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Abstract

Background: Extracellular free water within cerebral white matter tissue has been shown to 

increase with age and pathology, yet the cognitive consequences of free water in typical aging 

prior to the development of neurodegenerative disease remains unclear. Understanding the 

contribution of free water to cognitive function in older adults may provide important insight into 

the neural mechanisms of the cognitive aging process.

Methods: A diffusion-weighted MRI measure of extracellular free water as well as a commonly 

used diffusion MRI metric (fractional anisotropy) along nine bilateral white matter pathways were 

examined for their relationship with cognitive function assessed by the NIH Toolbox Cognitive 

Battery in 47 older adults (mean age = 74.4 years, SD = 5.4 years, range = 65–85 years). 

Probabilistic tractography at the 99th percentile level of probability (Tracts Constrained by 

Underlying Anatomy; TRACULA) was utilized to produce the pathways on which microstructural 
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characteristics were overlaid and examined for their contribution to cognitive function independent 

of age, education, and gender.

Results: When examining the 99th percentile probability core white matter pathway derived 

from TRACULA, poorer fluid cognitive ability was related to higher mean free water values 

across the angular and cingulum bundles of the cingulate gyrus, as well as the corticospinal tract 

and the superior longitudinal fasciculus. There was no relationship between cognition and mean 

FA or free water-adjusted FA across the 99th percentile core white matter pathway. Crystallized 

cognitive ability was not associated with any of the diffusion measures. When examining cognitive 

domains comprising the NIH Toolbox Fluid Cognition index relationships with these white matter 

pathways, mean free water demonstrated strong hemispheric and functional specificity for 

cognitive performance, whereas mean FA was not related to age or cognition across the 99th 

percentile pathway.

Conclusions: Extracellular free water within white matter appears to increase with normal 

aging, and higher values are associated with significantly lower fluid but not crystallized cognitive 

functions. When using TRACULA to estimate the core of a white matter pathway, a higher degree 

of free water appears to be highly specific to the pathways associated with memory, working 

memory, and speeded decision-making performance, whereas no such relationship existed with 

FA. These data suggest that free water may play an important role in the cognitive aging process, 

and may serve as a stronger and more specific indicator of early cognitive decline than traditional 

diffusion MRI measures, such as FA.
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1. Background

1.1. Brain and cognitive aging

Across the world, the elderly population is rapidly expanding (Bureau, 2009). In the United 

States, the 65 and older population is expected to double by the year 2050 (Bureau, 2009; 

Jacobsen et al., 2011). With increasing age, a variety of cognitive processes decline even in 

the absence of apparent neurological or neurodegenerative disease (Anton et al., 2015; 

Dotson et al., 2015; Woods et al., 2013, 2011). While language function is relatively well-

preserved (e.g., vocabulary), learning and memory, working memory, speed of processing, 

executive function, and attention, as well as other abilities, steadily decline across the life 

span (Craik, F. I. M. & Salthouse, 2008; Salthouse, 1998). These cognitive functions that 

decline with age are collectively referred to as fluid cognition, while crystallized cognition is 

typically defined as abilities that either do not change or improve with age. The rates of fluid 

cognitive decline tend to be most pronounced in the seventh decade of life and beyond, and 

decline in fluid function in healthy elderly has been shown to have social and physical 

functional consequences (O’Shea et al., 2018). Cognitive decline late in life is associated 

with increased hospitalization, hospital re-admittance rates, mortality, loss of mobility, and, 

ultimately, loss of independence (Anton et al., 2015; Aubertin-Leheudre et al., 2015; Lövdén 

et al., 2005; Marioni et al., 2014; Woods et al., 2013, 2011). As the world’s elderly 
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population increases, we are faced with a health system crisis, both in capacity limitations 

and financial burden (Brault, 2012; Bureau, 2009; Jacobsen et al., 2011). These difficulties 

highlight the need for markers sensitive to the cognitive aging process that will better inform 

our understanding of mechanisms underlying age-related decline, and may serve as potential 

targets for intervention.

