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Abstract

Genome-wide association studies (GWAS) are a standard approach for studying the genetics of 

natural variation. A major concern in GWAS is the need to account for the complicated 

dependence-structure of the data both between loci as well as between individuals. Mixed models 

have emerged as a general and flexible approach for correcting for population structure in GWAS. 

Here we extend this linear mixed model approach to carry out GWAS of correlated phenotypes, 

deriving a fully parameterized multi-trait mixed model (MTMM) that considers both the within-

trait and between-trait variance components simultaneously for multiple traits. We apply this to 

human cohort data for correlated blood lipid traits from the Northern Finland Birth Cohort 1966, 

and demonstrate greatly increased power to detect pleiotropic loci that affect more than one blood 

lipid trait. We also apply this to an Arabidopsis dataset for flowering measurements in two 

different locations, identifying loci whose effect depends on the environment.

Introduction

Most GWAS to date have been conducted using the simplest possible statistical model: a 

single-locus test of association between a binary SNP genotype and a single phenotype. 

Given that most traits of interest are multifactorial, this clearly amounts to model 

misspecification, and the resulting danger of biased results whenever there is non-

independence (linkage disequilibrium) between causal loci (for example due to population 

structure) is well known1,2,3. Much less attention has been devoted to the fact that 

phenotypes may also be correlated. Whenever multiple measurements are taken from 
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individuals, the resulting phenotypes will be correlated because of pleiotropy, which is of 

direct interest, as well as shared environment and linkage disequilibrium, which are usually 

confounding factors. Taking these correlations into account is important not only because of 

the importance of understanding pleiotropy, but also because we may expect increased 

power compared to marginal analyses. Intuitively, correlated traits amount to a form of 

replication. The importance of correlated phenotypes becomes even clearer when we 

consider measurements across environments. The canonical example here is an agricultural 

field experiment using inbred lines, a setting in which no one would consider analyzing 

phenotypes from different environments independently of each other, because the whole 

point of the study is to separate genetic from environmental effects and identify genotype-

environment interactions. In human genetics, disentangling genetic and environmental effect 

is also of obvious interest, although much more challenging as the environment usually 

cannot be experimentally manipulated4.

There is a long history of multi-trait models in quantitative genetics5,6,7,8,9, but these 

methods have rarely been applied to GWAS. In this paper we demonstrate how a standard 

linear mixed model from animal breeding10 may be used to model correlated traits while at 

the same time correcting for dependence among loci (e.g., due to population structure). As 

designs like cohort studies become more prevalent, the need for modeling correlated traits as 

well as population structure will grow2,11,12, and the same is true for the increasing number 

of non-human GWAS 13,14,15,16,17.

The mixed model, which handles population structure by estimating the phenotypic 

covariance that is due to genetic relatedness, or kinship, between individuals, has previously 

been shown to perform well in GWAS2,13,18,19,20,21,22. Here we extend this approach to 

handle correlated phenotypes by deriving a fully parameterized multi-trait mixed model 

(MTMM) that considers both the within-trait and between-trait variance components 

simultaneously for multiple traits (Online Methods), and implementing it for GWAS. The 

idea is not new23,24,25,26,27, but it has never been applied for association mapping on a 

genome-wide scale. Alternative approaches for GWAS in multiple traits exist, but they 

generally fail to control for population structure28,29, and often are not applicable to 

genome-wide data.

We validate our approach using extensive simulations based on available SNP data from A. 

thaliana30, demonstrating that our model increases power to detect associations while 

controlling the false discovery rate. We then demonstrate its usefulness by considering 

correlated blood lipid traits from the Northern Finland Birth Cohort 1966 (NFBC1966)31, 

and environmental plasticity in an A. thaliana data set that contains flowering measurements 

for two simulated growth seasons in two different locations32. Finally, we discuss its utility, 

not only in terms of increasing power to detect associations, but also in terms of 

understanding the basic genetic architecture of the phenotypes.
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RESULTS

Simulations

Pairs of correlated phenotypes were simulated by adding phenotypic effects to genome-wide 

SNP data from A. thaliana30. A single randomly selected SNP was set to account for up to 

2% of the phenotypic variance, but with the possibility of different effects in each of the two 

phenotypes (see below). In addition, 10,000 SNPs were given much smaller effects to 

simulate the genetic background. A randomly chosen fraction of these background SNPs 

was shared between the two phenotypes, allowing for variation in the degree of phenotypic 

correlation (Supplementary Fig. 1, Online Methods).

