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Summary. Recent advances in molecular biology allow the quantification of the transcriptome
and scoring transcripts as differentially or equally expressed between two biological conditions.
Although these two tasks are closely linked, the available inference methods treat them sep-
arately: a primary model is used to estimate expression and its output is post processed by
using a differential expression model. In the paper, both issues are simultaneously addressed
by proposing the joint estimation of expression levels and differential expression: the unknown
relative abundance of each transcript can either be equal or not between two conditions. A
hierarchical Bayesian model builds on the BitSeq framework and the posterior distribution of
transcript expression and differential expression is inferred by using Markov chain Monte Carlo
sampling. It is shown that the model proposed enjoys conjugacy for fixed dimension variables;
thus the full conditional distributions are analytically derived. Two samplers are constructed, a
reversible jump Markov chain Monte Carlo sampler and a collapsed Gibbs sampler, and the lat-
ter is found to perform better.A cluster representation of the aligned reads to the transcriptome is
introduced, allowing parallel estimation of the marginal posterior distribution of subsets of tran-
scripts under reasonable computing time.Under a fixed prior probability of differential expression
the clusterwise sampler has the same marginal posterior distributions as the raw sampler, but a
more general prior structure is also employed.The algorithm proposed is benchmarked against
alternative methods by using synthetic data sets and applied to real RNA sequencing data.
Source code is available on line from https://github.com/mqbssppe/cjBitSeq.

Keywords: Collapsed Gibbs sampler; Mixture models; Reversible jump Markov chain Monte
Carlo sampling; Ribonucleic acid sequencing

1. Introduction

Quantifying the transcriptome of a given organism or cell is a fundamental task in molecu-
lar biology. Ribonucleic acid sequencing (which is known as ‘RNA-seq’) technology produces
transcriptomic data in the form of short reads (Mortazavi et al., 2008). These reads can be
used either to reconstruct the transcriptome by using de novo or guided assembly, or to estimate
the abundance of known transcripts given a reference annotation. Here, we consider the latter
scenario in which transcripts are defined by annotation. In such a case, millions of short reads
are aligned to the reference transcriptome (or genome) by using mapping tools such as ‘Bowtie’
(Langmead et al., 2009) (or ‘TopHat’ (Trapnell et al., 2009)). Of particular interest is the identifi-
cation of differentially expressed transcripts (or isoforms) across different samples. Throughout
this paper the term transcript refers to isoforms, so differential transcript detection has the same
meaning as differential isoform detection. Most genes in higher eukaryotes can be spliced into
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alternative transcripts that share specific parts of their nucleotide sequence. Thus, a short read
is not uniquely aligned to the transcriptome and its origin remains uncertain, making transcript
expression estimation non-trivial. Probabilistic models provide a powerful means to estimate
transcript abundances as they can take this ambiguous read assignment into consideration in a
principled manner.

There are numerous methods that estimate transcript expression from RNA-seq data, in-
cluding ‘RNA-seq by expectation–maximization’ (Li and Dewey, 2011), ‘isoform estimation
by expectation–maximization’ (Nicolae et al., 2011), ‘Cufflinks’ (Trapnell et al., 2010, 2013),
‘BitSeq’ (stage 1) (Glaus et al., 2012), ‘transcript isoform estimation with gapped alignment of
RNA-seq data’ (Nariai et al., 2013) and ‘Casper’ (Rossell et al., 2014). Some of these methods
also include a second stage for performing differential expression (DE) analysis at the transcript
level (e.g. ‘Cuffdiff ’ and BitSeq stage 2) and stand-alone methods for transcript level DE calling
have also been developed such as ‘EBSeq’ (Leng et al., 2013) and ‘MetaDiff’ (Jia et al., 2015).
Cuffdiff uses an asymptotically normal test statistic by applying the delta method to the log-
ratio of transcript abundances between two samples, given the estimated expression levels using
Cufflinks. EBSeq estimates the Bayes factor of a model under DE or non-DE for each transcript,
building a negative binomial model on the estimated read counts from any method. BitSeq stage
2 ranks transcripts as differentially expressed by the probability of positive log-ratio based on
the Markov chain Monte Carlo MCMC output from BitSeq stage 1, which estimates the ex-
pression levels by assuming a mixture model. Gene level DE analysis is also available by using
count-based methods such as ‘edgeR’ (Robinson et al., 2010) and ‘DESeq’ (Anders and Huber,
2010) but here we limit our attention to methods that are designed for transcript level DE calling.

All existing methods for transcript level DE calling apply a two-step procedure. The mapped
RNA-seq data are used as input of a first-stage analysis to estimate transcript expression. The
output of this stage is then post processed at a second stage to classify transcripts as differentially
expressed or non-differentially expressed. The bridge between the two stages is based on certain
parametric assumptions for the distribution of the estimates of the first-stage and/or the use of
asymptotic results (as previously described above). Also, transcript level expression estimates
are correlated through sharing of reads and this correlation is typically ignored in the second
stage. Such two-stage approaches are quite useful in practice since the DE question is not
always the main aim of the analysis; therefore estimating expression is useful in itself. However,
when the main purpose of an experiment is DE calling then the two-stage procedure increases
the modelling complexity and may result in overfitting, since there is no guarantee that the
underlying assumptions are valid. Note that a recent method (Gu et al., 2014) addresses the
joint estimation of expression and DE modelling of exon counts under a Bayesian approach but
at the gene level rather than the transcript level that is considered here.

