs vs.
pathways has been plotted through the STAMP software (Figure 7).Animals 2020, 10, x 9 of 15 
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Figure 7. Functional annotation of the slurry bacterial population for the first and 14th weeks as the
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3.7. Identification of Co-Occurring and Mutually Exclusive Microbes through Network Analysis

Through network analysis, we identified the abundance of particular taxa at a specific week of
samples. By using Pearson’s correlation index method and highly significant (p < 0.05) correlation,
highly correlated nodes (OTUs) were placed more closely and distant related nodes were located far
from the hub region, as shown in Figure 8. The size and intensity of the respective color indicates the
degree of abundance in the sample. We observed, at first week, that Clostridium bornimense, Lactobacillus
ultunensis, and Proteobacteria succinivibrio were abundant; whereas, by the 14th week, Diplorickettsia
massiliensis and Anaerorhabdus furcosa were abundant, as shown in Figure 8.
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4. Discussion

The profiling of the bacterial content of swine slurry is important to understand their role in swine
health and pig farming. Despite the early traditional method of metagenome analysis, NGS-based
16S rRNA sequencing technology enhances the capacity of biodiversity assessment from metagenome
samples [35]. As 16S rRNA forms a part of bacterial ribosome and it contains regions of highly
conserved and highly variable sequence. Sequencing costs are relatively cheaper as compared to
shotgun sequencing so that we can amplify the only targets. In this study, an attempt was made to
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report the 16S marker changes into the swine slurry samples at different time points of storage. We
observed that the pH of the slurry increased from 5.8 to 6.0 during the storage of slurry from the first
to the 14th week. However, the moisture content of the slurry was increased to 97.3 by the 14th week.
To avoid the pseudo replication during the sampling, we uniformly collected the sample from three
different slurry pits to make three replicates of each time point.

We reported the taxonomic annotations of 42 samples starting from the first to 14th week of storage.
Taxonomy at all levels, namely the phylum, class, family, genus, and the species of microbes present
in the slurry samples, were examined at every week and provided into Supplementary Figure S1.
We performed similarity-based OTU binning by directly comparing with the metagenomic database,
by keeping a cutoff value of 97% in the species level. A rarefaction curve was used to measure the
richness of the observed OTUs of the slurry samples against the reference OTUs [36]. Our richness
curve results plotted through the Chao1, Observed species, Shannon, and Simpson indexes showed
that the evenness of diversity was achieved in almost all samples. Beta-diversity through the Weighted
UniFrac PCoA plot showed that the clusters of bacterial populations according to the early, mid,
and late week.

Our study indicates that Firmicutes was the most abundant phylum present in almost all
samples. However, the population of Firmicutes decreased from the first to the 14th week. In contrast,
the population of Bacteroidetes increased from the first to the 14th week. Similar results were reported
by the Shaufi, Mohd Asrore Mohd, et al. (2015) in the case of chicken gut microbial population [37]. It
is well known and extensively reported that the microbiota present around the pig stable affect the
health of the pig and subsequently affect the production of pig [38]. It is also documented that the pig
fecal material is the primary source of airborne bacteria, such as Clostridium leptum, and Clostridium
saudiense. However, Clostridium leptum is also known as carbohydrate-fermenting bacteria [39]. It is
dominantly present in human fecal microbiota, at around 16–25% and the alteration of its composition
may act as an indicator of many diseases [40]. Furthermore, Clostridium saudiense, a Gram-positive
bacteria, was isolated from the human fecal sample. It is a dominant species present (9–18%) in almost
all livestock gut microbiome. Clostridium species are known for helping the host organism against the
pathogenic bacteria. It also helps in the digestion process, and methane production [41]. However,
the specific function of Clostridium saudiense is still needs to be explored in swine gut microbiome [42].

Furthermore, Butyrivibrio hungatei is also abundant in almost all samples; it is a Gram-negative,
and butyrate-producing bacteria [43]. Butyrivibrio species are known for helping the host by breaking
down the protein, degrading the fiber, lipid biohydrogenation, etc. [44]. These are also reported as
the producers of microbial inhibitors, as well as to help in the degradation of plant carbohydrate
hemicellulose [45]. Lactobacillus ultunensis is a Lactobacillus species isolated from the human gastric
environment [46]. Lactobacillus is a Gram-positive, anaerobic, and lactic acid-producing bacteria,
abundantly present in healthy human, livestock and other adult organisms [47]. It is administered to
infants in adequate amounts as a probiotics to improve the host health [48]. Lactobacillus species are
reported as helpful for combating against several diseases, such as inflammatory bowel disease, type 1
diabetes, celiac disease and multiple sclerosis [49].