We compared our ability to identify the focal locus using MTMM and marginal, single-trait 

analyses (using the smallest p-value from the latter to ensure a fair comparison). Three 

different tests were used: a full test that compares the full model, including the effect of the 

marker genotype and its interaction, with a model that includes neither; an interaction effect 

test that compares the full model to one that does not include interaction, and finally; a 

common effect test that compares a model with a marker genotype to one without (see 

Online Methods for details). As expected, the results depended strongly on the effect of the 

focal polymorphism (Fig. 1). When it had the same effect in both phenotypes (i.e., positive 

pleiotropy or a common effect across environments; see Fig. 1a), MTMM performed 

slightly better than the single trait mixed model (MM) regardless of whether we tested for 

full model fit, or just for a common effect (Fig. 1e). The reason for this is the increased 

power that results from analyzing the traits together. Testing for an interaction effect alone is 

pointless as no interaction exist.

When the effect of the polymorphism is slightly weaker in one trait/environment (Fig. 1b), 

testing for a full model fit using MTMM again outperforms single-trait analyses (Fig. 1f). 
Testing only for a common or interaction effect using MTMM is also less effective. 

Although an interaction effect now exists, it is too weak to be detected. However, as the 

strength of the interaction effect increases (Figs. 1c,d), it becomes possible to detect 

directly, and the relative advantage of using MTMM increases dramatically (Figs. 1g–h).

An alternative to carrying out two marginal single-trait analyses might be to combine the 

phenotypes, e.g., by fitting the traits principal components or their sum or difference. We 

tested the latter and as might be expected, this approach works very well when the focal 

SNP has exactly the same (or the opposite, when using the difference) effect on the 

phenotype (Fig. 1a,d). However, if the effect of the SNPs differs between the two traits, 

MTMM outperforms these approaches (Fig. 1b–c).

It should be noted that, because the background SNPs are correlated due to population 

structure, simple single-locus tests of association are strongly biased towards false positives, 

just like in the original data14. The mixed model effectively removes this bias, regardless of 

whether we analyze one phenotype at a time using a single trait MM or both simultaneously 

using MTMM (Supplementary Fig. 2). However, analyzing these data with methods that 

do not take population structure into account is clearly not a realistic option 

(Supplementary Fig. 3).
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In addition to the model just described, we simulated an oligogenic scenario in which each 

phenotype was determined by 20 loci, each of which could, with equal probability: affect 

that phenotype only; affect both phenotypes in the same way, or; affect both phenotypes but 

in opposite ways. The behavior of each locus was chosen independently, and the resulting 

distribution of correlations between the phenotypes was thus centered around zero 

(Supplementary Fig. 4), which is very different from the positively correlated phenotypes 

generated under the first simulation scenario (Supplementary Fig. 1). MTMM is intended 

for correlated phenotypes, and is expected to perform less well when phenotypes are weakly 

correlated. The oligogenic simulation results supported this intuition. For weakly correlated 

pairs of phenotypes, single-trait analysis often outperformed MTMM (especially for 

detecting SNPs with effect in one phenotype only), however, for more strongly correlated 

phenotypes, the results agreed with those presented above in that MTMM always 

outperformed marginal analyses (Supplementary Fig. 5). Note that the correlation does not 

have to be positive: for negatively correlated phenotypes, MTMM has relatively higher 

power to detect SNPs with the same effect in both phenotypes, whereas for positively 

correlated phenotypes, it performs best for SNPs that have opposing effects (note that it may 

sometimes make sense to simply change the direction of correlation by negating one of the 

phenotypes when analyzing real data).

As noted in the introduction, an advantage of MTMM is that it can be used for correlated 

phenotypes regardless of whether the phenotypes represent different measurements (and the 

correlations are due to pleiotropy), or the same trait measured in different environments (cf. 