The contribution of this paper is to develop a method for the joint estimation of expression
and DE at the transcript level. The method builds on the Bayesian framework of the BitSeq
(stage 1) model where transcript expression estimation reduces to estimating the posterior dis-
tribution of the weights of a mixture model by using MCMC sampling (Glaus et al., 2012).
The novelty in the present study is that DE is addressed by inferring which weights differ be-
tween two mixture models. This is achieved by using two samplers. A reversible jump MCMC
(RJMCMC) algorithm (Green, 1995) updates both transcript expression and DE parameters,
and a collapsed Gibbs algorithm is developed which avoids transdimensional transitions. The
high dimensional setting of RNA-seq data studies makes the convergence to the joint posterior
distribution computationally challenging. To alleviate this computational burden and to allow
easier parallelization, a new cluster representation of the transcriptome is introduced which
collapses the problem to subsets of transcripts sharing aligned reads.
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The rest of the paper is organized as follows. The mixture model that is used in the original
BitSeq set-up is reviewed in Section 2.1. The prior assumptions of the new (clusterwise joint
BitSeq) model called cjBitSeq is introduced in Section 2.2. The full conditional distributions are
given in Section 2.3 and two MCMC samplers are described in Section 2.4. A cluster represen-
tation of aligned reads and transcripts is discussed in Section 2.5 and details over false discovery
rate (FDR) estimation are given in Section 2.6. Large-scale simulation studies are presented in
Section 3.2 and the method proposed is illustrated on a real human data set in Section 3.3. The
paper concludes in Section 4 with a synopsis and discussion.

2. Methods

In the BitSeq model, the mixture components correspond to annotated transcript sequences
and the mixture weights correspond to their relative expression levels. The data likelihood is
then computed by considering the alignment of reads (or read pairs) against each mixture
component. Essentially, this model is modified here to construct a well-defined probability of
DE or non-DE when two samples are available.

We induce a set of free parameters of varying dimension, depending on the number of different
weights between two mixture models. Assuming two independent Dirichlet prior distributions,
the Gibbs sampler (Geman and Geman, 1984; Gelfand and Smith, 1990) draws samples from
the full conditionals, which are independent Dirichlet and generalized Dirichlet (Connor and
Mosimann, 1969; Wong, 1998, 2010) distributions. This representation allows the integration
of the corresponding parameters as stated in theorem 2. Therefore, we provide two MCMC
samplers depending on whether transcript expression levels are integrated out or not. These
samplers converge to the same target distribution but using different steps to update the state
of each transcript: the first uses a birth–death move type (Richardson and Green, 1997; Pap-
astamoulis and Iliopoulos, 2009) and the second is a block update from the full conditional
distribution. After detecting clusters of transcripts and reads, it is shown that the parallel ap-
plication of the algorithm to each cluster converges to proper marginals of the full posterior
distribution.

2.1. BitSeq
Let x= .x1, : : : , xr/, xi ∈X , i=1, : : : , r, denote a sample of r short reads aligned to a given set of
K transcripts. The sample space X consists of all sequences of letters A, C, G and T. Assuming
that reads are independent, the joint probability density function of the data is written as

x|θ∼
r∏

i=1

K∑
k=1

θkfk.xi/: .1/

The number of components, K, is equal to the number of transcripts and it is considered as
known since the transcriptome is given. The parameter vector θ= .θ1, : : : , θK/∈PK−1 denotes
relative abundances, where

PK−1 :=
{

pk �0, k =1, : : : , K −1 :
K−1∑
k=1

pk �1; pK :=1−
K−1∑
k=1

pk

}
:

The component-specific density fk.·/ corresponds to the probability of a read aligning at some
position of transcript k, k = 1, : : : , K. Since we assume a known transcriptome, {fk}K

k=1 are
known as well and they are computed according to the methodology that is described in Glaus
et al. (2012) (see also appendix A in the on-line supplementary material), taking into account
position and sequence-specific bias correction methods.
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A priori it is assumed that θ∼DK−1.α1, : : : , αK/, with Dj denoting the Dirichlet distribution
defined over Pj. Furthermore, it is assumed that α1 = : : :=αK = 1, which is equivalent to the
uniform distribution in PK−1. In the original implementation of BitSeq (Glaus et al., 2012),
MCMC samples are drawn from the posterior distribution of θ|x by using the Gibbs sampler
whereas more recently variational Bayes approximations have also been included for faster
inference (Papastamoulis et al., 2014; Hensman et al., 2015).

Given the output of BitSeq stage 1 for two different samples, BitSeq stage 2 implements a one-
sided test, probability of positive log-ratio, PPLR, for DE analysis. However, this approach does
not define transcripts as differentially expressed or non-differentially expressed and is therefore
not directly comparable with standard two-sided tests that are available in most other packages
(Trapnell et al., 2013; Leng et al., 2013). Also, correlations between transcripts in the posterior
distribution for each sample are discarded during the DE stage, leading to potential loss of
accuracy when making inferences. To deal with these limitations, a new method for performing
DE analysis is presented next.