1.2. Free water, cognitive aging, and disease

With brain atrophy comes microstructural changes within the white matter which are 1) 

related to lower cognitive performance, 2) most apparent within the prefrontal white matter 

connections early in the aging process, 3) apparent both in the whole brain and tract-specific, 

and 4) extend toward the posterior regions later in individuals of advanced age (Bennett, 

Ilana and Madden, David, 2014; Gunning-Dixon et al., 2009; Madden et al., 2012). The 

most common measure used to characterize white matter microstructure, fractional 

anisotropy (FA), typically demonstrates sensitivity as a marker of normal aging that declines 

prior to grey matter atrophy (Hugenschmidt et al., 2008). However, traditional measures of 

white matter microstructure such as FA may have inherent limitations. For example, 

increased extracellular space has been observed as a function of brain atrophy, and the 

presence of these spaces can limit the accuracy of diffusion magnetic resonance imaging 

(dMRI) due to partial volume effects (Fjell et al., 2008). In other words, the accuracy of FA 

as a metric can be altered from partial volume effects depending upon the curvature, 

thickness, and orientation of the pathway in a given voxel (Vos et al., 2011). Further, partial 

volume effects may be more evident in the outermost portions of white matter pathways 

having an increased likelihood of including higher proportions of CSF, or even grey matter, 

within a given voxel. To partially address this potential confound, free water imaging from 

diffusion-weighted MRI has been proposed as a method to estimate and eliminate the effect 

of extracellular free-water on the dMRI signal (Pasternak et al., 2009).

Free water is defined as water molecules that are free to diffuse and do not experience 

restriction or hindrance. In conventional dMRI acquisitions, within a given brain voxel free 

water can be found in the extracellular space, which includes cerebrospinal fluid (CSF), 

interstitial space, or plasma. Diffusion imaging of free water was originally described as a 

method for reducing the partial volume effects of freely diffusing extracellular water within 

white matter to produce a more accurate estimate of the white matter microstructure 

(Pasternak et al., 2009). Increases in free water levels are thought to reflect accumulation of 

extracellular water, which may occur due to processes such as atrophy, edema, or breakdown 

of myelin cell membranes that would typically restrict diffusion of water (Maier-Hein et al., 

2015; Ofori et al., 2015; Pasternak et al., 2016, 2015; 2014, 2012; 2009; Weston et al., 

2015). Subsequent research on the topic has found that free water levels have a stronger 

association with age than traditional diffusion tensor imaging (DTI) measures (Chad, J.A., 

Pasternak, O., Salat, D.H., Chen, 2018). Recent longitudinal studies of elderly subjects 

found that free water-adjusted measures of white matter microstructure are more reliable, 

and better predict markers of aging and disease-specific pathology than white matter 

investigations performed without correction for partial volume effects (Albi et al., 2017; 

Chad, J.A., Pasternak, O., Salat, D.H., Chen, 2018; Maier-Hein et al., 2015). In subjects with 

neurodegenerative disease, progressive increases in free water levels are observed at each 

Gullett et al. Page 3

Neuroimage. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



stage throughout the disease progression from healthy, to mild cognitive impairment (MCI), 

to Alzheimer’s disease (AD) (Montal et al., 2018).

At present, the functional consequences of free water in typical aging without 

neurodegeneration remain unknown. The association of free water and cognition in a sample 

of cognitively diverse individuals was recently examined as a function of free water across 

the entire brain in relation to cognition (Maillard et al., 2019). The authors found global 

associations of whole-brain free water to be positively related to the Clinical Dementia 

Rating scale as well as broad measures of cognitive functioning and their change over time. 

However, more detailed and specific associations between free water along white matter 

pathways and cognitive function have yet to be examined in typical aging. Thus, the current 

study sought to elucidate the relationship between free water, age, and cognitive 

performance in older adults without neurodegenerative disease in order to better understand 

the unique role of free water in cognitive aging. Utilizing a sample of 47 typically-aging 

older adults, we studied the relationship between free-water across nine white matter 

pathways and neurocognitive function. as measured by the comprehensive NIH Toolbox 

(NIHTB) Cognitive Battery (Akshoomoff et al., 2013; Bauer and Zelazo, 2013; Weintraub et 

al., 2013). We hypothesized that,1) Free water values across a majority of the investigated 

white matter tracts would be greater with increasing age, 2) higher free-water values would 

be associated with poorer cognitive performance in fluid but not crystallized cognitive 

performance, and 3) free water would be the strongest correlate of cognitive aging, followed 

by a free water-adjusted traditional diffusion metric (e.g. Free Water-corrected Fractional 

Anisotropy), and the traditional diffusion metric alone (Fractional Anisotropy).