LEfSe is a tool for the discovery of biomarker bacteria among various samples by analyzing
the abundance of microbes [50]. We also implemented this tool to analyze the microbial biomarkers
in our swine slurry data, and found that Clostridium and Lactobacillus were predominant across the
samples and corroborated the earlier findings [51]. We reported the specific bacterial biomarkers
in each week of storage period. The overall bacterial abundance and their diversity may reflect a
similar association with the pig GIT ecosystem. The characterization of the functional pattern of the
microbiome is essential for the comparative metagenomic analyses of pig slurry.

The relevant metabolic activities of microbes are typically species or strain specific. We are aware
that the prediction of the functional activities of microorganisms on the basis of the V4 region of
16S rRNA genes may not provide exact or relevant information regarding their functional pattern.
The pathway analysis to identify enriched functions of the microbes present, as determined by 16S
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RNA analysis may add little to the results of the study. However, we assumed that it may give the
preliminary idea about the inference of biological functions of the microbes, and a lot may be done
before an exact conclusion.

We predicted the KEGG pathway based on the retrieval of homologous genes into the sample. We
observed little differences at the functional level because of their storage time. The KEGG pathways,
such as membrane transport, carbohydrate, and amino acid metabolism were significantly enriched
in across the sample. There is evidence that the microbes present in the sample such as fecal matter,
cecum content, sludge, slurry, and GIT microbes are greatly involved in multiple pathways of the
host organism [52,53]. Cai, Mingwei, et al. [54] reported that metagenomic sequences of municipal
sludge are involved in carbohydrate and protein metabolism during wastewater biogas-producing
systems. As shown in Figure 7, carbohydrate metabolism, replication and repair, cell motility, etc.
have shown some differences between the two groups. Since we provided the same food throughout
the experimental duration to all the pigs, we did not expect the functional variations to be because
of feedings.

The co-occurring and mutually exclusive network showed that Clostridium bornimense, Lactobacillus
ultunensis, Proteobacteria succinivibrio were abundant in first week. By the 14th week Diplorickettsia
massiliensis, Anaerorhabdus furcosa were abundant. This was reported that Clostridium bornimense
was involved in essential metabolic pathways in the biogas fermentation process. Many species
of Clostridium genus were involved in methanogenesis, which may indicate that the production of
methane starts at very early stages of slurry storage. Anaerorhabdus furcosa, anaerobic bacteria, produces
ethanol by breaking the pentose from the sewage sludge. This also indicates that the production of
ethanol starts in the latter stage of slurry storage.

5. Conclusions

As pig production is significant in terms of agriculture and livestock industry, the management
of their slurry waste is needed. Our study represents the longitudinal metagenomic profiling of
swine slurry to understand the bacterial community during its storage in the slurry pit. Weekly
comparison among samples clearly indicates that there were significant changes in the dominant
microbial community during the first to 14th week. The majority of bacterial populations belonged
to Firmicutes and Bacteroidetes. However, the abundance of Firmicutes decreased from the first to the
14th week, whereas the abundance of Bacteroidetes increased from the first to the 14th week. It was
reported that the strains of such bacteria were used as microbial markers and their relative abundance
may be governed by fermentation conditions. We found that some of the microbial species, such as
Clostridium leptum, Clostridium saudiense, Butyrivibrio hungatei, Lactobacillus ultunensis, are abundantly
present across the samples. Furthermore, the pathogenic indicator, such as Escherichia fergusonii, which
was reported as linked with pneumonia in cattle, was also present in the slurry samples. We also
reported functional annotations of these microbes and found their involvement in many pathways such
as membrane transport, carbohydrate and amino acid metabolism, replication and repair, and energy
metabolism. Overall, our findings improve the understanding of microbial abundance in the swine
slurry in a time series manner.
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