Fig. 1a–d). However, the simulations above assume that the phenotypic correlations are 

solely due to genetics, not environment, and this is only likely to be true for studies 

involving inbred lines in controlled environments. Certainly correlations between pleiotropic 

traits will reflect environment as well as genotype. To verify that MTMM is able to separate 

these effects, we simulated another 5,000 pairs of correlated traits using the 10,000locus 

model, but now with correlations reflecting environmental as well as genetic covariance (see 

Online Methods). Both the environmental and genetic correlations were well estimated 

(Supplementary Fig. 6), although it should be noted that the residuals of the genetic and 

environmental correlation estimates are negatively correlated (Supplementary Fig. 6d). The 

accuracy of these estimates does affect the performance of GWAS, but the effect appears to 

be relatively minor (Supplementary Fig. 7).

Pleiotropy in human data

To illustrate the utility of MTMM for traits that are correlated because they are part of the 

same biological system, we reanalyzed data from the Northern Finland Birth Cohort 1966 

(NFBC1966)31 (see Online Methods for details). We focused on measurements of four 

blood metabolites that are strongly involved in cardiovascular heart disease33, namely 

triglycerol (TG), low-density lipoprotein (LDL), high-density lipoprotein (HDL), and C-

reactive protein (CRP). These metabolites are significantly correlated, and MTMM analysis 

indicates that the correlations are caused by genetics as well as environment (Table 1), 

supporting the notion that these traits are mechanistically related and/or have linked causal 

loci. For HDL/CRP and TG/CRP the correlations of the genetic effects are in the opposite 

direction of the environmental correlations. However, in these cases, the genetic correlations 
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are not significantly different from zero, and it is likely that the phenotypic correlations 

driven primarily by the shared environment.

In terms of associations, the results from the joint analysis of TG and LDL suffice to 

illustrate how two of our main predictions were borne out. First, almost all SNPs that were 

found to be significantly associated in the marginal analysis of either LDL or TG were also 

significant in the joint analysis (Table 2). However, MTMM arguably provides greater 

insight into the nature of the associations, as it reveals interaction effects. Second, MTMM 

finds associations that the marginal analyses do not. In particular, for positively correlated 

phenotypes such as TG and LDL, we expect MTMM to have much greater power to detect 

polymorphism whose effects differ greatly between the phenotypes. A nice example of this 

is the FADS1-FADS2 locus, which was not significant in either marginal analysis, but 

becomes highly significant using MTMM thanks to a very strong interaction effect (Table 2 
and Fig. 2). These genes are excellent candidates, and were mentioned in the previous 

analysis of the NFBC1996 data31. Strikingly, they were also identified in a massive meta-

analysis involving more than 100,000 individuals34, which furthermore reported opposite 

effects on TG and LDL, in agreement with the strong interaction effect we observe (Fig. 2g) 

using a sample of only 5,000 individuals.

The other five trait combinations gave similar results (Supplementary Tables 1-5). Almost 

all SNPs that were identified using single-trait analysis were also detected using MTMM, 

either due to a strong common or strong interaction effect. In addition, MTMM also detected 

two more regions that were not identified using marginal analyses. First, the gene PPP1R3B 

was identified due to strong common effects in the joint analyses of HDL and CRP, and 

HDL and TG. These pairs of phenotypes are negatively correlated (Table 1), so we expect 

MTMM to have increased power to detect common effects. The association with PPP1R3B 

was not found in previous analyses of these data31, but was reported (and confirmed) in the 

much larger meta-analysis of blood lipids34. Second, the TOM40-APOE region was 

identified in the joint analysis of TG and CRP, this time due to an interaction effect (TG and 

CRP are positively correlated). Albeit not quite significant, this association was noted in the 

previous analysis of these data31, and was also found in the meta-analysis34.