2. Methods

2.1. Participants

Forty-seven older adults (57.4% female) were recruited from the north-central Florida 

community. The study protocol was reviewed and approved by the University of Florida 

Institutional Review Board and all participants willingly provided written informed consent 

to participate in the study. Participants had a mean age of 74.4 years (SD = 5.4 years, range 

= 65–85 years) and an average of 16.6 years of education (SD = 2.4 years, range = 12–20 

years) (Table 1). Participants were screened for dementia using the Montreal Cognitive 

Assessment (MoCA; M = 25.8, SD = 2.5, range = 20–30) (Nasreddine et al., 2005), 

assessment of normative neuropsychological values on the NIH Toolbox (greater than 1 SD 

deficit in a cognitive domain on demographically corrected scores), and self-reported 

medical history. None of the participants carried previous diagnoses of mild cognitive 

impairment or Alzheimer’s disease. Participants were excluded for pre-existing neurological 

or major psychiatric brain disorders, MRI contraindications, diagnosis with a 

neurodegenerative brain disease (i.e. Alzheimer’s, Parkinson’s), and self-reported difficulty 

with thinking and/or memory.

2.2. Neurocognitive measures

The NIH Toolbox Cognitive Battery was administered as a brief assessment of 

neurocognitive function (Akshoomoff et al., 2013; Bauer and Zelazo, 2013; Weintraub et al., 

Gullett et al. Page 4

Neuroimage. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2013). Subtests of the NIHTB Cognitive Battery are divided into two composite measures of 

global cognitive function: 1) fluid cognitive abilities (abilities that change with age) and 

crystallized cognitive abilities (abilities that do not typically change with age). The fluid 

cognition composite is composed of the following tasks: Dimensional Change Card Sort, 

Flanker, Picture Sequence Memory, List Sorting, and Pattern Comparison. The crystallized 

cognition composite is composed of the Picture Vocabulary Test and the Oral Reading 

Recognition Test. More information about these measures and the creation of the two index 

scores can be found in the original work of Weintraub et al. (Weintraub et al., 2013). For the 

purposes of this study, the unadjusted crystallized and fluid composite scaled scores were 

utilized for analyses with age, education, and gender as covariates. For planned follow-up 

analyses, raw performance on the various subtests comprising these index measures were 

used with age, education, and gender as regression covariates. Use of these adjusted or raw 

scores in analyses, respectively, when combined with diffusion metrics allows for equitable 

comparisons. Briefly in regard to cognitive performance, we observed the typical age-related 

decline in fluid cognitive performance with advancing age, and a flat-to-slightly increasing 

relationship between age and crystallized cognitive performance.

2.3. Neuroimaging acquisition

All participants were imaged in a Philips 3T scanner (Achieva; Philips Healthcare), at the 

McKnight Brain Institute (University of Florida, Gainesville, Florida) with a 32-channel 

receive-only head coil. A high-resolution T1 weighted MPRAGE sequence and a 64-

direction high angular resolution diffusion-weighted imaging sequence were performed. 

Scanning parameters for the structural T1 consisted of: voxel size = 1 mm isotropic; TE = 

3.2 ms; TR = 7.0 ms; FOV = 240×240; Number of slices = 170; acquired in a sagittal 

orientation. We also obtained diffusion imaging data with a spin-echo prepared echo planar 

image (Poustchi-Amin et al., 2001) using the following parameters: TR/TE = 4840/86 ms, 1 

b = 0 scan (without diffusion weighting), 64 gradient directions with diffusion weighting 

1000 s/mm2, isotropic resolution of 2.0 mm, field of view (FOV) of 224 mm × 224 mm, and 

74 slices, covering the entire brain, with diffusion gradients distributed following a scheme 

of electrostatic repulsion (Jones et al., 1999).

2.4. Neuroimaging processing

2.4.1. T1-weighted imaging—T1-weighted images were processed through the 

FreeSurfer version 6.0.0 software. More information on the Bayesian inference methods and 

reliability of results utilizing Freesurfer software can be found in the original work by Fischl 

et al. and follow-up work by Jovicich et al., respectively (Fischl et al., 2002; Jovicich et al., 

2009). The white matter segmentation results were manually inspected, slice-by-slice, and 

control points were created to ensure accurate estimation of white matter borders throughout 

the brain. Maps were then re-processed with these control points, producing results that 

should better resemble previous maps that have been validated against histological measures 

(Cardinale et al., 2014) and manual segmentation in specific brain regions (Morey et al., 

2009). The resulting segmentation data were then utilized for further analysis in conjunction 

with the dMRI data described below.
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2.4.2. Diffusion modeling and parameter calculation—A two compartment model 

was used (Pasternak et al., 2009) to separately model water molecules in the vicinity of brain 

tissue (the tissue compartment) and water molecules that are freely diffusing without being 

hindered or restricted by tissue membranes (the free water compartment). This model was 

fitted using a regularized minimization procedure implemented in Matlab (Pasternak et al., 