2.2. cjBitSeq
Assume that we have at hand two samples x := .x1, : : : , xr/ and y := .y1, : : : , ys/ denoting the num-
ber of (mapped) reads for sample x and y respectively. Now, let θk and wk denote the unknown
relative abundance of transcript k =1, : : : , K in sample x and y respectively. Define the parame-
ter vector of relative abundances as θ= .θ1, : : : , θK−1; θK/∈PK−1 and w= .w1, : : : , wK−1; wK/∈
PK−1. Under the standard BitSeq model the prior on the parameters θ and w would be a product
of independent Dirichlet distributions. In this case the probability θk = wk under the prior is 0
and it is not straightforward to define non-differentially expressed transcripts. To model DE we
would instead like to identify instances where transcript expression has not changed between
samples. Therefore, we introduce a non-zero probability for the event θk =wk. This leads us to
define a new model with a non-independent prior for the parameters θ and w.

Definition 1 (state vector). Let c := .c1, : : : , cK/∈C, where C is the set defined by

(a) ck ∈{0, 1}, k =1, : : : , K,
(b) c+ :=ΣK

k=1ck �=1.

Then, for k =1, : : : , K let {
θk =wk, if ck =0,
θk �=wk, if ck =1:

We shall refer to vector c as the state vector of the model.

For example, assume that K =6 and c= .1, 0, 0, 1, 0, 1/. According to definition 1, θk =wk for
k =2, 3, 5 and θk �=wk for k =1, 4, 6. From definition 1 it is obvious that the sum of the elements
in c cannot be equal to 1 because either all θs must be equal to ws, or at least two of them must be
different. The introduction of such dependences between the elements of θ and w has non-trivial
effects on the prior assumptions of course. It is clear that with this approach we should define
a valid conditional prior distribution for θ, w|c.

First we impose a prior assumption on c. We shall consider the Jeffreys (Jeffreys, 1946) prior
distribution for a Bernoulli trial, i.e. P.ck =1|π/=π with π following a beta distribution. Since
c+ �=1, the prior distribution of the state vector c is expressed as

π ∼beta. 1
2 , 1

2 /, .2/
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P.c|π/=P.c|c+ �=1, π/= πc+.1−π/K−c+

1−Kπ.1−π/K−1 , c∈C: .3/

Next we proceed to the definition of a proper prior structure for the weights of the mixture.
At this step extra care should be taken for everything to make sense as a probabilistic space.
It is obvious that .θ, w/ should be defined conditionally on the state vector c. What it is less
obvious is that .θ, w/ should be defined conditionally on a parameter of varying dimension. At
this point, we introduce some extra notation.

Definition 2 (dead and alive subsets and permutation of the labels). For a given state vector
c, define the order-specific subsets

C0.c/ :={τ1 <: : :< τK−c+ ∈{1, : : : , K} : cτk
=0 ∀ k =1, : : : , K − c+}

and

C1.c/ :={τK−c++1 <: : :< τK ∈{1, : : : , K} : cτk
=1 ∀ k =K − c+ +1, : : : , K}:

These sets will be called dead and alive subsets of the transcriptome index respectively. Moreover,
τ = .τ1, : : : , τK/ denotes the unique permutation of {1, : : : , K} obeying the ordering within the
dead and alive subsets.

As will be made clear later, it is convenient to define a unique labelling within the dead and
alive subsets so we also explicitly define the corresponding permutation τ of the labels. To clarify
definition 2, assume that c = .1, 0, 0, 1, 0, 1/. Then definition 2 implies that C0.c/ = {2, 3, 5},
C1.c/= {1, 4, 6} and τ = .2, 3, 5, 1, 4, 6/. The order-specific definition of these subsets excludes
{3, 2, 5} (for example) from the definition of a dead subset.

It is clear that, if C0.c/=∅, then both θ and w have K −1 free parameters each. However, if
C0.c/ �= ∅, the free parameters lie in a lower dimensional space. This means that .θ, w/ should
be defined given c by taking into account the set of free parameters that are actually allowed
by the state vector. In particular, .θ, w/ are pseudoparameters. The actual parameters of our
problem are defined in lemma 1.

In what follows, the notation τσ should be interpreted as the reordering of vector σ =
.σ1, : : : , σK/ under permutation τ . For example, assume that τ = .3, 1, 2/ and σ = .σ1, σ2, σ3/;
then τσ= .σ3, σ1, σ2/. Let also τ−1 denote the inverse permutation of τ .

Lemma 1 (existence and uniqueness of free parameters). For every .c, τ , θ, w/ respecting
definitions 1 and 2 there is a unique set of free parameters:

.u, v/∈PK−1 ×Pc+−1, .4/

such that

θ= τ−1u, .5/

w = τ−1�, .6/

where �= .{u
τ−1
k

:k∈C0.c/}, vΣk∈C1.c/uτ−1
k

/ under the conventions P−1 :=∅ and ∅Σk∈∅ uk :=
∅.

Proof. It is trivial to show that .c, τ , u, v/ → .θ, w/ is a ‘one-to-one’ and ‘onto’ mapping
(bijective function).

