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a b s t r a c t

Alzheimer's disease (AD) represents the main form of dementia; however, valid diagnosis and treatment
measures are lacking. The discovery of valuable biomarkers through omics technologies can help solve
this problem. For this reason, metabolomic analysis using ultra-performance liquid chromatography
coupled with quadrupole time-of-flight tandemmass spectrometry (UPLC-Q-TOF-MS) was carried out on
plasma, hippocampus, and cortex samples of an AD rat model. Based on the metabolomic data, we report
a multi-factor combined biomarker screening strategy to rapidly and accurately identify potential bio-
markers. Compared with the usual procedure, our strategy can identify fewer biomarkers with higher
diagnostic specificity and sensitivity. In addition to diagnosis, the potential biomarkers identified using
our strategy were also beneficial for drug evaluation. Multi-factor combined biomarker screening
strategy was used to identify differential metabolites from a rat model of amyloid beta peptide 1e40
(Ab1�40) plus ibotenic acid-induced AD (compared with the controls) for the first time; lysophosphati-
dylcholine (LysoPC) and intermediates of sphingolipid metabolism were screened as potential bio-
markers. Subsequently, the effects of donepezil and pine nut were successfully reflected by regulating the
levels of the abovementioned biomarkers and metabolic profile distribution in partial least squares-
discriminant analysis (PLS-DA). This novel biomarker screening strategy can be used to analyze other
metabolomic data to simultaneously enable disease diagnosis and drug evaluation.
© 2022 The Authors. Published by Elsevier B.V. on behalf of Xi’an Jiaotong University. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Alzheimer's disease (AD) represents the main form of dementia,
and it poses a significant healthcare challenge. Currently, there are
50 million people with cognitive impairment worldwide and this
number will increase to 152 million people by 2050 [1]. However,
up to date, the diagnosis and treatment of AD are not sufficient [2].
Biomarkers can be used to diagnose diseases and evaluate the ef-
ficacy of treatments or drugs in target populations [3,4]. Therefore,
the identification of valuable biomarkers is crucial for the diagnosis
and treatment of AD.

Metabolomics, an effective platform for biomarker discovery,
involves qualitative and quantitative metabolite measurements
University.
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within biological systems [5,6]. Liquid chromatography combined
with mass spectrometry (LC-MS) can produce massive amounts of
metabolite information, which makes it a powerful technique for
performing metabolomic analyses [7]. However, the vastness of LC-
MS data, along with the diverse structures of metabolites, makes
biomarker discovery difficult because it requires extensive data
processing steps [8,9]. Biomarker screening is a key link in the data
processing steps, and thus, several biomarker screening strategies
have been developed in the field of metabolomics [10,11]. For
example, Yun et al. [10] proposed a rank aggregation strategy to
generate a “super” list that could reflect nine-variable importance
analysis methods, thereby solving the problem of inconsistency
among various variable rankingmethods. However, these strategies
focus only on the diagnostic capability of the screened biomarkers.
Biomarkers can be classified into several types, such as predictive,
diagnostic, pharmacodynamic, prognostic, safety, risk, and moni-
toring biomarkers. Pharmacodynamic biomarkers are assessed
University. This is an open access article under the CC BY-NC-ND license (http://
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before and after drug dosing, thereby reflecting the effects of the
drug on the disease [3]. Therefore, biomarkers that can simulta-
neously reflect multiple aspects of the disease are desirable.

Recently, a multi-factor combined biomarker screening strategy
proposed by our groupwas able to identify the most discriminating
metabolites for diagnosis due to its scientific selection of single-
factor threshold and multi-factor combination [11]. Herein, we
further explored whether biomarkers identified using this strategy
can simultaneously diagnose AD and evaluate drug efficacy based
on metabolomic data. In this study, a rat model of AD was estab-
lished by the intrahippocampal injection of amyloid beta peptide
1e40 (Ab1�40) plus ibotenic acid (proven to be more representative
of AD than Ab or ibotenic acid alone) [12,13]. Then, a multi-factor
combined biomarker screening strategy was used for biomarker
discovery based on metabolomic data from the plasma, hippo-
campus, and cortex. As expected, 10, 7, and 6 potential biomarkers
with high specificity and sensitivity for diagnosis were successfully
identified in the plasma, hippocampus, and cortex samples,
respectively. Subsequently, donepezil and a natural medicine, pine
nut, were chosen for investigating the potential of the biomarkers
identified using our strategy to evaluate drug efficacy. Donepezil is
a drug that is approved by the U.S. Food and Drug Administration
for the clinical treatment of AD. Pine nut has been reported to be
helpful in AD treatment. Pine nut oil and its main component,
pinolenic acid, have been shown to have antioxidant and anti-
inflammatory effects [14,15], while oxidative stress and chronic
inflammation are themain factors that accelerate the AD process. In
addition, an active component of pine nut (UPNO-1) has been
shown to ameliorate neurotoxicity and oxidative stress in an animal
model of D-galactose-induced AD [16]. Taking advantage of the
potential biomarkers identified using our strategy, the effects of
drugs such as donepezil and pine nut were reflected by the regu-
lation of overall metabolic profiles and metabolic biomarker levels.
A multi-factor combined biomarker screening strategy could
rapidly and accurately identify potential biomarkers beneficial for
disease diagnosis as well as drug efficacy evaluation.