G × E in A. thaliana data

The other natural application for MTMM is when phenotypes are correlated because they 

represent the same trait measured in different environments. In such a setting, we are often 

directly interested in finding genes that are involved in the differential response to the 

environment, i.e., genotype-by-environment (G × E) interactions. We tested this application 

using a data set from A. thaliana in which flowering time was measured (for a global 

collection of naturally occurring inbred lines) in environmental control chambers for two 

simulated seasons (“Spring” and “Summer”) and two simulated locations (“Spain” and 

“Sweden”)32. Flowering time varies in a clinal manner, and is generally thought to be 

important in local adaptation. It is thus both natural and interesting to try identifying genes 

that are responsible for the differential flowering response to different environments32.

We analyzed the A. thaliana data using a full 2 × 2 factorial model, i.e., in addition to 

estimating the effect of genotype, season, and location, we have two pairwise interaction 
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terms (see Online Methods and Supplementary Note). The results are summarized in Figure 
3 (for details, see Supplementary Figures 8-9 and Supplementary Tables 6-7). Perhaps 

surprisingly, we found very few interaction effects. Out of a total of 41 significant SNP 

associations, only three appeared to be due to interactions. A rare allele (MAF = 4 % ) on 

chromosome 5 was identified as a significant genotype-by-season effect, but it does not 

correspond to any obvious candidate (Supplementary Fig. 10). A more convincing example 

was provided by the two tightly linked and perfectly correlated SNPs on chromosome 1. 

These were identified by comparing the full model to one without interaction terms, 

although the interaction with the simulated season seems to be strongest (Fig. 4). The minor 

allele (MAF = 3 %) is associated with delayed flowering (Fig. 4b), but the effects depends 

strongly on the season, and is much more pronounced in the (simulated) summer. 

Interestingly, both SNPs are in the coding region of the gene FRS6, which is known to be 

involved in the phyA-mediated response to far-red light35. T-DNA knockout lines of this 

locus have an early-flowering phenotype, the magnitude of which depends on day length 

(one of the factors that vary between the simulated seasons).

Of the remaining 38 SNPs, 28 we found by both marginal and joint analysis (as common 

effects), and 10 were found only by marginal analysis. While our simulations would seem to 

suggest that MTMM should always have higher power than marginal test, even for detecting 

common or unique effects, this is clearly not always the case. The phenotypes analyzed here 

are extremely highly correlated as well as heritable (all coefficients typically well above 0.9; 

see Supplementary Table 6). In such cases, the advantage of increasing the sample size 

through joint analysis does not necessarily outweigh the cost of a more complex model with 

more degrees of freedom.

DISCUSSION

We have shown how the classical mixed model from breeding may be used for GWAS of 

correlated phenotypes in structured populations, often providing greater statistical power 

than marginal analyses. However, we emphasize that our approach is much more than an ad 

hoc method for increasing power. The model we use effectively dates back to Fisher36, and 

can be derived from basic genetic principles under the assumption that heritable phenotypic 

variation is due to very large numbers of genes of very small effect (Online Methods). 

Assuming that this is a reasonable approximation (and it seems to be, for a growing number 

of traits), we can disentangle genetic correlations from environmental correlations, 

whenever these uncorrelated. This allows us to address fundamental questions about the 

nature of variation. When applied to traits that may be biologically related the resulting 

variance component estimates allow us to assess the level of pleiotropy without estimating 

effects of individual loci. Using data from different human blood lipids, we demonstrated 

how the phenotype covariance can be decomposed into genetic and environmental terms, 

suggesting that most of these traits are indeed correlated due to shared genetics (i.e., they are 

pleiotropic or due to causal sites in linkage disequilibrium). A similar approach was recently 

used by Price et al.37 to assess the heritability of RNA expression levels within and across 

human cell tissues.
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Irrespective of this, we also demonstrated increased power, detecting several interesting loci 

affecting human blood lipid level that were not significant in the single trait analysis, but 

that have all been replicated in GWAS studies using much larger sample sizes. This finding 

alone strongly argues for routine application of our method to correlated phenotypes.