2009), resulting in a free water map, which is a quantitative metric of the free water fraction 

in each voxel. Further, a fractional anisotropy (FA)(Basser and Pierpaoli, 1996) map was 

calculated from the tissue compartment to produce a free water adjusted FA. In order to 

produce the FA map, the diffusion data were corrected for eddy current distortions, brain 

extracted, and tensor calculations were performed using the Functional MRI of the Brain 

Software Library (FSL) dtifit tool (Fsl, 2006). FA was chosen as a comparative metric to the 

free water metric as it is a commonly-used diffusion parameter that represents the overall 

integrity of the white matter. To do so, FA incorporates several physical parameters of water 

diffusion in each voxel as derived by the three principle eigenvalues and as seen in the FA 

equation (Özarslan et al., 2005):

FA = 1/2
λ1 − λ2 2 + λ2 − λ3

2 + λ3 − λ1
2

λ1
2 + λ2

2 + λ3
2

2.4.3. Diffusion tensor imaging—TRACULA (TRActs Constrained by UnderLying 

Anatomy) is a neuroimaging tool which was chosen because it allows automatic 

reconstruction of common major white-matter pathways derived from diffusion-weighted 

MRI (Yendiki, 2011). The primary analysis utilized dMRI data that were processed through 

the default TRACULA pipeline, which utilizes the trac-all command as well as correction 

for eddy current distortions, brain extraction, tensor calculation, and affine registration and 

normalization to the MNI-152 template using FSL’s flirt (Fsl, 2006; Jenkinson et al., 2002; 

Jenkinson and Smith, 2001). This process results in the reconstruction of 18 commonly 

studied white matter pathways using the probability distributions of voxel-based fiber 

orientations along each tract. The resulting pathways included forceps major (fmajor) and 

minor (fminor) of the corpus callosum, and bilateral pathways for the anterior thalamic 

radiation (ATR), cingulate gyrus cingulum bundle (CCG), cingulate gyrus angular bundle 

(CAB), corticospinal tract (CST), inferior longitudinal fasciculus (ILF), superior 

longitudinal fasciculus temporal bundle (SLFt), superior longitudinal fasciculus parietal 

bundle (SLFp), and uncinate fasciculus (UNC). Pathways for each participant were manually 

inspected for gross reconstruction errors or missing pathways and corrected (necessitated for 

one pathway across two participants [CAB and UNC]) as needed such that no missing data 

were present The Average Center pathway data represent the pathway in which each 

adjacent voxel in the path has a 99% probability of being the next true fiber in the pathway, 

based on diffusion characteristics. This measure, as opposed to the standard output tract, 

provides the highest level of anatomical feasibility for the resulting pathways, and the 

primary tract measure utilized in this study.

2.4.4. Free water and fractional anisotropy extraction from regions of 
interest—Using the free water, FA, and free water-adjusted FA maps as the base image and 
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the Average Center pathway as the mask (99% probability connection), mean diffusion (FA, 

free water) values across each of the nine Average Center pathway masks were calculated 

for each participant using the fslmaths tool (Jenkinson et al., 2012). Using the Average 
Center data serves to increase confidence that the pathways examined are indeed 

representative of true white matter neuroanatomy and minimize overlap with cerebrospinal 

fluid (CSF), which would be identified as partial volume in the extracted free water values 

(Pasternak et al., 2009). The default TRACULA tract output and the 99th percentile 

probability pathway are presented together along the corticospinal tract of a representative 

participant for visualization (Fig. 1). In order to further reduce the possibility of false 

discovery, the diffusion values for each hemisphere of the sixteen Average Center pathways 

were averaged together to create eight bilateral pathway values. Later analyses determined 

data across the SLFt and SLFp pathways to be highly co-linear and statistically 

indistinguishable, and as such, the values for these two physically co-located pathways were 

collapsed into a single bilateral variable (SLF). Thus, when combined with the two collosal 

pathways (fmajor and fminor), the present study utilized a total of nine final pathways per 

diffusion modality, as in previous research by our group (Gullett et al., 2018).

2.5. Statistical analyses

Statistical analyses were performed with SPSS Statistics v24.0 (IBM, 2016). Tables and 

statistical figures were created using SPSS as well as R 3.3.3 statistics package (R 

Development Core Team, 2016), and ggplot 2.2.1 (Wickham, 2017). All demographic and 

neurocognitive variables of interest met the requirements of normality specified by the GLM 

model in terms of skewness and kurtosis, as z-skew or z-kurt values did not exceed normal 

limits to necessitate normalization. There were no missing demographic or neurocognitive 

data across the included participants. Outlier diffusion values (greater than ± 3SD from the 

mean) extracted from the probabilistic tractography pathways were normalized with 

Winsorization, which is a common practice (Jones et al., 2017; Templeton, 2011). 