2. Materials and methods

2.1. Materials

Ab1�40 (sequence: DAEFRHDSGYEVHHQKLVFFAEDVGSNK-
GAIIGGVV) was obtained from AnaSpec (Fremont, CA, USA). Ibo-
tenic acid (�98%) was purchased from Cayman Chemical (Ann
Arbor, MI, USA). Donepezil hydrochloride was purchased from
National Medical Products Administration (Beijing, China). Korean
pine nut was acquired from the Chensongshan Special Product
Company (Yichun, China). Acetylcholine (ACh), acetylcholines-
terase (AChE), and choline acetyltransferase (ChAT) were pur-
chased from Andy Gene (Beijing, China). Acetonitrile and methanol
(MS grade) were obtained from Thermo Fisher Scientific (Rockford,
IL, USA). Formic acid (MS grade) was purchased from Sigma-Aldrich
(St. Louis, MO, USA). All other chemicals and solvents used were of
analytical grade.

2.2. Animals

Male Sprague-Dawley rats (200 ± 10 g) were obtained from
the Laboratory Animal Institute of Peking University Health Sci-
ence Center (Certificate No.: SYXK 2011�0039). The feeding
conditions for the rats were a 12-h day and night cycle at room
temperature (25 ± 2 �C) and humidity of 50% ± 5%. The rats were
provided free access to food and water. The rats were randomly
assigned to four groups (n ¼ 13 per group), i.e., the control, AD
model, donepezil, and pine nut groups. The Ab1�40 plus ibotenic
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acid AD rat model was established in accordance with a previ-
ously published procedure [12]. Briefly, the rats were anes-
thetized and fixed on a stereotaxic apparatus. The hippocampi of
rats in the AD model, donepezil, and pine nut groups were
bilaterally injected with 2 mL of mixed Ab1�40 ibotenic acid so-
lution (coordinates: bregma 3.0, anterolateral 2.0, and dorso-
ventral 3 mm); the control group received 2 mL of saline. Then, the
rats in the control, AD model, donepezil, and pine nut groups
were intragastrically administered an equal volume of saline,
saline, donepezil (1.5 g/kg), and pine nut suspension (2.25 g/kg),
respectively, once per day for 1 month. The dose of donepezil
used to treat rats in this study was based on the clinically rec-
ommended dosage for humans [12]. The dose of pine nut for
treating rats was calculated based on the human dose advised by
the “Compendium of Materia Medica”. All animal experiments
were approved by the Peking University Health Science Center
Administration Committee.

2.3. Sample collection

The rats were first anesthetized with pentobarbital sodium, and
their orbital venous blood was collected in heparin-containing
Eppendorf tubes. Plasma samples were obtained by centrifuging
the blood at 1000 r/min for 8 min at 4 �C. The rats were then
sacrificed by cervical dislocation, and their hippocampi and cortices
were quickly collected on ice. The three samples were then cry-
opreserved at �80 �C.

2.4. Histopathological and cholinergic system evaluation

The morphology of the hippocampal neurons was observed af-
ter paraffin-embedded section slicing and hematoxylin and eosin
(H&E) staining. In brief, the rats (n ¼ 3 per group) were anes-
thetized, and myocardial perfusionwas performed using water and
paraformaldehyde. Next, the brains were collected and stored in a
fixative for 1 day. The fixed brains were embedded in paraffin and
sectioned into 3e5 mm slices using a histotome (Leica, Germany).
After H&E staining was performed, the hippocampus area was
observed under light microscopy using a IX-71 light microscope
(Olympus, Tokyo, Japan).

Enzyme-linked immunosorbent assay (ELISA) was performed to
measure hippocampal ACh, AChE, and ChAT levels. The hippo-
campus was homogenized with phosphate-buffered saline (1:9, m/
V) and then centrifuged at 12,000 r/min for 15 min at 4 �C. The
supernatants were collected, and the hippocampal ACh, AChE, and
ChAT levels were measured according to the manufacturer's
instructions.

2.5. Sample preparation and LC-MS analysis

Prior to analysis, the plasma, hippocampus, and cortex samples
were thawed on ice. Acetonitrile (150 mL) was added to the 50 mL of
plasma sample; after 1 min of vortexing, the mixture was centri-
fuged at 12,000 r/min for 15 min at 4 �C twice, and then the su-
pernatant was collected. The hippocampus and cortex samples
were mixed with acetonitrile at a ratio of 1:5, vortexed for 1 min,
and centrifuged at 12,000 r/min for 20 min at 4 �C twice; the su-
pernatants were collected. Quality control (QC) samples were
prepared by blending equivalent volumes of each sample.

Untargeted metabolomic analysis was performed in a positive
ion mode on aWaters Xevo G2-Q/TOFmass spectrometer equipped
with an ACQUITY UHPLC system (Waters Corporation, Milford, MA,
USA). System repeatability and stability were tested through
continuous injection of six QC replicates at the very beginning and
implanting one QC sample between every ten real samples. Plasma,
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hippocampus, and cortex samples (10 mL) were injected into a BEH
C18 column (2.1 mm� 50 mm,1.7 mm;Waters Corporation, Milford,
MA, USA). The metabolites were measured at a flow rate of 0.4 mL/
min according to the following LC gradient: 0e1 min, 85%e60%
phase A (water containing 0.1% formic acid); 1e4 min, 60%e10%
phase A; 4e5 min, 10% phase A. Phase B consisted of acetonitrile
containing 0.1% formic acid. MS data were collected in the full scan
mode with m/z scan range 50e1200 Da; leucine-enkephalin was
utilized for real-time quality correction; desolvent gas flow rate
was 600 L/h; the ion source temperature was 110 �C; and the
capillary and extraction cone voltages were 3.5 and 2.0 kV,
respectively.

