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The aim of this study is to probe the possible molecular mechanisms underlying the effects of propofol on HT22 cells. HT22 cells
treated with different concentrations were sequenced, and then the results of the sequencing were analyzed for dynamic trends.
Expression pattern clustering analysis was performed to demonstrate the expression of genes in the significant trend modules in
each group of samples. We first chose the genes related to the trend module for WGCNA analysis, then constructed the PPI
network of module genes related to propofol treatment group, and screened the key genes. Finally, GSEA analysis was performed
on the key genes. Overall, 2,506 genes showed a decreasing trend with increasing propofol concentration, and 1,871 genes showed
an increasing trend with increasing propofol concentration. WGCNA analysis showed that among them, turquoise panel genes
were negatively correlated with propofol treatment, and genes with Cor R >0.9 in the turquoise panel were selected for PPI
network construction. The MCC algorithm screened a total of five key genes (CD86, ILIORA, PTPRC, SPI1, and ITGAM). GSEA
analysis showed that CD86, ILI0RA, PTPRC, SPI1, and ITGAM are involved in the PRION_DISEASES pathway. Our study
showed that propofol sedation can affect mRNA expression in the hippocampus, providing new ideas to identify treatment of

nerve injury induced by propofol anesthesia.

1. Introduction

Propofol is one of the intravenous hypnotic medicines used
to induce and maintain sedation and general anesthesia. It
exerts its action through potentiation of the inhibitory
neurotransmitter y-aminobutyric acid at the GABA-A re-
ceptor [1, 2]. It is highly lipophilic and thus can rapidly cross
the blood-brain barrier, leading to early onset of action. The
characteristics of propofol are well known. It has fast
metabolism and short recovery time, regardless of the depth
or length of sedation time [3]. In addition to being used as an
anesthetic, researchers also found that propofol is also re-
lated to many cancer-related pathophysiological processes
and can play an important role in cancer by regulating the

expression of a variety of downstream molecules, long-chain
noncoding RNA, microRNA, and signal pathways [4].
Propofol upregulates miR-195, and then JAK/stat and NF-
kB pathway is inactivated to inhibit the proliferation, mi-
gration, and invasion of gastric carcinoma MKN45 cells [5].

Although propofol can play an excellent role in main-
taining sedation and general anesthesia, studies have also
focused on changes in regional cerebral blood flow or
neuronal activity during propofol sedation. Only one study
showed that as the depth of propofol sedation increased, the
activity in the area corresponding to the stimulus applied
during propofol sedation decreased. In addition, they found
that propofol sedation impaired the function of basal ganglia
circuits and thalamocortical connections [6]. It is
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F1Gure 1: CCK8 shows the processing effect.

understood that learning and memory occur mainly in the
hippocampus, and propofol may cause hippocampal neu-
rotoxicity [7, 8]. General anesthetics may induce develop-
mental neurotoxicity, including subsequent long-term
memory, acute extensive nerve cell death, and abnormal
learning behavior [9]. Although many researchers have
figured out that propofol induced neurotoxicity in the brains
of developing animals, its exact mechanism of action re-
mains largely unknown. Then, this manuscript, on the other
hand, was conducted to observe the potential biological
processes and signaling pathways that may play an im-
portant role during propofol sedation through the biology
information analysis of genes with different expression
patterns.

2. Methods

2.1. Cell Processing and Sequencing. The HT22 hippocampal
cell line used in the present study was purchased from Shanghai
Yaji Biotechnology Co. (Shanghai, China). The cells were
fostered in DMEM containing 10% FBC, 100 y/mL penicillin,
100 ng/mL streptomycin at 37°C, and 5% CO,. When the cell
density reached 60-70%, the HT22 cells were exposed to
propofol at concentrations of 25 yg/ml, 50 yg/ml, 75 ug/ml, and
100 ug/ml for 1 day. The experiment was repeated three times.
The cDNA/DNA/Small RNA was sequenced on the Illumina
sequencing platform by Genednovo Biotechnology (Guangz-
hou, China). The libraries were sequenced.

2.2. Effects of Treatment on CCK-8. Cells were inoculated in
96-well plates at 1 x 10 3 cells per well. Cell Counting Kit-8
(CCK-8; Beyotime Biotechnology, Shanghai, China) assays
were performed daily. Briefly, the cells were incubated in a
100 uL medium containing 10uL of CCK-8 (0.5 mg/mL)
reagent at 37°C for one to four hours. Absorbance was
measured at 450 nm by an enzyme-labeled assay (Figure 1).
The experiment was performed at least three times in three
replicate wells.

2.3. Trend Analysis. The results obtained from sequencing
were subjected to follow-up experiments. The expression of
each gene was grouped according to different concentration
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points, and then a dynamic trend analysis was completed
using OmicShare Tools. A P value <0.05 would show a
significant difference.