As an example of how the method can be used to detect environmental interactions, we 

applied our method to an A. thaliana flowering time dataset, where the plants had been 

phenotyped under four different environmental conditions (in a classical 2times2 factorial 

design). These phenotypes are highly correlated as well as highly heritable, and the 

estimated variance components suggest that there is in fact very little difference between the 

environments at the genetic level (Supplementary Table 6). Hence, it is arguably not 

surprising that we detected little in terms of interaction effects. While it is of course possible 

that we simply do not have the power to detect interactions, it is notable that analogous 

studies in maize have also failed to detect large G × E interaction effects38. The result from 

A. thaliana and maize are strikingly different from what has been reported for mouse39, 

yeast40, and even humans4, but the reason for these differences are far from clear given the 

dramatically different study designs.

Full factorial designs with replicated genotypes are of course not possible in most 

organisms; however, we note that MTMM does not require this. Indeed, a mixed-model 

approach has previously been proposed for estimating G × E variance components in 

humans25 (using a special case of our model in which heritabilities are assumed to be equal 

across environments; see Online Methods). Either approach is directly applicable to human 

data.

Although we have focused on relatively simple pairwise correlations in this paper, it is easy 

to model more than two phenotypes using MTMM. Conceptually we believe that extending 

this to larger multi-trait experiments should allow for greater benefits in estimating error 

terms and elucidating functional relationships between suites of traits. However for such 

complex models, the computational complexity grows fast and the results become 

increasingly difficult to interpret compared to sequential two-trait analyses.

This is a well-known problem in statistics and quantitative genetics, but MTMM has the 

additional caveat that it assumes that the increasingly complex covariance structure, which is 

estimated in the absence of fixed effects, remains constant as these are added. Various 

intermediate approaches are possible, e.g. variance components might be estimated using a 

full model once, followed by GWAS using sub-models: more work in this area is clearly 

desirable.

Finally, when the phenotypes are not correlated, or if the correlation is not due to genetics 

(something that can be deduced from the variance component estimates), a single trait mixed 

model will generally have greater power to detect causal loci that are phenotype-specific.

When, precisely, this will be the case is hard to predict, however, we suggest using the 

MTMM approach as a complement to rather than replacement for marginal GWAS. The 

advantages are clear: it allows the detection of both interactions and pleiotropic loci in a 

rigorous statistical framework, while simultaneously accounting for population structure.
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URLs

MTMM has been implemented in a set of R scripts (MTMM) for carrying out GWAS. They 

rely on the software ASREML41 for the estimation of the variance components. The scripts 

can be obtained at https://cynin.gmi.oeaw.ac.at/home/resources/MTMM.

ONLINE METHODS

Theory

Multiple traits mixed model—Following Henderson10 we can write the mixed model for 

the phenotypes of n individuals as

(1)

where y is a vector of the n phenotype values. In this notation, the trait mean is included, 

together with other fixed effects, in the design matrix X. The β are the effect sizes of the 

fixed effects,  is a random effect, and . It follows that the 

covariance matrix for the trait values, y, is

(2)

Where K is a n×n kinship or relatedness matrix. If we consider two traits, y1,y2 measured on 

the same set of individuals, then under the mixed model for the k ’th phenotype follows the 

partitions of the variance accordingly, i.e., . However, for the 

covariance matrix between the two phenotypes it is not obvious what the appropriate model 

is. Henderson42 suggests the following covariance model:

(3)

where ρg captures the genetic correlation between two phenotypes and the term ρe captures 

the correlation caused by shared environment and other non-genetic sources of correlations. 

We can generalize this for phenotypes which have been measured for different sets of 

individuals (see Supplementary Note).

Estimating the variance parameters

The estimation procedure for the variance components is described in the Supplementary 

Note.

Application to GWAS

Similar to EMMAX2 or P3D20 we estimate the covariance matrix only once to re-estimate a 

scalar in front of it for every marker. This fixes five degrees of freedom out of six in total 

(maximum number of variance components for two traits. For a pair of traits (the i ’th and 

j ’th traits), the proposed approximation effectively assumes that the three variance ratios 

(σgi/σei,σgj/σej and σgi/σgj) and the two correlations ρgij and ρeij are fixed with and without 

the marker in the model.
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With multiple traits we can search for causal loci with common effects (across all traits) as 

well as trait specific loci or loci with opposite effects in different traits. Depending on what 

we are interested in, a GLS F-test can be constructed to compare two models. For two traits 

we can write the single marker model as follows:

(4)

where x is the marker and si is a vector with 1 for all values belonging to the i’th trait and 0 

otherwise. The ψ ~ N(0,cov(y)) is a random variable capturing both the error and genetic 

random effects. Depending on what kind of loci we are interested in, we propose three 

different F-tests tests:

• The full model tested against a null model where β = 0 and α = 0. This identifies 

both loci with common and differing effects in one model, but suffers in power 

from the extra degree of freedom.