2.6. Data and statistical analysis

The rawmetabolomic datawere processed usingMarkerLynx4.1
XS (Waters Corporation, Milford, MA, USA) for peak detection and
alignment. The parameters were set as follows: retention time
range, 0e6 min; mass range, 50e1200 Da; retention time window,
0.1 min; mass window, 0.05 Da; mass tolerance, 0.02 Da; intensity
threshold, 100; peak width at 5% height, 1.0 s; peak-to-peak base-
line noise, 0.0; and noise elimination level, 6. Multivariate statis-
tical analyses, including principal component analysis (PCA) and
partial least squares-discriminant analysis (PLS-DA), were per-
formed using SIMCA 13.0 demo software (Umetrics Corporation,
Malmo, Sweden). The normal distribution of data was checked
using the Kolmogorov-Smirnov test and Shapiro-Wilk test, while
the homogeneity of variance of data was checked using Levene's
test. Student's t-test and receiver operating characteristic (ROC)
curve analysis were performed using SPSS software (IBM Corpo-
ration, Armonk, NY, USA). Potential biomarkers were identified
based on the match of precise mass and MS2 information to data-
bases (such as Human Metabolome Database (HMDB) and Mass-
Bank). The metabolic pathways were analyzed using the kyoto
encyclopedia of genes and genomes database resource (https://
www.kegg.jp/).

2.7. Multi-factor combined biomarker screening strategy

The strategy consisted of three steps, i.e., method verification,
single-factor screening, and multi-factor combined screening. The
method verification step involved the selection of the initial vari-
ables from the primitive variables. Relative standard deviation
(RSD) value of the variable's peak intensity in QC samples <20%was
used as the selection criterion. The number of initial variables was
labeled as N0.

The single-factor screening step was performed to obtain the
optimal threshold for the four factors, namely, the variable
importance in projection (VIP), fold change (FC), area under the
ROC curve (AUROC), and -ln(P value). Their thresholds are labeled
as a, b, c, and d, respectively, while Na, Nb, Nc, and Nd represent the
numbers of variables satisfying a, b, c, and d, respectively. The
minimum thresholds were based on the general cutoff of the
factors, which were 1.0, 1.0, 0.70, and 3.0, for a, b, c, and d,
respectively. Regression analyses were then performed to explore
the relationship between Na/N0 and a, Nb/N0 and b, Nc/N0 and c,
and Nd/N0 and d. The maximum thresholds were acquired from
the regression functions, and they were the corresponding values
when N/N0 ¼ 0.01. In this study, five thresholds were set up for
each factor, and they were equally spaced. Next, the variables
satisfying the threshold of each factor were selected, and corre-
sponding PLS-DA analysis was performed. The R2X, R2Y, and Q2

values represent the PLS-DA model's explanation, classification,
and forecasting capabilities, respectively. Overall, the sum of R2X,
R2Y, and Q2 values (SUM) was chosen as the index for optimal
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threshold selection. The best threshold for each factor was ob-
tained based on the maximum SUM.

The multi-factor combined screening step was used to further
screen the variables by comparing the multi-factor combinations.
For the four factors, there were 11 combinations (combs 1e11).
Eleven multi-factor combinations and corresponding variable sets
were obtained according to the optimal thresholds of the four
factors, and then PLS-DA analysis was performed. Consistent with
the single-factor screening step, the combination with maximal
SUM was chosen as the best combination. The variables in the best
combination were the potential biomarkers.

3. Results and discussion

3.1. Pathomorphological changes

Pyramidal cell necrosis in the hippocampal CA1 region is an
important pathological basis for learning and memory dysfunc-
tion in AD [17]. H&E staining is the most commonly used method
of pathological tissue section staining, in which abnormal pyra-
midal neurons tend to shrink with pyknotic and hyperchromatic
nuclei [18]. As shown in Fig. 1A, neurons in the CA1 region of the
control group showed a normal morphology with clear bound-
aries and lightly stained nucleoli. Marked morphological
changes, including karyopyknosis and dark staining, were visu-
alized in the AD model group, indicating the occurrence of
neuronal lesions. Karyopyknosis was ameliorated after donepezil
and pine nut treatment; nevertheless, the neurons still displayed
a looser arrangement compared to the neurons of the control
group. In summary, AD modeling by Ab1�40 plus ibotenic acid
administration resulted in severe neuronal damage, and both
donepezil and pine nut exhibited a certain degree of neuro-
protection. Pathomorphological results provided a preliminary
basis for selecting donepezil and pine nut as drugs to be included
in the efficacy evaluation.