For example, assume that c = .1, 0, 0, 1, 0, 1/, where C0.c/ = {2, 3, 5} and C1.c/ = {1, 4, 6}.
Then, τ = .2, 3, 5, 1, 4, 6/ and τ−1 = .4, 1, 2, 5, 3, 6/. According to state c we should have that
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θ2 = w2, θ3 = w3 and θ5 = w5, whereas θk �= wk for k ∈ C1.c/. Lemma 1 states that θ and w can
be expressed as a transformation of two independent parameters: u= .u1, u2, u3, u4, u5, u6/∈P5
and v = .v1, v2, v3/∈P2. According to equation (5), θ is a permutation of the vector u:

θ|.c, u/= .u4, u1, u2, u5, u3, u6/:

Next, w is obtained by a permutation of �, which is a linear transformation of u and v, i.e.
�= .u1, u2, u3, v1.u4 +u5 +u6/, v2.u4 +u5 +u6/, v3.u4 +u5 +u6//. According to equation (6),

w|.c, u, v/= .v1.u4 +u5 +u6/, u1, u2, v2.u4 +u5 +u6/, u3, v3.u4 +u5 +u6//:

Comparing the last two expressions for θ and w, it is obvious that θ2 = w2, θ3 = w3 and θ5 =
w5, whereas θk �= wk for all remaining entries, which is the configuration that is implied by
the state vector c. Note also that {u

τ−1
k

; k ∈ C0.c/} = .u1, : : : , uK−c+/ and {u
τ−1
k

; k ∈ C1.c/} =
.uK−c++1, : : : , uK/ and Σk∈C1.c/wk =Σk∈C1.c/θk =Σk∈C1.c/uτ−1

k
.

Now, it should be clear that given a state vector c, as well as the independent free parameters
u and v, the pseudoparameters θ and w are deterministically defined. In other words, the condi-
tional distributions of θ and w are Dirac distributions, gathering all their probability mass into
the single points defined by equations (5) and (6). Hence, the conditional prior distribution for
transcript expression is written as

f.θ, w|c, τ , u, v/=1θ,w[{θ.c, τ , u/, w.c, τ , u, v/}], .7/

with θ.c, τ , u/ and w.c, τ , u, v/ as in equations (5) and (6) respectively.
Moreover, we stress that, if the permutation τ were not uniquely defined according to def-

inition 2, then we would have had to take into account all the possible permutations within
the dead and alive subsets. However, such an approach would lead to an increased modelling
complexity without making any difference on the inference. That said, the conditional prior
distribution of τ given c is Dirac:

f.τ |c/=1τ{τ .c/}, .8/

where τ .c/ denotes the unique permutation (given c) in definition 2.
At this point we state our prior assumptions for the free parameters, given a state vector c.

We assume that a priori u and v are independent random variables distributed according to a
Dirichlet distribution, i.e.

u|c∼DK−1.α1, : : : , αK/, .9/

v|c∼Dc+−1.γ1, : : : , γc+/: .10/

In the applications, we shall furthermore assume that αk = 1 for all k = 1, : : : , K and γl = 1 for
all l=1, : : : , c+, to assign a uniform prior distribution over PK−1 ×Pc+−1. Now, the following
theorem holds.

Theorem 1. Assume that distributions (9) and (10) hold true and furthermore αk = γk =α
for all k = 1, : : : , K. Then, θ and w are marginally identical random variables following the
DK−1.α, : : : , α/ distribution.

For a proof of theorem 1, see appendix C in the on-line supplementary material.
Note here that theorem 1 does not imply that θ and w are a priori independent. As shown in

Fig. 1, θk is exactly equal to wk with probability P.ck =0/> 0, k =1, : : : , K.
The model definition is completed by considering the latent allocation variables of the mixture

model. Let ξ={ξ1, : : : , ξr} and z ={z1, : : : , zs} with
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Fig. 2. Directed acyclic graph representation of the hierarchical model (12)

P.ξi =k|θ/=θk, independent for i=1, : : : , r,

P.zj =k|w/=wk, independent for j =1, : : : , s,

for k = 1, : : : , K. Moreover, ξ and z are assumed conditionally independent given θ and w, i.e.
P.ξ, z|θ, w/=P.ξ|θ/P.z|w/. Now, the joint distribution of the complete data (x, y, ξ, z) factorizes
as follows:

f.x, y, ξ, z|θ, w/=
r∏

i=1
θξifξi .xi/

s∏
j=1

wzj fzj .yj/: .11/

Let g = .x, y, ξ, z, θ, w, u, v, c, τ , π/. From equations (2), (3) and (7)–(11), the joint distribution
of g is defined as

f.g|α, γ, K/=f.x, y, ξ, z|θ, w/f.u|α, K/f.v|c, γ/f.θ|τ , u/f.w|c, τ , u, v/f.τ |c/f.c|K, π/f.π/:

.12/

Equation (12) defines a hierarchical model whose graphical representation is given in Fig. 2 with
circles and squares denoting respectively unobserved and observed or known variables.

2.3. Full conditional distributions for the Gibbs updates
In this section, the full conditional distributions are derived. Let h| · · · denote the conditional
distribution of a random variable h given the values of the rest of the variables. We also denote
by x[−i] all remaining members of a generic vector after excluding its ith item.

It is straightforward to show that π| · · ·∼beta.c+ + 1
2 , K−c+ + 1

2 /. For the allocation variables
it follows that

P.ξi =k| · · ·/∝θkfk.xi/, k =1, : : : , K, .13/

P.zj =k| · · ·/∝wkfk.yi/, k =1, : : : , K .14/

independent for i=1, : : : , r and j =1, : : : , s. Now, given .u, v, c, τ /, it is again trivial to see that
the full conditional distribution of θ, w| · · · is the same as in equation (7). Let GD.·, ·/ denote
the generalized Dirichlet distribution (see appendix B in the on-line supplementary material)
and also define

sk.ξ/ :=
r∑

i=1
I.ξi =k/,

sk.z/ :=
s∑

j=1
I.zj =k/
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for k =1, : : : , K. Regarding the full conditional distribution of the free parameters, we have the
following result.