2.4. Protein-Protein Interaction (PPI) Network Construction.
All associations got from STRING were provided with a
confidence score and imported into Cytoscape software.
Modules of the PPI network were screened using the Mo-
lecular Complex Detection plugin in Cytoscape. A P value
<0.05 would show a significant difference.

2.5. Gene Ontology (GO) Function. Gene ontology annota-
tions and KEGG pathway enrichment analyses were per-
formed using the Enrichr database GO terms consisting of
the following three components: biological process (BP),
cellular component (CC), and molecular function (MF).

2.6. WGCNA Analysis. Co-expression networks were con-
structed using the WGCNA data bank in R software. Paired
Pearson correlations were first used to evaluate the weighted
co-expression relationships between all subjects in the
dataset in the adjacency matrix. The matrices were then
converted to TOMs using the topological overlap matrix
(TOM) similarity function, and the resulting TOMs were
used to measure co-expression relationships between genes
based on biologically meaningful genetic similarity.

2.7. GSEA Analysis. The genes were classified into high and
low-expression parts, and then GSEA V3.0 software was
used to analyze the enrichment results for the genes. A
nominal P value of <0.05 and false discovery rate (FDR) of
<25% were selected as cut-off criteria. We selected the top
two ranked analysis results.

3. Results

3.1. Trend Analysis. We first subjected the expression data
obtained from sequencing to trend analysis to observe the
genes whose expression continued to increase or decrease
with increasing propofol concentration. The results of the
trend analysis showed that genes concentrated in module 0
decreased in expression with increasing propofol concen-
tration, and genes concentrated in module 19 increased in
expression with increasing propofol concentration; both
panels were differentially significant. There were 2,506 genes
in module 0 and 1,871 genes in module 19 (see Figure 2).

3.2. Heat Map Showing the Expression of Each Gene in Each
Sample. Subsequently, we selected statistically significant
modules for expression pattern clustering analysis. The heat
map shows the expression of each trend module gene in each
group of samples (see Figure 3).

3.3. WGCNA Analysis. We selected module 0, in which gene
expression was downregulated with propofol concentration,
and module 19, in which gene expression increased with
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FIGURE 2: Trend analysis. (a) Number of genes in each module. (b) P-value of each module. (c) Bar graph showing the number of genes and

P-value of each module.

propofol concentration; we collected genes from both
modules for WGCNA analysis. The analysis identified a total
of two panels, in which the turquoise panel genes were
negatively correlated with the treatment of propofol (see
Figure 4).

3.4. PPI Network Construction. We selected the genes with
Cor R >0.9 in the turquoise panel, a total of 1,698 genes, to
construct the PPI network. Subsequently, the top 5 key
genes, i.e., CD86, ILIORA, PTPRC, SPI1, and ITGAM, were
screened using the MCC algorithm (see Figure 5).

3.5. GSEA Analysis. We grouped the samples as high and
low parts, while GSEA analysis was performed on single
genes afterward. The analysis figured out that the low ex-
pression of CD86, IL1I0RA, PTPRC, SPI1, and ITGAM all
have important roles in the PRION_DISEASES pathway,
and CD86, PTPRC, SPI1, and ITGAM are also all involved in
the NUCLEOTIDE_EXCISION_REPAIR signaling path-
way. Furthermore, ILI0RA is involved in the CIRCA-
DIAN_RHYTHM_MAMMAL signaling pathway (see
Figure 6).

4, Discussion

Propofol causes fewer anesthetic side effects and facilitates
faster recovery compared to other intravenous anesthetics.
The benefits of propofol include the rapid onset of anes-
thesia, short recovery time, and neuroprotective effects in
pathogenic situations [8, 10]. Hence, concerns have been
raised about the possible effects of the widespread use of
propofol on the central nervous system. Propofol does have
neurotoxic effects on children. It affects brain development
by inhibiting neuronal activation of hippocampal neurons,
which may lead to the reduction of neurocognitive function
[11]. Animal experiments have shown that exposure to
subanesthetic doses of isoproterenol alters the long non-
coding RNA profile in the hippocampus of immature mice
and leads to disruption of hippocampal circuits, while

exposure to high doses of isoproterenol inhibits long-term
potentiation in the CA1 region of the adult hippocampus
[12]. Previous studies have suggested that this may be
because propofol is the most potent drug for activating the
GABA-A currents in the immature hypothalamus [13]. To
date, the specific molecular mechanisms involved in pro-
pofol affecting the hippocampal neuronal cells still remain
unclear. To find the potential mechanisms by which pro-
pofol may affect hippocampal neuronal cells, we performed
a trend analysis of the results obtained from sequencing.
We found that 2,506 genes may decrease in expression with
increasing propofol concentrations, and 1,871 genes may
increase in expression with increasing propofol concen-
trations. We then subjected these 4,377 genes to WGCNA
analysis and found that the turquoise plate genes were
significantly and negatively correlated with the propofol in
your treatment group. We then selected the genes in this
panel with correlation coeflicients greater than 0.9 for PPI
network construction and screened five key genes: CD86,
IL10RA, PTPRC, SPI1, and ITGAM.