Winsorization was only necessitated for one pathway (CCG) belonging to one participant.

The primary analysis examining the relationship of cognition and diffusion values averaged 

across the entire Average Center path for each bilateral tract was performed. The formula for 

this regression equation is as follows:

CogMeasure = Bintercept + Bageage + Beduedu + Bmale sexsex + Bfemale sex sex + Bdiffusiondiffusion

In this analysis, a series of linear regressions were performed to determine the relationship 

of three diffusion metrics to the two unadjusted NIH Toolbox composite cognitive indices 

(Fluid cognition and Crystallized cognition), with covariates of age, education, and gender. 

The dependent variable (DV) was the cognitive index and the independent variables (IVs) 

included the three covariates (age, education, gender) along with the average diffusion value 

across the tract of interest. Lastly, secondary analyses were performed for those bilateral 

pathways that were significantly related to cognitive functioning to determine the specific 

contribution of each NIH Toolbox cognitive subtest. Left and right hemisphere data were 

also examined for their individual contributions to each cognitive subtest with additional 

regressions. These analyses allowed for determination of specificity of the relationships in 
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regard to the neuropsychological functions associated with each anatomical pathway. Each 

linear regression investigating the relationship between cognitive performance and the mean 

diffusion value of each pathway was corrected for False Discovery Rate (FDR) at a p-value 

threshold of p < .05 using the Benjamini and Hochberg method considering a total of nine 

pathways examined, which consistent with and perhaps even more conservative than similar 

recent investigations (Boots et al., 2019; Chopra et al., 2018; Luo et al., 2019). Investigations 

involving the hemispheric contributions of each specific subtest were corrected similarly for 

a total of nine regressions given that both hemispheres were entered as IVs into the model 

for each pathway. For display purposes as an attempt to deal with potential multi-collinearity 

of variables, we provide values from a partial correlation (ρ) independently correcting both 

the diffusion and cognitive variables for age, education, and gender. These values provide 

visualization of the unique relationship between a single diffusion metric and cognitive 

performance after removing the effect of latent variables (e.g. age, education, and gender). 

Lastly, QQ plots were visualized for the standardized and unstandardized residuals of all 

regressions performed, which revealed no evidence of abnormality or deviation from the 

regression line which would require further investigation with a Kolmogorov-Smirnov test.

3. Results

3.1. Sample demographics

One-way ANOVA determined MoCA performance was significantly higher for female 

participants (M = 26.7, SD = 2.54) than males (M = 24.6, SD = 1.90; F[1,46] = 9.78, p 

= .003). Otherwise, there were no significant differences between male and female 

participants on any of the demographic, cognitive, or neuroimaging-based measures utilized 

in this study. The majority of the sample was right-handed, and given that the language-

related measures administered were isolated to the crystallized composite and were 1) not 

speed-dependent tasks, and 2) investigated in relation to bilateral hemisphere neuroimaging 

data, participant handedness is of minimal concern regarding potential influence on the 

findings.

3.2. Age and white matter diffusion across TRACULA-derived pathways

In general, diffusion data demonstrate the commonly described pattern of decreasing white 

matter integrity (higher free water) with increasing age. When utilizing the 99th percentile 

pathway data derived from TRACULA, covarying for education, gender, and applying an 

FDR correction (p < .05), there was a significant positive relationship between age and mean 

free water across one of the nine pathways examined; the ATR (R2 = 0.20, p = .027). Three 

additional pathways demonstrated trends toward significance after FDR correction, 

including the CAB (R2 = 0.12, p = .081), ILF (R2 = 0.14, p = .081), and the SLF (R2 = 0.12, 

p = .081). There was no significant association between age and mean FA or mean free 

water-adjusted FA across any of the nine pathways examined after FDR correction (Table 2).

3.3. Free water values and cognitive performance

When including in the regression model variables of age, education, and gender, fluid and 

crystallized cognition were examined for their relationship with average free water values 

across each of the nine bilateral 99th percentile probability pathways produced by 
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TRACULA. After applying FDR correction, lower fluid cognitive performance on the NIH 

toolbox was significantly related to higher mean free water values across four of the nine 

bilateral pathways, including the CAB (R2 = 0.35, β = −0.42, FDR-p = .027), CCG (R2 = 

0.29, β = −0.33, FDR-p = .045), CST (R2 = 0.28, β = −0.33, FDR-p = .045), and SLF (R2 = 

0.30, β = −0.35, FDR-p = .045), (Table 3). There was no association between crystallized 

cognition and free water diffusion after FDR correction, though trends were observed for the 

CAB (R2 = 0.35, β = −0.35, p = 0.035, FDR-p = 0.19) and ILF (R2 = 0.37, β = −0.31, p = 

0.058, FDR-p = 0.19) pathways. For visualization of these results, values from a partial 

correlation (ρ) independently correcting both the diffusion and cognitive variables for age, 

education, and gender are displayed in Fig. 2.