3.2. Damage to the cholinergic system

ACh is closely involved in learning and memory processes,
and the loss of cholinergic neurons in the brain is one of the most
important pathological features of AD [19,20]. ChAT and AChE are
the two key enzymes that generate ACh and degrade ACh,
respectively. ChAT, ACh, and AChE form a relatively balanced and
mutually constrained cycle under physiological conditions.
Relative to the Ach levels in the control group, the ACh levels in
the AD model group were significantly lower (Fig. 1B; P < 0.05).
Donepezil treatment significantly increased the ACh concentra-
tion (Fig. 1B; P < 0.05), whereas pine nuts did not significantly
change the ACh levels. For AChE, Ab1�40 plus ibotenic acid in-
jection significantly increased AChE activity, while both done-
pezil and pine nut treatment inhibited this increase significantly
(Fig. 1C; P < 0.05). The ELISA results of AChE confirmed the
cholinesterase inhibitor nature of donepezil and showed that
pine nut had a similar effect as donepezil. Additionally, ChAT
activity was significantly lower after AD modeling but signifi-
cantly elevated after donepezil treatment (Fig. 1D; P < 0.05). In
conclusion, impaired Ach, AChE, and ChAT in the AD model group
were all ameliorated by donepezil treatment, reflecting its good
efficacy in AD. AChE activity elevation due to AD modeling was
inhibited by pine nut treatment, indicating that pine nut could
serve as a new therapeutic medicine through the AChE inhibition
effect, similar to the widely used clinical drugs, such as done-
pezil, galantamine, and rivastigmine [21,22]. The results of
cholinergic system further suggested that donepezil and pine nut
could be used in the efficacy evaluation.

https://www.kegg.jp/
https://www.kegg.jp/


Fig. 1. (A) Hematoxylin and eosin (H&E) staining images of the pyramidal cells in the hippocampus CA1 region of the control, AD model, donepezil, and pine nut groups. The black
arrowhead represents normal cells and the red arrowhead represents distorted cells. (B) Acetylcholine (Ach) level, (C) acetylcholinesterase (AchE) activity, and (D) choline ace-
tyltransferase (ChAT) activity of control, AD model, donepezil, and pine nut groups (mean ± standard deviation, *P < 0.05 presented comparing with model group, #P < 0.05 and
##P < 0.01 presented comparing with drug (donepezil or pine nut) group).
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3.3. Biomarker discovery using multi-factor combined biomarker
screening strategy

Non-targeted metabolomics was used to identify differential
metabolites, and the total ion chromatograms (TIC) are shown in
Fig. S1. In addition, all six QC samples clustered together in the PCA
score plots, demonstrating the satisfactory reliability and repeat-
ability of the metabolomic data for the plasma, hippocampus, and
cortex samples (Fig. S2). Next, a multi-factor combined biomarker
screening strategy was employed to identify differential metabo-
lites in a rat model of Ab40 plus ibotenic acid-induced AD
(compared with the controls), which has been achieved for the first
time, based on metabolomic data.

First, 332, 185, and 267 initial variables were obtained for the
plasma, hippocampus, and cortex samples, respectively, using the
method verification step. Second, the initial variables were
screened by comparing the different thresholds of VIP, FC, AUROC,
and eln(P value). Regression analyses were carried out to explore
the relationship between Na/N0 and a, Nb/N0 and b, Nc/N0 and c,
and Nd/N0 and d in the three samples (Figs. 2 and S3). The R2 values
of the regression functions were all greater than 0.9, reflecting
high-fitting reliability. The minimum thresholds were 1.0, 1.0,
0.70, and 3.0, for a, b, c, and d, respectively; the maximum
thresholds were acquired from the regression functions, and they
were the corresponding values when N/N0 ¼ 0.01. Five thresholds
were set up for each factor in the present study. Table 1 shows the
corresponding values of a and Na, b and Nb, c and Nc, d and Nd in
the plasma, hippocampus, and cortex samples. Next, PLS-DA
analysis was performed to determine the optimal threshold for
each factor. The score plots of PLS-DA models performed by the
variable sets selected through different thresholds of the four
factors are shown in Fig. S4 (plasma), Fig. S5 (hippocampus), and
Fig. S6 (cortex). For the plasma sample, the R2X, R2Y, and Q2 values
at different thresholds of the four factors are shown in Figs. 2EeH.
As for VIP, with increasing a, the R2X and Q2 values were first
downregulated and then upregulated, while the R2Y value was
downregulated (Fig. 2E). The change rules of FC, AUROC, and eln(P
value) were similar; R2X increased but R2Yand Q2 decreased as the
threshold increased (Figs. 2FeH). It can be seen that the biggest
R2X, R2Y, and Q2 values were obtained at different thresholds.
Overall, the SUM was chosen as the index for optimal threshold
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selection. The SUM values at different thresholds of the four fac-
tors are listed in Table 1. With themaximum SUM, 2.1, 0.87, and 5.7
were chosen as the optimal thresholds of b, c, and d, respectively.
There was one exception to the VIP. The largest SUM was obtained
when a ¼ 3.8; however, there was an outlier that was outside the
95% confidence interval in the PLS-DA score plot when a ¼ 3.8
(Fig. S4E). For the remaining four thresholds, larger SUM values
were obtained at a ¼ 1.0 and a ¼ 1.7, while the control and AD
model specimens were separated better at 1.7 than at 1.0
(Figs. S4A and B). Consequently, we selected 1.7 as the optimal
value of a for the plasma samples. In summary, the optimal values
of a, b, c, and d for the plasma samples were 1.7, 2.1, 0.87, and 5.7,
respectively. Similarly, we acquired the optimal thresholds for the
hippocampus and cortex samples according to the largest SUM
(Fig. S7 and Table 1). As a result, 1.0, 1.0, 0.70, 3.8 were the optimal
a, b, c, d for the hippocampus samples; 1.0, 1.0, 0.85, 6.2 were the
optimal a, b, c, d for the cortex samples.