Lemma 2. The full conditional distribution of .u, v| · · ·/ is

u| · · ·∼GD.λ1, : : : , λK−1;β1, : : : , βK−1/, .15/

v| · · ·∼Dc+−1[{γl + sτl+kÆ .z/; l=1, : : : , c+}], .16/

with kÅ :=K − c+, conditionally independent (given all other variables), where

λk :=
{

αk + sτk
.ξ/+ sτk

.z/, k =1, : : : , kÅ,
αk + sτk

.ξ/, k =kÅ +1, : : : , K −1

and

βk :=

⎧⎪⎪⎨
⎪⎪⎩

K∑
j=k+1

{αj + sτj .ξ/+ sτj .z/}, k =1, : : : , kÅ,

K∑
j=k+1

{αj + sτk
.ξ/}, k =kÅ +1, : : : , K −1:

For a proof of lemma 2, see appendix D in the on-line supplementary material.
Here, we underline that we have essentially derived an alternative construction of the gen-

eralized Dirichlet distribution. Assuming that two vectors of weights share some common ele-
ments, and independent Dirichlet prior distributions are assigned to the free parameters of these
weights, the posterior distribution of the first free-parameter vector is a generalized Dirichlet
distribution. Finally, note that, if v =∅ (this is the case when the corresponding elements of the
weights of the two mixtures are all equal to each other), the generalized Dirichlet distribution
(15) reduces to the distribution DK−1[{αk + sk.ξ/ + sk.z/; k = 1, : : : , K}], as expected, since in
such a case .x, y/ forms a random sample of size r + s from the same population. However,
if all weights are different, the full conditional distribution of u and v becomes a product of
two independent Dirichlet distributions, as expected. Next we show that we can integrate out
the parameters that are related to transcript expression and directly sample from the marginal
posterior distribution of ξ, z, c|x, y.

Theorem 2. Integrating out the transcript expression parameters u and v, the full conditional
distributions of allocation variables are written as

f.ξ, z|x, y, c/∝
Γ
{ ∑

k∈C1

α̃k + sk.ξ/+ sk.z/

}

Γ
{ ∑

k∈C1

α̃k + sk.ξ/

}
Γ
{ ∑

k∈C1

γl.k/ + sk.z/

}

× ∏
k∈C1

Γ{α̃k + sk.ξ/}Γ{γl.k/ + sk.z/}

× ∏
k∈C0

Γ{α̃k + sk.ξ/+ sk.z/}
r∏

i=1
fξi .xi/

s∏
j=1

fzj .yj/, .17/

P.ξi =k|ξ[−i], z, c, x/∝

⎧⎪⎪⎨
⎪⎪⎩

{α̃k + s
.i/
k .ξ/+ sk.z/}fk.xi/, k ∈C0,∑

t∈C1

α̃k + s
.i/
t .ξ/+ st.z/

∑
t∈C1

α̃t + s
.i/
t .ξ/

{α̃k + s
.i/
k .ξ/}fk.xi/, k ∈C1,

.18/
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Table 1. Workflow for the two samplers

RJMCMC sampler Collapsed sampler

(a) Update .ξ, z/|θ, w (a) Update ξi|ξ[−i], z, c, i=1,: : : , r
(b) Update .u, v/|c,ξ, z (b) Update zj |ξ, z[−j], c, j =1,: : : , s
(c) Update .θ, w/|c, τ , u, v (c) Update a block of c|ξ, z
(d) Propose update of .c, τ , v/|: : : (d) Update π|c
(e) Update π|c (e) Update .θ, w, τ , u, v/|c,ξ, z (optional)

P.zj =k|z[−j], ξ, c, y/∝

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{α̃k + sk.ξ/+ s
.j/
k .z/}fk.yj/, k ∈C0,∑

t∈C1

α̃t + st.ξ/+ s
.j/
t .z/

∑
t∈C1

γl.t/ + s
.j/
t .z/

{γl.k/ + s
.j/
k .z/}fk.yj/, k ∈C1,

.19/

where α̃k = α
τ−1
k

, l.k/ = τ−1
k − kÅ, s

.i/
k .ξ/ = Σt �=iI.ξi = k/ and s

.j/
k .z/ = Σt �=jI.zi = k/ for k =

1, : : : , K, i=1, : : : , r and j =1, : : : , s.

For a proof of theorem 2, see appendix E in the on-line supplementary material.
Once again, note the intuitive interpretation of our model in the special cases where C0 =

∅ or C1 = ∅. If C0 = ∅ (all transcripts are differentially expressed) then the denominator in
the first line of equation (17) becomes equal to Γ.Σkαk + r + s/, i.e. independent of ξ and z.
Hence, equation (17) reduces to the conditional distribution of the allocation variables when
independent Dirichlet prior distributions are imposed on the mixture weights. In contrast, when
C1 =∅ (all transcripts are equally expressed), the distribution reduces to the product appearing in
the last row of equation (17). This is the marginal distribution of the allocations when considering
that .x, y/ arise from the same population and after imposing a Dirichlet prior on the weights,
as expected.

2.4. Markov chain Monte Carlo samplers
In this section we consider the problem of sampling from the posterior distribution of model
(12). We propose two (alternative) MCMC sampling schemes, depending on whether the trans-
dimensional random variable v is updated before or after c.