3.4. Fractional anisotropy and cognitive performance

When covarying for age, education, and gender, neither fluid cognition nor crystallized 

cognition were associated with mean FA or with mean free water-adjusted FA across any of 

the nine bilateral white matter pathways. A trending association for lower fluid cognitive 

performance with lower mean FA across the Forceps Major of the corpus callosum was 

observed (R2 = 0.28, β = 0.30, p = 0.03, p-FDR = 0.20). Otherwise, neither FA nor free 

water-adjusted FA were related to cognitive performance across the remaining pathways, 

though directional trends were consistently positive such that higher FA or FW-adjusted FA 

were associated with better fluid cognitive performance (Supplemental Table 3).

Planned follow-up analyses to determine the specific Fluid Cognition subtest or subtests 

driving these relationships were then performed, using subtest performance as the DV, mean 

free water across each of the four significant pathways as the IV, and covariates of age, 

education, and gender. These analyses revealed that higher mean free water values across the 

CAB was significantly associated with decreasing performance on the List Sorting memory 

task (β = −0.44, FDR-p = .015), higher mean free water across the CCG was associated with 

lower Picture Sequencing memory performance (β = −0.41, FDR-p = .030), higher mean 

free water across the CST was associated with lower Flanker performance (β = −0.49, FDR-

p = .005), and higher mean free water across the SLF was associated with lower List Sorting 

memory (β = 0.38, FDR-p = .033) (Table 3; Fig. 3).

4. Discussion

The present investigation extends age-related associations in extracellular free water to 

cognitive function and white matter tracts obtained using an innovative probabilistic 

tractography approach. When examining white matter microstructure across the core 

pathway of nine major white matter tracts, which serves to minimize partial volume with 

CSF and grey matter, we demonstrate that higher free water values within the core white 

matter pathway are related to poorer fluid cognitive function. Further, there appears to exist 

a strong hemisphere-specific, structure-function relationship between free water within 

specific pathways and their associated neurocognitive function.

When examining the 99th percentile (Average Center) core white matter pathway produced 

by TRACULA, mean free water across four tracts was a significant predictor of fluid 

cognitive ability, while a traditional measure of diffusion (FA) was not. The association 
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between higher mean free water across these four pathways and the neuropsychological 

subtest contributing to the effect was specific to the functions required of the related 

cognitive task. Significant associations between poorer fluid cognitive functioning and 

higher mean free water values were observed across the core pathway of the angular bundle 

of the cingulate gyrus (CAB), the cingulum bundle of the cingulate gyrus (CCG), the 

corticospinal tract (CST), and the superior longitudinal fasciculus (SLF). Interestingly, the 

cognitive subtasks associated with higher mean free water across the CAB and CCG were 

those related to memory and working memory functions (Picture Sequencing and List 

Sorting, respectively), as might be expected for these frontotemporal pathways with 

hippocampal involvement (Bubb et al., 2018; Schmahmann and Pandya, 2009). Similar task-

related specificity was seen for the association between higher mean free water values across 

the CST, a large-bundle cortical-motor pathway emanating from the brainstem, and poorer 

Flanker performance, an inhibitory-reaction time task with a strong psychomotor decision-

making component. Even further, these findings were hemisphere specific, such that tasks 

involving language (List Sorting) were more significant for the left hemisphere portion of 

the tract, while largely non-verbal measures (Picture Sequencing, Flanker) were more 

significant for the right hemisphere portion of the associated pathway. These findings extend 

the white matter and cognitive aging literature, and provide unique evidence of a 

physiological process that appears to play a role in cognitive aging.

While previous studies have shown free water and free water-adjusted FA to be stronger 

correlates of aging than traditional FA (Chad, J.A., Pasternak, O., Salat, D.H., Chen, 2018), 

mean free water was only associated with age across the anterior thalamic radiation (ATR), 

after multiple comparison correction. Further, no association existed between age and mean 

FA nor mean free water-adjusted FA when utilizing the core white matter pathway produced 

by TRACULA. Lack of such associations are potentially due to the use of the relatively 

small core pathway along the white matter tract which may not be sensitive enough to 

demonstrate age-related white matter integrity effects in a healthy aging cohort. This use of a 

healthy aging cohort may have further implications for the lack of findings as well, as free 

water-corrected indices have been shown to represent tissue degeneration and alterations to 

the myelin sheath in previous studies (Pasternak et al., 2015). As grey matter regions 

deteriorate, white matter typically declines concurrently in those of advanced age (Brickman 

et al., 2005; Raz et al., 2005; Salat et al., 1999), such as those participants utilized in the 

present study (ages 65–85). Further, much like in the present study, these associations appear 

in the cingulate and dorsolateral frontal regions of the brain (Brickman et al., 2005). 