• To identify common genetic effects we propose to test the genetic model (α = 0) 

against a null model where β = 0 and α = 0.

• Finally, to identify differing genetic effects between the traits we propose to test the 

full model against a null model where α = 0.

As both the interaction test and the common effect test are sensitive to scaling of the 

phenotype values, we propose to normalize them either by the total variance, or the genetic 

variance (as obtained in the marginal trait analysis). To minimize multiple-testing problems, 

one could, for example, carry out GWAS using the full model and use the other tests in post 

hoc analysis of significant loci.

Extending this model for arbitrary number of traits is straight-forward (one example for the 

analysis of four traits is described in the Supplementary Note). However, when there are 

more than two traits in the model, the number of possible tests grows quickly. An interesting 

special case is when there are several environmental variables in a factorial study design, in 

which case each environmental variable can be included in the model instead of the term 

, and their interactions with the genotype could replace the term . 

This can result in a simpler and a more tractable model than if all possible combinations of 

environments were treated as independent.

Genotype-environment interactions

Given two measured phenotype vectors, y1and y2,Yang et al.25 include a G × E random 

effect in a mixed model as follows:

(5)

where uG,uG×E are random effects and have covariance matrices
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(6)

Compared to the model proposed in equation (4), this model implicitly assumes two things: 

that there are no environmental correlations; and that the heritabilities are the same in each 

environment, i.e., . As the individuals are different in each environment, the first 

assumption is appropriate. However, the second assumption is not guaranteed to hold in 

general, and we therefore propose relaxing it.

Simulations

10,000-locus model—We simulated 2,000 pairs of correlated phenotypes using a model 

under which the phenotypes consisted of one randomly chosen SNP with a “large” (additive) 

effect, accounting for up to 2% of the total phenotypic variance, and 10,000 randomly 

chosen SNPs with small additive effects. The effects sizes were drawn from a normal 

distribution and scaled to fix the trait heritability to 0.95. To ensure variation in trait 

correlations, all trait pairs shared a random fraction of the 10,000 causal loci, with the 

fraction drawn from a uniform distribution. The four phenotypic models were distinguished 

by different effect-correlations at the major locus (Fig. 1).

In addition, we simulated 5,000 pairs of correlated traits with environmental correlations. 

We fixed the heritability to 0.5 and allowed the genetic correlation to vary from -1 to 1. 

Additionally, we added a shared environmental term to the model, mimicking scenarios for 

both negative and positive environmental correlation.

20-locus model—We also simulated 1,000 pairs of correlated phenotypes using a 20-

locus model. Each phenotype was determined by 20 loci, using a multinomial distribution, 

we randomly assigned to three categories with equal probabilities: i) SNPs with same effect 

in both phenotypes; ii) SNPs with opposite effect in the two phenotypes, and; iii) SNPs with 

effect in one trait only. The SNPs had additive effects drawn from an exponential 

distribution. Finally, the effect sizes were scaled to fix the heritabilities to 0.95. To obtain a 

single p-value for two traits the smaller of the two p-values for each SNP from the marginal 

mixed model analysis was retained.

Power calculations

For the calculation of the power and FDR, any significant SNP within 50 kb of a (or the) 

causal SNP was classified as a true positive; otherwise it was a false positive. The results are 

almost independent of the window size used (Supplementary Fig. 11). More important is 

the effect of the causal SNP(s). The nearly two-fold increase of power observed at a FDR of 

0.1 in Figure 1 depends on the effect size of the simulated SNP (Supplementary Fig. 12). 