Given c everything has fixed dimension. However, as c varies on the set of its possible values,
then v ∈∪k∈{0,2,::::::,K}Pk−1. This means that, whenever c is updated, v should change dimen-
sion. To construct a sampler that switches between different dimensions, an RJMCMC method
(Green, 1995) can be implemented (see also Richardson and Green (1997) and Papastamoulis
and Iliopoulos (2009)). However, this step can be avoided since we have already shown that
the transcript expression parameters can be integrated out. Thus, a collapsed sampler is also
available. Given an initial state, the general workflow for the samplers proposed is shown in
Table 1 (we avoid explicitly stating that all distributions appearing in Table 1 are conditionally
defined on the observed data x and y, although they should be understood as such).

Note that step (e) is optional for the collapsed sampler. It is implemented only to derive
the estimates of transcript expression but it is not necessary for the previous steps. The next
paragraphs outline the workflow for step (d) of the RJMCMC sampler and step (c) of the
collapsed sampler. For full details the reader is referred to appendices F and G in the on-line
supplementary material.
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(a) Reversible jump sampler: models of different dimensions are bridged by using two move
types, namely ‘birth’ and ‘death’ of an index. The effect of a birth or death move is
respectively to increase or decrease the number of differentially expressed transcripts.
These moves are complementary in the sense that the one is the reverse of the other. Note
that this step proposes a candidate state which is accepted according to the acceptance
probability.

(b) Collapsed sampler: in this case we randomly choose two transcripts (j1 and j2) and perform
an update from the conditional distribution cj1,j2 |c−[j1,j2]ξ, z, x, y, π, which is detailed in
equations (G.1)–(G.4) in section G of the on-line supplementary material. The random
selection of the block {j1, j2}⊆{1, : : : , K} and the corresponding update of cj1,j2 from its
full conditional distribution is a valid MCMC step because it corresponds to a Metropolis–
Hastings step in which the acceptance probability equals 1 (see lemma 2 in appendix G
of the supplementary material).

2.5. Clustering of reads and transcripts
In real RNA-seq data sets the number of transcripts could be very large. This imposes a great
obstacle for the practical implementation of the approach proposed: the search space of the
MCMC sampler consists of 2K elements (state vectors) and convergence of the sampler may
be very slow. This problem can be alleviated by a cluster representation of aligned reads to the
transcriptome. High quality mapped reads exhibit a sparse behaviour in terms of their mapping
places: each read aligns to a small number of transcripts and there are groups of reads mapping
to specific groups of transcripts. Hence, we can take advantage of this sparse representation
of alignments and break the initial problem into simpler problems, by performing MCMC
sampling per cluster.

This clustering representation introduces an efficient way to perform parallel MCMC sam-
pling by using multiple threads for transcript expression estimation. For this purpose we used
the GNU parallel (Tange, 2011) tool, which effectively handles the problem of splitting a series
of jobs (MCMC sampling per cluster) into the available threads. The jobs are ordered according
to the number of reads per cluster and those containing more reads are queued first. GNU
parallel efficiently spawns a new process when one finishes and keeps all available central pro-
cessor units active, thus saving time compared with an arbitrary assignment of the same amount
of jobs to the same number of available threads. For further details see the on-line appendix
H.

2.6. False discovery rate
Controlling the FDR (Benjamini and Hochberg, 1995; Storey, 2003) is a crucial issue in multiple-
comparisons problems. Under a Bayesian perspective, any probabilistic model that defines a
positive prior probability for DE and expression estimation yields that E.FDR|data/=Σ{1 −
P̂.ck =1|x, y/}dk=D (see for example Müller et al. (2004, 2006)), where dk ∈{0, 1} and D=Σdk

denote the decision for transcript k, k =1, : : : , K, and the total number of rejections respectively.
Consequently, the FDR can be controlled at a desired level α by choosing the transcripts that
P̂.ck = 1|x, y/ > 1 −α, which is also the approach that was proposed by Leng et al. (2013). We
have found that this rule achieves small FDRs compared with the desired level α, but sometimes
results in a small true positive rate.

A less conservative choice is as follows. Let q1 � : : :�qK denote the ordered values of P̂.ck =
1|x, y/, k = 1, : : : , K, and define Gk := Σk

j=1.1−qk/=k, k = 1, : : : , K. For any given 0 < α < 1,
consider the decision rule



14 P. Papastamoulis and M. Rattray

dk =
{

1, 1�k �g,
0, g +1�k �K,

.20/

where g := max{k = 1, : : : , K : Gk � α}. It is quite straightforward to see that expression (20)
controls the expected FDR at the desired level α, since by direct substitution we have that

E.FDR|data/=

K∑
k=1

{1− P̂.ck =1|x, y/}dk

D
=

g∑
k=1

.1−qk/

g
�α:

An alternative is to use a rule optimizing the posterior expected loss of a predefined loss
function. For example, the threshold c=.c + 1/ is the optimal cut-off under the loss function
L=cFD+FN, where FD and FN denote the posterior expected counts of false discoveries and
false negative discoveries respectively. Note that L is an extension of the .0, 1, c/ loss functions
for traditional hypothesis testing (Lindley, 1971), whereas a variety of alternative loss functions
can be devised as discussed in Müller et al. (2004).

3. Results

A set of simulation studies is used to benchmark the proposed methodology by using synthetic
RNA-seq reads from the Drosophila melanogaster transcriptome. The Spanki software (Sturgill
et al., 2013) is used for this. In addition to the simulated data study we also perform a comparison
for two real data sets: a low and high coverage sequencing experiment using human data and a
data set from drosophila. In all cases, the reads are mapped to the reference transcriptome by
using Bowtie (version 2.0.6), allowing up to 100 alignments per read. TopHat (version 2.0.9) is
also used for Cufflinks.