Degradation of the white matter pathway is not likely to be uniform and may demonstrate an 

outside-in deterioration pattern, though limited examination of this potential pattern has 

been performed in the literature. This suggests that the use of microstructural white matter 

integrity across a larger, sample-based calculation of the white matter bundle as typically 

done in research (e.g. TBSS) may be appropriate for the examination of disease- or aging-

related changes. However, it is possible that these approaches lack the sensitivity to detect 

changes in microvasculature or potential inflammation in normal aging given the 

confounded dMRI signal from CSF, grey matter, and partial volume averaging typically 

present along the outer edge of white matter pathways. For example, a recent study 

demonstrated a strong association between higher free water and lower cognitive 
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performance in an MCI cohort but a decreasing utility of TBSS-examined free water as 

disease progression increased (Ji et al., 2019). We demonstrate that in the context of healthy 

aging, the use of a similar method utilizing the probabilistically-derived 99th percentile core 

white matter pathway retains both an age and cognitive function relationship that is specific 

to the neuropsychological function of a given pathway.

It has been demonstrated that changes in white matter as measured by FA in normal aging 

typically occurs along an anterior-posterior gradient, where earlier changes are seen in the 

frontal versus posterior white matter and correlating with declines in frontally- or 

attentionally-mediated cognitive functions (Gunning-Dixon et al., 2009). The present study 

demonstrates a higher value of free water with increased age along mostly frontal and 

temporal regions, and these associations were also related to lower performance on 

frontally-mediated cognitive tasks. These findings demonstrate a strong coupling of free 

water and frontally-mediated cognitive performance as compared to FA, suggesting that free 

water may serve as a more sensitive early marker of age-related cognitive decline than 

traditional dMRI measures when extracted from a probabilistically-derived pathway across 

the core white matter connection.

While direct data linking free water to physiological changes is lacking, prior work has 

suggested free water may be a marker of early axonal degeneration (Hoy et al., 2017a,b), or 

a potential marker of neuroinflammatory processes (Albi et al., 2017; Maier-Hein et al., 

2015; Pasternak et al., 2015, 2014, 2012, 2009). If true, age-related increases in free water 

fraction across major white matter pathways may represent a chronic consequence of the 

aging process, and may even be a contributing factor to physiological decline underlying the 

cognitive aging process. However, the fact that the relationship between free water and 

cognitive function remained significant even after accounting for chronological age, 

education, and gender suggests that extracellular free water has broad-ranging implications 

for cognitive function; and may possibly represent a more insidious process. More 

biomarker studies are needed to determine the association of the free water metric and early 

pathological neuroinflammatory and neurodegenerative processes. Should future studies 

establish this link, the less-invasive nature of free water data collection can be utilized, and 

effective interventions to target such processes can be developed and tested in an attempt to 

slow the rate of cognitive aging. The data presented in the current study represent an 

additional link in the growing chain of literature investigating the subtle changes in cognitive 

function across non-pathologically aging populations. In this regard, additional research 

investigating cognitive function relationships to differences in extracellular free water across 

AD, MCI, and healthy aging will provide important insight into a potentially useful 

biomarker for cognitive decline.

This study has a number of limitations worth consideration. The sample size of forty-seven 

older adults is relatively small. We attempted to address this limitation by considering only 

the findings of strongest statistical significance with an appropriately-sized FDR correction 

at p < .05 based on the number of pathways examined. It is possible that, given the nine 

pathways were examined for their association with both fluid and crystalized cognitive 

function, this level of correction is insufficient to warrant significance. However, we feel the 

presented results are quite relevant given the high level of specificity for the resulting 
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significant pathways and their associated neurocognitive functions. Regardless, these factors 

highlight the need for larger, longitudinal studies of free water change in typical aging, as 

well as throughout the trajectory of neurodegenerative disease states. Further, the present 

study utilizes single-shell dMRI data, which requires a regularized minimization to estimate 

the model parameters. With more elaborated dMRI acquisitions, the regularization 

assumptions can be relaxed, free water can be more reliably estimated (Hoy et al., 2017a,b; 

Pasternak et al., 2014), and confounding effects such as blood plasma (Rydhög et al., 2017) 

or relaxation times (Rydhög et al., 2019) can be removed. Registration inaccuracies may 

also cause the inclusion of mostly-CSF voxels which can bias the free water measurement. 