Finally, the second-step-obtained variable sets were further
screened by comparing multi-factor combinations. The numbers of
variables satisfying the requirements of multi-factors in the
plasma, hippocampus, and cortex samples are shown in the
Wayne plots (Figs. 3A�C). Table 2 shows eleven multi-factor
combinations and their corresponding numbers of variables in
the plasma, hippocampus, and cortex samples. For plasma sam-
ples, set5 and set10, and set8 and set11 were the same. Consistent
with the single-factor screening step, the combination with
maximal SUM was chosen as the best combination. The results
revealed that when the PLS-DA model was performed using set6,
the SUM was the highest (Table 2). Therefore, comb6 was the best
multi-factor combination, and the variables in set6 were the ex-
pected potential biomarkers. Similarly, we acquired the best
combinations of the hippocampus and cortex samples according
to the largest SUM (Table 2). As a result, set5 (or set6, set10) was
the best combination for the hippocampus samples; set6 (or
set10) was the best combination for cortex samples. In summary,
the best combination containing 10, 7, and 6 variables was finally
acquired for plasma, hippocampus, and cortex samples, respec-
tively (Figs. 3DeF). The PLS-DA score plots and R2X, R2Y, and Q2

values of the best combination in the three samples are shown in
Figs. 3DeF, while the PLS-DA score plots and parameters of the
remaining ten combinations are displayed in Fig. S8 (plasma),



Table 1
The thresholds of four factors, the numbers of corresponding variables, and the sum of R2X, R2Y, and Q2 values (SUM) of the partial least squares-discriminant analysis (PLS-DA)
models performed by the corresponding variables in plasma, hippocampus, and cortex samples.

Sample N0 VIP FC AUROC �ln(P value)

a Na SUM b Nb SUM c Nc SUM d Nd SUM

Plasma 332 1.0 68 1.93 1.0 282 1.94 0.70 157 2.07 3.0 98 2.18
1.7 29 1.87 2.1 17 2.12 0.76 95 2.19 3.9 55 2.23
2.4 17 1.74 3.2 7 2.09 0.81 54 2.29 4.8 29 2.27
3.1 8 1.54 4.3 4 1.97 0.87 20 2.40 5.7 13 2.36
3.8 4 2.35 5.5 3 1.95 0.92 3 2.20 6.7 4 2.23

Hippocampus 185 1.0 23 2.46 1.0 132 2.00 0.70 25 2.51 3.0 15 2.44
1.9 9 1.67 1.8 16 1.80 0.75 15 2.45 3.8 7 2.65
2.7 7 1.61 2.6 8 1.89 0.80 9 1.91 4.6 4 2.32
3.6 4 1.63 3.4 8 1.89 0.85 3 1.96 5.4 2 2.31
4.4 3 1.84 4.3 2 1.85 0.89 2 2.22 6.1 2 2.31

Cortex 267 1.0 46 2.37 1.0 218 2.00 0.70 88 2.15 3.0 68 2.11
1.7 14 2.14 2.0 15 1.59 0.75 51 2.52 4.1 37 2.56
2.4 8 2.15 3.0 9 1.54 0.80 38 2.30 5.1 23 2.43
3.1 5 2.11 4.0 4 1.41 0.85 19 2.70 6.2 7 2.46
3.8 3 2.14 5.0 3 1.39 0.91 4 2.60 7.2 4 2.49

N0: the number of initial variables; VIP: variable importance in projection; FC: fold change; AUROC: area under receiver operator characteristic curve; a, b, c, and d: the
threshold of VIP, FC, AUROC and�ln(P value), respectively; Na, Nb, Nc, and Nd: the numbers of corresponding variables that met the requirements of the thresholds; P value: AD
model group compared with control group.

Fig. 2. (AeD) Regression curves between N/N0 and the factor's threshold in the plasma sample. N is the number of variables that meets the factor's threshold. N0 is the number of
initial variables. a, b, c, and d represent the thresholds of variable importance in projection (VIP), fold change (FC), area under receiver operator characteristic curve (AUROC),
and �ln(P value), respectively. (EeH) The R2X, R2Y, and Q2 values of the partial least squares-discriminant analysis (PLS-DA) models performed by the variable sets selected through
considering the thresholds of (E) VIP, (F) FC, (G) AUROC , and (H) eln(P value) in the plasma sample.
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Fig. S9 (hippocampus), and Fig. S10 (cortex). As shown in
Figs. 3D�F, the variables of the best combination could success-
fully distinguish AD model rats from control rats with excellent
parameters in all three samples. The obtained R2X, R2Y, and Q2

values were 0.83, 0.85, and 0.81 for plasma; 0.99, 0.81, and 0.71 for
hippocampus; and 0.82, 0.94, and 0.90 for cortex. Moreover, the
AUROC of the selected variables by our strategy was all greater
than 0.85 (Figs. 3G�I), which demonstrated their high specificity
and sensitivity for diagnosis. In summary, 10, 7, and 6 potential
biomarkers with high diagnostic specificity and sensitivity were
successfully obtained using our strategy for the plasma, hippo-
campus, and cortex samples, respectively.