CD86 is a type I transmembrane protein associated with
T-cell activation in the immune system [14]. CD86 may act
as a key regulator of the immune response to disease through
a T cell-mediated mechanism, and thus it has great potential
to become a new target for immunotherapy [15]. ILI0RA
consists mainly of a heterotetramer of the anti-inflammatory
cytokine IL10 receptor and belongs to class II cytokines
[16, 17]. IL1IORA is usually located as a cell surface receptor
upstream of STAT3, and it can bind IL-10 together with
IL10RB to mediate downstream signaling via STAT3 [18].
PTPRC is expressed on all nucleated cells of the hemato-
poietic system. It expresses several isoforms specific to a
certain cell type and cell development or activation state
[19]. PTPRC also plays an important role in autoimmune
diseases and cancers, as well as in infectious diseases; its
deficiency may lead to T and B lymphocyte dysfunction,
manifesting as severe combined immunodeficiency [20].

Spil is a major regulator of hematopoiesis because it is
involved in the self-renewal of hematopoietic stem and
progenitor cells, as well as in the stereotyping and
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F1GURE 3: Heat map showing the expression of each gene in each sample. (a) Heatmap of module 0 gene expression in each sample. (b) Heatmap of
module 19 gene expression in each sample. (c) Heatmap of module 18 gene expression in each sample. (d) Heatmap of module 12 gene expression

in each sample.

maturation of the myeloid and B-lymphatic lineages. In-
appropriate Spil expression is oncogenic. However, the
molecular mechanisms mediating the oncogenic function of
Spil are complex and not yet fully understood [21]. In
addition, Spil transcription factors are important in regu-
lating macrophage and neutrophil development [22].
ITGAM is expressed by a variety of myeloid cell types, which
can form heterodimers with CD18 and mediate adhesion
between cell types in the immune system [23, 24]. ITGAM
deficiency may enhance disease progression and inflam-
mation in multiple autoimmune models, including lupus
[25]. The above then could show that CD86, IL10RA,
PTPRC, SPI1, and ITGAM all play important roles in im-
mune response. Inflammation is a response triggered by
damage to living tissue. It can be beneficial or may lead to
tissue destruction. Inflammation is particularly dangerous
when the nervous system is involved (so-called

“neuroinflammation”), whether acute or chronic [26]. In
turn, neuroinflammation can cause reversible and irre-
versible neurological sequelae, including cognitive impair-
ment [27]. However, by modulating inflammation, it is also
possible to improve peripheral nerve repair [28]. It has been
suggested that the abnormal expression of CD86, ILI0RA,
PTPRC, SPI1, and ITGAM may trigger an immune-in-
flammatory response and thus lead to neurological damage.

In the present experiment, we performed GSEA analyses
of individual genes separately and showed that CD86,
IL10RA, PTPRC, SPI1, and ITGAM are involved in the
PRION_DISEASES pathway. Prion diseases can make the
prion protein (PrP Sc) in the central nervous system itch. In
the early stages, microglia respond to the deposition of PrP
Sc, thereby increasing their phagocytic capacity to clear PrP
Sc. However, this phagocytosis is not sufficient and can have
detrimental effects on the brain [29]. This is further evidence
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FIGURE 5: PPI network construction. (a) PPI network building block diagram. (b) 5 key genes obtained from MCC algorithm analysis.
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FIGURE 6: GSEA analysis. (a) The first two signaling pathways involved in CD86 low expression. (b) The first two signaling pathways
involved in IL10RA low expression. (c) The first two signaling pathways involved in PTPRC low expression. (d) The first two signaling
pathways involved in SPII low expression. (e) The first two signaling pathways involved in ITGAM low expression.

that CD86, IL10RA, PTPRC, SPII, and ITGAM have an
important relationship in neurological impairment of the
brain. This could also suggest that propofol may lead to
neurological impairment by affecting the abnormal ex-
pression of CD86, ILLORA, PTPRC, SPI1, and ITGAM,; thus,
the exact mechanism remains to be investigated.

5. Conclusion

In conclusion, CD86, IL10RA, PTPRC, SPI1, and ITGAM
may play an important role in propofol affecting mouse
hippocampal neuronal cells. Propofol may affect mouse
hippocampal neurons by affecting the expression of PTPRC,
CD86, il10ra, spilillOra and ITGAM. Thereby, these find-
ings may imply potential new targets for the treatment of

patients with propofol anesthesia-induced neurological
injury.
Data Availability

The datasets used and analyzed during the current study are
available from the corresponding author on reasonable
request.
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