However, the current study used the 99% probability core white matter pathway for each 

tract of interest to minimize potential influence from CSF. While it is impossible to rule out 

an influence of confounding CSF, the approach taken here serves to limit potential influence.

5. Conclusions

The purpose of this investigation was to describe in a typically-aging cohort the specific 

association between free water in white matter and cognitive function. Our results 

demonstrate that examining white matter microstructure in a manner that is relatively free of 

the confounds of CSF and grey matter infringement may improve the specificity of cognitive 

associations with a given a probabilistically-derived core white matter tract in typically-

aging older adults. Specifically, we show that higher extracellular free water across the core 

of the cingulate gyrus, corticospinal tract, and superior longitudinal fasciculus white matter 

pathways are associated with poorer fluid cognitive function in normal older adults. Higher 

mean free water fraction across these pathways appears to be sensitive to lower hemisphere-

specific cognitive functions of working memory, inhibitory reaction time, and memory 

processes; even when accounting for the effect of age, education, and gender. Thus, our data 

demonstrate that the presence of free water within white matter is not only greater with 

advanced age, but has functional consequences for cognition. With further research and 

greater understanding of the physiological process resulting in age-related increases of free 

water, this measure may serve as a modifiable target for intervention.
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Fig. 1. 
A representative bilateral corticospinal tract pathway depicting the differential size and 

location of the 99th percentile probability pathway (bright yellow) as compared to the 

standard TRACULA pathway output (red).
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Fig. 2. 
Partial correlogram displaying the partial correlation between age-, education-, and gender-

adjusted diffusion metrics and age-, education-, and gender-adjusted cognitive performance. 

Note: FW = Free Water, FA = Fractional Anisotropy, FW-adjusted FA = Free Water adjusted 

Fractional Anisotropy; ATR = Anterior Thalamic Radiation; CAB = Cingulate Gyrus, 

angular bundle; CCG = Cingulate Gyrus, cingulum bundle; CST = corticospinal tract; 

Fmajor = Forceps Major, corpus callosum; Fminor = Forceps Minor, corpus callosum; ILF = 

inferior longitudinal fasciculus; SLF = superior longitudinal fasciculus; UNC = uncinate 

fasciculus.
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Fig. 3. 
Three-dimensional representation of the larger tract from which the 99th percentile white 

matter pathway was extracted for diffusion metric analysis along with the associated 

cognitive index and/or subtest for each pathway. Note: Only significant associations 

displayed. All values represent the measure of interest adjusted for age, gender, and 

education. FW = Free Water, FA = Fractional Anisotropy, FW-adjusted FA = Free Water 

adjusted Fractional Anisotropy; ATR = Anterior Thalamic Radiation; CAB = Cingulate 

Gyrus, angular bundle; CCG = Cingulate Gyrus, cingulum bundle; CST = corticospinal 

tract; Fmajor = Forceps Major, corpus callosum; Fminor = Forceps Minor, corpus callosum; 

ILF = inferior longitudinal fasciculus; SLF = superior longitudinal fasciculus; UNC = 

uncinate fasciculus.
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Table 1

Sample demographics.

Variable Total Mean (SD) Male Mean (SD) Female Mean (SD)

N = 47 N = 20 N = 27

Age 74.4 (5.4) 73.8 (4.8) 74.9 (5.8)

Highest Educational Level 16.6 (2.4) 16.6 (2.7) 16.7 (2.1)

Right-Handed 95.7% 95.0% 96.3%

Race

Caucasian 95.8% 100.0% 92.6%

African-American 2.1% 0.0% 3.7%

Latino 2.1% 0.0% 3.7%

MoCA Total Score 25.8 (2.5)* 24.6 (1.9) 26.7 (2.5)

NIH Toolbox Crystallized Performance 115.8 (18.5) 111.1 (20.3) 119.2 (16.6)

NIH Toolbox Fluid Performance 100.0 (12.5) 97.7 (12.2) 101.6 (12.7)

*
Female performance significantly higher than male p < .01.

Note: Adjusted Scaled Scores have a mean of 100 and standard deviation of 15; MoCA = Montreal Cognitive Assessment; NIH Toolbox 
Crystallized Performance is comprised of the Picture Vocabulary Test and the Oral Reading Recognition Test; NIH Toolbox Fluid Performance is 
comprised of Dimensional Change Card Sort, Flanker, Picture Sequence Memory, List Sorting, and Pattern Comparison tasks.
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