Throughout this paper, we used the single-analysis Bonferroni-corrected 5% significance 

threshold.
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Human data

We used the 1966 North-Finland Birth Cohort (NFBC1966) which consist of phenotypic 

and genotypic data for 5,402 individuals31. Using the exact same dataset as was used in2, 

after their filtering the dataset consisted of 5,326 individuals and 331,475 SNPs. To expedite 

the mapping, the unknown genotypes (< 1% in the dataset) were imputed by replacing 

missing values with the average genotypic value. Neither the marginal MM analysis nor the 

MTMM tests show evidence of population structure confounding (Supplementary Fig. 13).

Analysis of A. thaliana data

The genotype data for A. thaliana consisted of 1,307 individuals genotyped at 214,051 SNPs 

using a custom Affymetrix SNP chip30. The phenotypes used were measurements of 

flowering time for 459 accessions32. Flowering time was measured in plants grown in four 

different environments, a factorial setting with two simulated seasons (“Spring” and 

“Summer”) and two simulated locations (“Spain” and “Sweden”). Analyzing the four 

phenotype vectors together we can derive five different F-tests (see Supplementary Note). 

Neither of these tests shows evidence of confounding due to population structure 

(Supplementary Fig. 14).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Simulation results. (a–d) illustrate the scenarios simulated: (a) positive pleiotropy, alt. 

common effect across environments; (b) positive pleiotropy, alt. common effect across 

environments, with size of effect differing between traits/environments; (c) effect only on 

one trait, alt. only in one environment; (d) negative pleiotropy, alt. opposite effect across 

environments. (e) shows the estimated relationship between power and false discovery rate 

(FDR) using six different statistical tests (see text and Online Methods) for the scenario 

described in (a). (f) shows the estimated relationship between power and false discovery rate 

(FDR) for the scenario described in (b). (g) shows the estimated relationship between power 

and false discovery rate (FDR) for the scenario described in (c). (h) shows the estimated 

relationship between power and false discovery rate (FDR) for the scenario described in (d). 

Dots on curves denote nominal Bonferroni-corrected 5% significance thresholds. Note that 

both power and FDR are calculated with respect to the single focal locus, only.
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Figure 2. 
GWAS of LDL and TG. (a–b) Manhattan plots for the marginal, single-trait analyses of 

LDL(a) and TG(b), respectively. (c–e) Manhattan plots for the joint MTMM analyses: (c) 

full model; (d) interaction effect, and; (e) common effect. The dashed horizontal line denotes 

the 5%Bonferroni adjusted genome-wide significance level. (f) Closeup of the FADS1-

FADS2 region on chromosome 11. The points for the single-trait analyses are shown in light 

(TG) and dark blue (LDL), while the point for MTMM are shown in orange (full test), light 

green (interaction effect), and red (common effect). The gray shading denotes the FADS1 

gene region. (g) Estimated phenotypic effect of the rs174546 SNP in light (TG) and dark 

blue (LDL).
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Figure 3. 
Venn diagrams summarizing the GWAS of A. thaliana flowering data32. (a) Classification 

of the 41 significant SNPs according to the test(s) in which they were significant. (b) 

Classification of the 41 SNPs (black) and corresponding gene regions (red) according to 

whether they were found using marginal (MM) or joint (MTMM) analysis.
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Figure 4. 
Summary of FRS6 results. (a) Closeup of a 50kb region on chromosome 1 showing 

significant G _ E associations. The gene FRS6 is highlighted in gray. The results for the four 

marginal analysis (using a single trait MM) are shown in blue, while the MTMM results are 

shown in orange (full test), light green (three-way interaction), green (genotype by location), 

dark green (genotype by season), and red (common effects).(b) Phenotypic distribution as a 

function of experimental condition and genotype. (c–f) Plots contrasting the allelic effect in 

different comparisons: (c) the effect of the season in ‘Spain’; (d) the effect of the season in 

‘Sweden’; (e) the effect of the location in ‘Spring’; (f) the effect of the location in 

‘Summer’. The effect depends strongly on the season within each location (c–d) and less 

strongly on location with season (e–f).
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