VIP>1.0, FC > 1.2, and P < 0.05 were commonly used in the usual
procedure of biomarker screening. Using the usual procedure, 34, 6,
and 18 variables were obtained for the plasma, hippocampus, and
cortex samples, respectively (Figs. 4A, D, and G). The R2X, R2Y, and
Q2 values of the PLS-DA model performed by these variables were
as follows: 0.63, 0.85, and 0.70, respectively, for the plasma; 1.00,
0.45, and 0.33, respectively, for the hippocampus; and 0.87, 0.70,
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and 0.54, respectively, for the cortex. In contrast, 10, 7, and 6 vari-
ables were obtained using our strategy for plasma, hippocampus,
and cortex samples, respectively (Figs. 3D�F). The variables
selected by our strategy can provide an excellent distinction be-
tween the control and AD model groups with better parameters.
The obtained R2X, R2Y, and Q2 values by our strategy were 0.83,
0.85, and 0.81, respectively, for plasma; 0.99, 0.81, and 0.71,
respectively, for hippocampus; and 0.82, 0.94, and 0.90, respec-
tively, for cortex. In particular, the overlapped control and model
groups in the hippocampus and cortex samples were successfully
separated using our strategy. In summary, compared with the usual
procedure, our strategy greatly reduced the number of screened
biomarkers and significantly improved the explanation, classifica-
tion, and forecasting capabilities of the PLS-DA model. There were
two possible reasons for these observations. The first was the broad
screening criteria for the usual procedure leading to large numbers
of biomarkers being identified, with significant time and effort
required to identify them and elucidate their metabolic pathways.
The other was that the AUROC was not taken into consideration in



Fig. 3. (AeC) Wayne plots of the numbers of variables meeting the requirements of multi-factor in plasma, hippocampus, and cortex samples. The best multi-factor combination is
marked in blue in the Wayne plot. (DeF) The score plots and parameters of PLS-DA model performed by the best combination in plasma, hippocampus, and cortex samples. Black
and red circles represent the control and AD model groups, respectively. (GeI) The receiver operator characteristic curves of the variables of the best combinations in the plasma,
hippocampus, and cortex samples. (JeL) The score plots of PLS-DA models performed by the selected variables of control, AD model, and donepezil groups in the plasma, hip-
pocampus, and cortex samples. Therapeutic effect of donepezil was reflected by the curative direction towards the control group. Black, red, and green circles represent the control,
AD model and donepezil groups, respectively. The red arrowhead represents the modeling direction, and the green arrowhead represents the curative direction. (MeO) The score
plots of PLS-DA models performed by the selected variables of control, AD model, and pine nut groups. The therapeutic effect of pine nut was reflected by the curative direction
towards the control group. Black, red, and light blue circles represented control, AD model, and pine nut groups, respectively. The red arrowhead represents the modeling direction,
and the light blue arrowhead represents the curative direction.
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Table 2
The numbers (N) of variables and the SUM of the eleven multi-factor combinations in plasma, hippocampus, and cortex samples.

No. Multi-factor combination Plasma Hippocampus Cortex

N SUM N SUM N SUM

1 VIP and FC 5 2.18 23 1.81 44 2.40
2 VIP and AUROC 7 2.34 7 1.83 7 2.41
3 VIP and �ln(P value) 5 2.36 5 1.92 2 2.47
4 FC and AUROC 10 2.17 25 2.15 19 2.60
5 FC and �ln(P value) 4 2.21 7 2.51 7 2.46
6 AUROC and �ln(P value) 10 2.49 7 2.51 6 2.66
7 VIP, FC, and AUROC 4 2.17 7 1.83 7 2.41
8 VIP, FC, and �ln(P value) 2 1.98 5 1.92 2 2.47
9 VIP, AUROC, and �ln(P value) 4 2.46 5 1.92 2 2.47
10 FC, AUROC, and �ln(P value) 4 2.21 7 2.51 6 2.66
11 VIP, FC, AUROC, and �ln(P value) 2 1.98 5 1.92 2 2.47

VIP: variable importance in projection; FC: fold change; AUROC: area under the receiver operator characteristic curve.

Fig. 4. (A, D, and G) The score plots and parameters of the PLS-DA models performed by the variables selected by usual procedure in plasma, hippocampus, and cortex samples.
Black and red circles represent the control and AD model groups, respectively. (B, E, and H) The score plots of the PLS-DA models performed by the selected variables of the control,
AD model, and donepezil groups in plasma, hippocampus, and cortex samples. Black, red, and green circles represent the control, AD model, and donepezil groups, respectively. The
red arrowhead represents the modeling direction. (C, F, and I) The score plots of PLS-DA models performed by the selected variables of control, AD model, and pine nut groups in
plasma, hippocampus, and cortex samples. Black, red, and light blue circles represent the control, AD model, and pine nut group, respectively. The red arrowhead represents the
modeling direction.
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the usual procedure, while the AUROC of a variable is an important
test of its grouping ability.

3.4. Biomarkers discovered by multi-factor combined biomarker
screening strategy for drug evaluation

Using the abovementioned variables selected by our strategy,
grouping of the control, AD, and drug groups in three samples was
633
obtained by PLS-DA analysis (Fig. 3). Compared with the AD model
group, both the donepezil and pine nut groups were distributed
more closely to the control group in all three samples, reflecting
their benign effects on AD. Moreover, the R2X, R2Y, and Q2 values of
the PLS-DA models were all greater than 0.6, demonstrating that
the built models possessed powerful explanatory, grouping, and
predictive abilities. In contrast, exploiting the variables screened by
the usual procedure, the control, AD model, and drug groups could



Table 3
The names, metabolic pathways, and changing trends of the biomarkers in the plasma, hippocampus, and cortex samples.