3.1. Evaluation of samplers
We used a simulated data set from K =630 transcripts (more details are described in the on-line
appendix H) and compare the posterior mean estimates between short and long runs. As shown
in Fig. 3, the collapsed sampler exhibits faster convergence than the RJMCMC sampler; hence
in what follows we shall present only results corresponding to the collapsed sampler. The reader
is referred to the on-line supplementary material (appendices J and K) for further comparisons
(including auto-correlation function estimation and prior sensitivity) between our two MCMC
schemes.

3.2. Simulated data
The input of the Spanki simulator is a set of reads per kilobase values per sample. This file is
provided under a variety of generative scenarios. Given the input files, Spanki simulates RNA-
seq reads (in ‘fastq’ format, a text-based format for storing nucleotide sequences with the corres-
ponding quality scores) according to the specified reads per kilobase values. Seven scenarios
are used to generate the data: two Poisson replicates per condition (scenario 1), three negative
binomial replicates per condition (scenario 2), nine negative binomial replicates (scenario 3),
three negative binomial replicates per condition with five times higher variability among repli-
cates compared with scenario 2 (scenario 4) and the same variability as scenario 4 but a smaller
range for the mean reads per kilobase values (scenario 5). The last two scenarios are revisions
of the first scenario with smaller fold changes (scenario 6) and large differences in the number
of reads between conditions (scenario 7). See the on-line supplementary Fig. 9 and appendix K
for the details of the ground truth that was used in our simulations.
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Next, we applied the method proposed and compared our results against Bitseq, Cuffdiff and
EBSeq, using

(a) the receiver operating characteristic,
(b) the squared error, accuracy receiver operating characteristic area measure, SAR (Sing

et al., 2005), and
(c) the power to achieved FDR curves, as shown in Fig. 4.

For the comparison in (c) the FDR decision of our model is based on rule (20). Moreover, only
methods that control the FDR are taken into account in (c); hence BitSeq stage 2 is excluded.
In addition to this FDR control procedure, we also provide adjusted rates after imposing a
threshold to the log-fold change of the cjBitSeq sampler: all transcripts with estimated absolute
log2-fold change less than 1 are filtered out (results correspond to the broken lines in Fig. 4). A
typical behaviour of the methods compared is illustrated in Fig. 5, displaying true expression val-
ues used in scenario 3. We conclude that our method infers an almost ideal classification, which
is not something that applies to the other methods despite the large number of replicates used.

To summarize our findings, Fig. 6 displays the complementary area under the curve for each
scenario. Averaging across all simulation scenarios, we conclude that our method is almost
twice as good as BitSeq stage 2, three times better than EBSeq and 3.2 times better than Cuffdif.
Finally, we compare the estimated relative abundance of transcripts against the true values that
were used to generate the data, using the average across all replicates of a given condition. Fig.
6(b) displays the mean absolute error between the logarithm of true transcript expression and
the corresponding estimates according to each method. We see that cjBitSeq, BitSeq stage 1 and
RSEM exhibit similar behaviour, and all perform significantly better than Cufflinks. Although
there is no consistent ordering between the first three methods, averaging across all experiments
we conclude that cjBitSeq is ranked first.

We have also tested the sensitivity of our method with respect to the prior distributions of DE
(3) by setting π =0:5 (see the on-line supplementary Fig. 11 and the corresponding discussion
in appendix K). We conclude that the prior distribution does not affect the ranking of methods
either for DE or expression estimation.

3.3. Human data
This example demonstrates the proposed algorithm to differential analysis of lung fibroblasts
in response to loss of the developmental transcription factor HOXA1; see Trapnell et al. (2013)
for full details. There are three biological replicates in the two conditions. The experiment is
carried out by using two sequencing platforms: ‘HiSeq’ and ‘MiSeq’, where MiSeq produced
only 23% of the number of reads in the HiSeq data. Here, these reads are mapped to hg19
(University of California, Santa Cruz, gerome browser annotation) using Bowtie 2, consisting
of K =48009 transcripts. In total, there are 96969106 and 21271542 mapped reads for HiSeq
and MiSeq sequencers respectively. Trapnell et al. (2013) demonstrated the ability of Cuffdiff2
to recover the transcript dynamics from the HOXA1 knockdown when using the significantly
smaller amount of data generated by MiSeq compared with HiSeq.

Applying cjBitSeq to the MiSeq data recovers 50:2% of the DE transcripts from HiSeq. In
contrast, 183 transcripts are reported as differentially expressed with the MiSeq data but not the
HiSeq data (Figs 7(a) and 7(b)). The corresponding percentages for BitSeq stage 2, EBSeq and
Cuffdiff are 43:3%, 40:6% and 15:7% respectively (see Figs 7(b), 7(c) and 7(d)). We conclude
that the model proposed returns the largest proportion of consistently differentially expressed
transcripts between platforms. The number of transcripts which are simultaneously reported as
differentially expressed is equal to 2173 and 390 for HiSeq and MiSeq data respectively (Figs
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Fig. 4. (a) Receiver operating characteristic, (b) SAR-measure and (c) power to achieved FDR curves
for scenarios 1–7 (from top to bottom): , filtered cjBitSeq output by discarding transcripts with absol-
ute log2-fold change less than 1; , eFDR D 0.01I , eFDR D 0.025I , eFDR D 0.05I , eFDR D 0.1I ,
eFDRD0.2I , eFDRD0.4
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Fig. 5. True log-relative expression values for scenario 3 (average of nine replicates per condition: approx-
imately 24 million reads in total) (the colour corresponds to the evidence of DE according to each method
and the keys show the relative frequency of colours): (a) BitSeq; (b) cjBitSeq; (c) Cuffdiff; (d) EbSeq

8(a) and 8(b)). Finally, cjBitSeq and EBSeq provide the most highly correlated classifications
(see Table 1 of the on-line supplementary material).