Sample Retention time
(min)

Measured m/z
(Da)

Calculated m/z
(Da)

Error of m/z
(Da)

Identity Metabolic pathway FC1* FC2 FC3

Plasma 0.3 118.0865 118.0868 0.0003 Valine e 1.78 e 0.75*

1.9 373.2733 373.2742 0.0009 Cervonoyl ethanolamide e 0.41 3.45* e

1.9 355.2629 355.2584 0.0045 11b-PGF2a Arachidonic acid metabolism 0.40 3.24* e

2.9 506.3556 506.3558 0.0002 SM (18:0/2:0) Sphingolipid metabolism 0.51 e 1.47*

3.3 508.3754 508.3766 0.0012 LysoPC(O-18:1) Glycerophospholipid metabolism 0.59 1.31* 1.48*

3.6 482.3237 482.3246 0.0009 LysoPC(15:0) Glycerophospholipid metabolism 0.69 1.27* e

3.6 524.3712 524.3716 0.0004 LysoPC(18:0) Glycerophospholipid metabolism 0.86 e e

3.7 550.3866 550.3816 0.0050 LysoPC(20:2) Glycerophospholipid metabolism 0.72 1.47* 1.50*

Hippocampus 1.3 274.2740 274.2746 0.0006 C16 sphinganine Sphingolipid metabolism 0.82 e e

1.6 302.3053 302.3059 0.0006 Sphinganine Sphingolipid metabolism 0.78 e e

1.8 502.2925 502.2933 0.0008 LysoPC(20:4) Glycerophospholipid metabolism 1.17 e 0.86*

2.1 496.3397 496.3403 0.0006 LysoPC(16:0) Glycerophospholipid metabolism 1.19 e e

3.4 305.2473 305.2480 0.0007 Arachidonic acid Arachidonic acid metabolism 1.23 0.73* 0.78*

Cortex 0.9 380.2213 380.2265 0.0052 Sphingosine-1-phosphate Sphingolipid metabolism 0.21 7.64* 5.62*

1.3 318.2999 318.3008 0.0009 Phytosphingosine Sphingolipid metabolism 0.67 e e

3.4 287.2369 287.2375 0.0006 Retinol e 1.43 e e

3.5 353.2669 353.2692 0.0023 MG (18:3/0:0/0:0) e 2.15 0.49* 0.44*

FC1: AD model group compared with control group; FC2: donepezil group compared with AD model group; FC3: pine nut group compared with AD model group. *P < 0.05.
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not be separated in the PLS-DA score plots (Fig. 4). In addition, the
curative direction of donepezil and pine nut groups towards the
control group could not be reflected by the usual procedure.

8, 5, and 4 variables were identified among the 10, 7, and 6
selected variables of the plasma, hippocampus, and cortex samples,
respectively. The names, metabolic pathways, and changing trends
of the identified variables are shown in Table 3. It is shown that a
total of three metabolic pathways were disturbed after AD
modeling. Sphingolipid metabolism was perturbed in all three
samples, while glycerophospholipid and arachidonic acid metab-
olisms were disturbed in two samples (plasma and hippocampus).
It was also shown that themetabolic pathways of the three samples
were crossed and the plasma biomarkers could cover the bio-
markers of hippocampus and cortex samples, which indicated that
plasma samples could replace hippocampal and cortical samples to
elucidate the disturbed metabolic pathway of AD using our strat-
egy. This holds some significance for human beings, which means
that it is possible to replace the unobtainable hippocampus and
cortex with accessible plasma for AD diagnosis. In addition, there
were 2, 2, and 2 variables unidentified in the plasma, hippocampus,
and cortex samples, respectively. Their retention times, observed
m/z values, and changing trends are listed in Table S1.

As shown in Table 3, five metabolites involved in sphingolipid
metabolism were impaired after AD modeling. Donepezil rescued
the decreased sphingosine-1-phosphate level, while pine nut
reversed the downregulation of SM (18:0/2:0) and sphingosine-1-
phosphate. Glycerophospholipid metabolism is mainly focused on
lysophosphatidylcholine (LysoPC). In comparison with the control
group, four plasma LysoPCs were downregulated in the AD model
group. Donepezil reversed three of them, i.e., LysoPC(O-18:1),
LysoPC(18:0), and LysoPC(20:2); and pine nut rescued two, i.e.,
LysoPC(O-18:1) and LysoPC(20:2). LysoPC(16:0) and LysoPC(20:4)
levels in the hippocampus were elevated after modeling, and the
increased LysoPC(20:4) level was rescued by pine nut treatment.
Moreover, as for arachidonic acid metabolism, the upregulated hip-
pocampal arachidonic acid level induced by modeling was reversed
by both donepezil and pine nut. Metabolites that were regulated by
both donepezil and pine nut treatment included sphingosine-1-
phosphate, LysoPC(O-18:1), LysoPC(20:2), and arachidonic acid.

In this study, after AD modeling, sphingolipid metabolism was
perturbed in the plasma, hippocampus, and cortex samples.
Sphingolipid metabolism disorders might contribute to AD
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neuropathological changes by regulating amyloid precursor protein
(APP) processing and disrupting synaptic activity [23]. Compared
with the control group, sphinganine was decreased in the hippo-
campus of AD model rats in this study. It is well known that
sphinganine can be converted into ceramide, while an increase in
ceramide can promote the production of IL-2 and IL-6, thus causing
neuroinflammation [23]. Sphingosine-1-phosphate is a neuro-
protective factor that has been reported to decline with increasing
Braak stage in the brain region [24]. Consistently, the level of
sphingosine-1-phosphate was reduced in the cortex of AD rats
compared to the controls. Glycerophospholipid metabolism is
mainly focused on LysoPC. LysoPC can sustain the natural glycer-
ophospholipid composition of the neuron membrane. Down-
regulation of LysoPC may damage brain membrane phospholipids,
and lower levels of LysoPC have been reported in serum samples of
AD patients versus control subjects [25]. Consistently, we discov-
ered four downregulated LysoPCs in the plasma sample of the AD
model group using our strategy. Arachidonic acid metabolism is
strongly correlated with inflammation and oxidative stress, two
important mechanisms related to AD [26,27]. Arachidonic acid can
regulate leukocyte chemotaxis and inflammatory cytokine pro-
duction, which can lead to an inflammatory reaction [26]. An in-
crease in arachidonic acid was observed in the brain of an AD
transgenic mouse model [28]. Consistent with this, elevation of
arachidonic acid levels was also found in the hippocampus of AD
model rats. In summary, the three metabolic pathways enriched by
the screened biomarkers were the common pathways affected by
AD. This means that compared with the usual procedure, our
strategy identified the key metabolic pathways in AD with fewer
biomarkers and significantly increased the efficiency of biomarker
screening, thus accelerating the subsequent time-consuming
biomarker identification process.

Drugs such as donepezil and pine nut were evaluated based
on the regulation of the overall metabolic profiles and screened
metabolic biomarker levels. The therapeutic effects of donepezil
and pine nut were reflected in the curative direction towards the
control group in the PLS-DA score plots and by regulating
screened biomarker levels closer to the control group. Sphingo-
sine-1-phosphate in the sphingolipid metabolism pathway is a
neuroprotective agent that decreases gradually as AD progresses
[24]. Herein, both donepezil and pine nut treatment rescued the
decreased sphingosine-1-phosphate level, which reflected their
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good regulatory effect on sphingolipid metabolism. Moreover,
donepezil and pine nut adjusted three and two impaired LysoPCs,
respectively, in the plasma sample. This indicated that donepezil
and pine nut can promote the stability of cell membranes to
different degrees. The adjusted action of donepezil and pine nut
on arachidonic acid also reflects their regulatory effects on
neuroinflammation and oxidative stress aspects of AD patho-
logical processes. Donepezil and pine nut have similar regulatory
effects on some biomarkers, such as sphingosine-1-phosphate,
two LysoPCs, and arachidonic acid. AChE ELISA results showed
that pine nut administration inhibited AChE significantly, similar
to the AChE inhibitor donepezil. The similar biomarker regulation
effects of donepezil and pine nuts were consistent with their
similar AChE inhibition effect, further illuminating the validity of
using biomarkers obtained by the strategy to evaluate drug
effects.

Nevertheless, not all impaired biomarkers were rescued by
donepezil and pine nut, and the biomarkers regulated by donepezil
and pine nut were not always the same. For example, in the plasma
sample, donepezil and pine nut did not normalize the down-
regulated LysoPC(18:0), whereas LysoPC(15:0) was only regulated
by donepezil, and SM(18:0/2:0) was only adjusted by pine nut. Due
to the rigorous biomarker screening criteria of our strategy, the
screened biomarkers were the most discriminating metabolites
between the control and AD model groups. Donepezil did not
actually cure AD in the clinic, although it is a widely used drug in
the management of AD [29]. In this study, donepezil did not restore
all potential biomarkers screened out by our strategy to normal
levels consistently.
4. Conclusions

In the present study, we proposed a multi-factor combined
biomarker screening strategy to rapidly and accurately discover
potential biomarkers that are beneficial for both disease diagnosis
and drug evaluation. Our strategywas applied to discover differential
metabolites from Ab1�40 plus ibotenic acid-induced AD model
compared with the controls for the first time based on plasma,
hippocampus, and cortex metabolomic data. As a result, 10, 7, and 6
potential biomarkers with high diagnostic specificity and sensitivity
were identified for the plasma, hippocampus, and cortex samples,
respectively. The obtained potential biomarkers were mainly
LysoPCs and intermediates of sphingolipid metabolism,
including LysoPC(O-18:1), LysoPC(15:0), LysoPC(18:0), LysoPC(20:2),
LysoPC(16:0), sphinganine, sphingosine-1-phosphate, and phytos-
phingosine. Comparedwith the usual procedure, our strategy greatly
reduced the number of screened biomarkers and significantly
improved the explanatory, classification, and forecasting capabilities
of the PLS-DA model. Drug efficacy evaluation was performed using
the screened biomarkers. The effects of donepezil and pine nut were
successfully reflected by the regulation of biomarker levels and
metabolic profile distribution of PLS-DA. Therefore, the biomarkers
identified using our strategy are diagnostic and pharmacodynamic
biomarkers. We hope that a multi-factor combined biomarker
screening strategy can be used to analyze clinical metabolomic data
to quickly and accurately identify biomarkers and evaluate drug
efficacy.
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