4. Discussion

We have proposed a probabilistic model for the simultaneous estimation of transcript expression
and DE between conditions. Building on the BitSeq framework, the new Bayesian hierarchical
model is conjugate for fixed dimension variables. A by-product is a new interpretation of the
generalized Dirichlet distribution, which naturally appears in equation (15) as the full condi-
tional distribution of a random variable describing one of the free parameters corresponding to
two proportion vectors under the constraint that some of the weights are equal to each other.
We implemented two MCMC samplers, a reversible jump and a collapsed Gibbs sampler, and
we found that the collapsed Gibbs sampler converged faster. To reduce the dimensionality of
the parameter space greatly for inference we developed a transcript clustering approach which
allows inference to be carried out independently on subsets of transcripts that share aligned
reads. According to lemma 3 in the on-line supplementary material (appendix H), this clustered
version of the ordinary algorithm converges to the proper marginal distribution for each cluster.
Thus, the algorithm has the nice property that it can be run in parallel for each cluster, and the
memory requirements are quite low, providing a simple parallelization option.
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Fig. 7. HOXA1 knockdown data set: significant transcript list returned by (a) cjBitSeq (50.2%), (b) BitSeq
(43.3%), (c) EBSeq (40.6%) and (d) Cuffdiff (15.7%) when using HiSeq ( ) and MiSeq ( ) data (the FDR for
cjBitSeq, EBSeq and Cuffdiff were set to 0.05, whereas, for BitSeq, PPLR <0.025 or PPLR>0.975)
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The applications to simulated and real RNA-seq data reveal that the method proposed is
highly competitive with the current state of the art software dealing with DE analysis at the
transcript level. Note that the simulated data were generated under a variety of scenarios and
including different levels of replication and biological variation. We simulated transcript reads
per kilobase values with variability following either the Poisson or the negative binomial distri-
bution with various levels for the dispersion around the mean. We conclude that our method is
quite robust in expression estimation and in classifying transcripts as differentially expressed or
not. Compared with standard two-stage pipelines it is ranked as the best method under a wide
range of generative scenarios.

RNA-seq data are usually replicated such that more than one data set is available for each
condition. In such a way, biological variability between repetitions of the same experiment
can be taken into account. The amount of variability between replicates can be quite high
depending on the experimental conditions. Two-stage approaches for estimating DE are strongly
focused on modelling this interreplicate variability. This is not so for our method at present
and all replicates of a given condition are effectively pooled before inference. Modelling the
variability between replicates would significantly increase the complexity of our approach as it
is technically challenging to retain conjugacy. However, according to our simulation studies, we
have found that pooling replicates and jointly estimating expression and DE balances the loss
through ignoring variability between replicates in many cases. Nevertheless, an extension also
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to model interreplicate variability would be very interesting and could be expected to improve
performance when there is high interreplicate dispersion.

The method proposed was developed focusing on a comparison of two conditions and its
extension to more general settings is another interesting area for future research. A remarkable
property of the parameterization that was introduced in equations (5) and (6) is that its extension
is straightforward when J>2: it can be shown that in this case there is one parameter of constant
dimension and J − 1 parameters of varying dimension. Let u = u.1/ be the vector of relative
abundances for condition 1. For a given condition j =2, : : : , J define a vector vj containing the
expression of transcripts not being equal to any of the previous conditions 1, : : : , j − 1. Note
that vj is a random variable with varying length (between 0 and K). Furthermore, for j � 2
define the vectors u.j/

k , k =1, : : : , j −1, containing the expression of transcripts that are shared
with condition k but not with 1, : : : , k − 1. It follows that u.j/

k can be written as a function of
u.1/ and vk, k =1, : : : , j −1. Hence, the relative transcript expression vector for condition j can
be expressed as a suitable permutation of .u.j/

1 , : : : , u.j/
j−1, vj/. However, the question of whether

the model stays conjugate for fixed dimension updates remains an open problem. If yes, the
design of more sophisticated move types between different models would also be crucial to the
convergence of the algorithm since the search space is increased.

The source code of the proposed algorithm is compiled for Linux distributions and it is
available from https://github.com/mqbssppe/cjBitSeq. The simulation pipeline is
available from https://github.com/ManchesterBioinference/cjBitSeq bench
marking. Cluster discovery and MCMC sampling are coded in R and C++ respectively. Parallel
runs of the MCMC scheme are implemented by using the GNU parallel (Tange, 2011) shell tool.
The computing times that are needed for our data sets are reported in the on-line supplementary
Table 2.

5. Supplementary material

In the on-line supplementary material we provide the proofs of our lemmas and theorems, a
detailed description of the reversible jump proposal and the Gibbs updates of the state vector
of the collapsed sampler. Also included are details of alignment probabilities and some use-
ful properties of the generalized Dirichlet distribution. We also perform various comparisons
between the RJMCMC and collapsed samplers and examine their prior sensitivity. Finally we
describe the generative schemes for the simulation study and some guidelines for the practical
implementation of the algorithm.
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